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ABSTRACT ods for estimating model transitions. We also apply DMS
ro learning piecewise stationary memoryless sources

we are concerned with the issue of detect'l ng changes ° (PSMSs[9]) and analyze it from the view of data compres-
statistical models when they change over time. We intro- . . . X .
sion. According to [4], we give a method for discretiz-

duce the dynamic model selection (DMS) algorithm for : ; .
. ) o ing the parameter space in order to get an optimal code-
learning model sequences on the basis of the minimum

description length (MDL) principle. We first analyze it length bound. Fro”? the both views of hyp_othes_|s testing
. . . and data compression, we argue how to discretize the pa-
from the view of hypothesis testing. We evaluate error

probabilities for testing the occurrences of change-points rameter space to obtain ideal performance. This yields a

and relate them to the model transition estimators and thenew insight into distinguishability([1],8]) of probabilistic

distance between the models to be distinguished. We thenrnOdeIS from the view of change-detection as well as data

. : ) . compression.
apply the DMS algorithm into data compression via piece-
wise stationary memoryless sources (PSMS’s). We give a 2. DYNAMIC MODEL SELECTION
method for discretizing the parameter space to obtain an
optimal data compression bound. From the both views of
hypothesis testing and data compression, we argue ho

to discretize the parameter space in order to obtain idealcretﬁ ' I;etrht_aﬁe_ avalugf_mz.kl)_et/\al_ be atclass of mtodelsa .
performance. It yields a new view of distinguishability each o which IS speciied by a diScrete parameter and 1S

of probabilistic models from the standpoint of change- properly ordere_d. qu exa’.“p'e’ we may consider the case
detection. whereM € M is a dimension of real-valued parameters.

We denoter; ... z;_; asz'~!. Let P(X"|M) be a prob-
1. INTRODUCTION ability distribution specified by a modall. For eachl,

) ) ) for eacht, we define a predictive distribution of given
We are concerned with the issue of detecting changes of .; by P(X|zt~!: M) = P(X - 2t~ 1| M) /P (21| M).
probabilistic models frqm a no.n-stationary dfita sequence. e suppose that a model switches to neighboring ones
Dynamic model selection, which we abbreviate as DMS, \\ith some probabilities at each time. According to [14],
has been proposed in [14],[13](see also [3]) in order to ad-\ye consider model transition probability distributions:
dress this issue. DMS algorithms have been designed on

re besi o th minimum cesrpton ngth (DL r DERor LeL L nge o) Letsbes
ciple ([8]). 1.e., they output a model sequence so that theto neighbouring ones only, we define tmedel transition

Following .[14],[13] we introduce a framework for DMS.
et X be a domain, which may be either continuous or dis-

sum of the code-length for a data sequence plus that for e ) _
model sequence is minimum. DMS is related to Works%r()baIbIIIty distributionas: PMi|0:a) = 1/]‘f[7
by van Erven et.al.[2] on switching distributions, those l-a if My =M1, M: #10rM,
by Shamir and Merhav [10], Willems [11],Willems and POMM'™ : ) = 1—«a/2 if My=M;_1,M;=10rM,
Casadei [12] on data compression for piecewise station- ] a/2 if [My — M| =1,
ary memoryless sources (PSMSs). 0 otherwise

In this paper we first analyze DMS from the view of Here are three methods for estimating

hypothesis testing. We apply DMS to the issue of testing Definition 2 Shamir and Merhav's (SM) estimatar is
whether a change-point of statistical models exists or not, defined as follows[10]: For > 0

and evaluate it in terms of Type 1 and 2 error probabili-
ties, which depend on how to estimate model transitions. a(M?) = m(t—te+1) 1)
We investigate them for the three types of methods for es- Zoo — Zp—y,

timating model transition probabilities: Shamir and Mer- wheret, is the latest change point beforeand r(t) —

hav's method [10], Krichevsky and Trofimov’s one [6], 1 _«n ) o . .
and Willem’s one [11],[12]. e In = 2jo1 7(): Zoo = 3= (). Krichevsky

Trofi 's (KT) estimatai i fi foll :
We then apply DMS to data compression. We derive and Trofimov's (KT) estimatai is defined as follows[6]

upper bounds on the total code-length for the three meth- a(M") = (n(M") +1/2)/t, )



wheren(M?) is the number of model changes M*.
Willem’s (W) estimatot: is defined as follows[11]:

a(M') =1/(2(t - tc)), 3

wheret. is the latest change-point befare

KT estimator is calculated using all the past data, while

DMS as a change-point detector works as a hypothesis
testing algorithm such thdf, is accepted if

> (=log Pz’ ™" : My))
t=t*+1
— Z (=log P(z¢|a' ™" : Ma)) < f(n,t"), (7)

t=t*+1

SMand W estimators are calculated using the data startinghere

from the latest change-point.

We denoteP (M| M1 : (M=) asPy (M| M~ 1).
Below we give a criterion for selecting an optimal se-
quence on the basis of the MDL principle.

Definition 3 [14] Given z" r1...T,, We define the
DMS criterionfor M™ = Mj ... M, by:

(@MY = S (—log Pzt : My))

t=1

+zn: (—log pt(Mt‘Mtfl)) O

The first term is thetf()ltal predictive code-length for
x™ relative toM™ while the second term is the total pre-
dictive code-length fok™. Hence the optimal sequence is
obtained as the one which minimizes the total code-length.
It leads to the DMS algorithm as follows:

Definition 4 [14] The DMS algorithmdenoted as DMS,
is an algorithm that takes as inptit and outputs\/™ s.t.

®)

An algorithm that computed/™ as in (5) using the
dynamic programming has been proposed ([14]).

3. HYPOTHESIS TESTING WITH DMS

M :argI]\I}[l}Ll[(fE s M™Y.

We simplify the problem of DMS so that there are only
two models;M; andM,. We are then concerned with the
issue of testing whether a model has changed or not. Be
low we assume that the model is eitldy or M, the ini-

tial model isM;, and there exists only one change-point

Fln,t°) S oM™ (£7)) — oM7), ®)
and

oM7)

n

> (~log Pi(Mi| M),

t=1

def

t*—1

(M) =D (— log P(Mi| M) + (— log Prr (M| My))

t=1

+ Z (— log Pt(M2|M2))
t=t*+1
OtherwiseH; is accepted.
We define as measures of performance of a change-point de-
tector Type 1 and 2 error probabilities as follows:

Definition 6 For given the length of data sequengehe change-
point timet*, we defineType 1 error probabilityfor DMS as a
change-point detector by:

Prob [z« ~ P(X"|M1) and Eq.(7) doesn’t hold] ,
andType 2 error probabilityfor DMS at delayh = n — t* by:
Prob [x;a“ ~ P(XD 1|z s M) and Eq.(7) holds] .

Type 1 error probability is the probability that the model
change has not yet occurred until timéout the change is incor-
rectly reported at time*. Type 2 error probability is the proba-
bility that the model change has already occurred at timéut
itis overlooked until time: whereh = n—t* is detection delay

We make the following assumption faf; and M-.

Assumption 7 Suppose that for sonte< K < oo,for any X,
|log P(X|M;)| < K fori = 1,2 and that for som® < V' <
oo the variance of the random variablg = log P(X,;| X7~ :

in a model sequence. The problem is to detect when the,y,)/p(x;| X7~ . M) with respect taP(X,| X7~ : M,) is

model has changed. We give the following specific form
of DMS in order to solve this issue.

Definition 5 DMS as a change-point detectisran algo-
rithm that takes as input” and outputs the least time in-
dext. such that

Oa™ s M) > (e s M (t.)), )

te n—te

def def

—T——
Whel’eMn(tC) = M;...M{Msy...M, andMln = M;...M.

We reduce the change-detection problem to the hy-
pothesis testing as follows: Lét be a true change-point.
Consider the following two hypotheseH, and H;:

Hyo: M; forzl =z2" =21 -2,
X
I M, forzi =xp--- @,
1 -
My forai ) =xpq1-- Tn.

def

SetP(zp |zt M)
andP(ap. , |2t My) &

[Ty Plagle™ - M),

[Tj—s 1 P(xj|lz7~" : My).Then

upper-bounded by for any ;.

We give the following theorem on Type 1 and 2 error proba-
bilities for general cases.

Theorem 8 For DMS as a change-point detector, we have

)

Let us define thl-iL*lllback-LeibIer divergencéhe KL-divergence)
betweenP(X"|z'" : M>) and P(X"|2" : M) by

Type 1 error probability < 2777

Dy (Ma]| M1)] e

P

(X7t yla®” : M)
1
0og P

def t*
= P(X{q|x" @ Ma) n - .
2 et (XZyq|ot™ M)

X

n
t*+1

Under Assumption 7, D, (Ma|[Mi)],e= > f(n,t") holds, for
some) < C' < oo, We have

Type 2 error probability < 2exp (fC’hﬁ,%) , (10)

where

Bn

déf %(Dh(MQHMl)‘Tt* —f(’l’L,t*))7 (11)



Theorem 8 shows that Type 1 error probability for DMS is
always upper-bounded by the exponential in the neggiiuet™),
which is determined by only the code-lengths for model transi-
tion. We also see that Type 2 error probability for DMS de-
cays in orderO(exp(—h/33)), where the exponent factor de-
pends on the code-length for model transition as well as the KL-
divergence betweefl> and M;. The larger the KL-divergence
minus f(n,t") is, the smaller Type 2 error probability is. The
larger f(n,t*) is, the smaller Type 1 error probability is while
the larger Type 2 error probability is. The balance between Type
1 and 2 error probabilities depends on how to estimate model
transition probability distributions. We have the following corol-
laries for the respective model transition estimators.

Corollary 9 Let the values of (n, t.) as in (8) for SM estima-
tor, KT estimator and W estimator fé™ (n, t*), fry (n,t*),and
% (n,t*), respectively. Then they are given as follows:

fSM(n,t*):logZoot*(l+E)+log{< h+1 )(h+1

h+1+e€ n

FET (n, ) = log(2(t* + h) — 1),
w N (TL — 1/2)hh! *
fhnt )—10gm+log(2t —1),

where(n — 1/2), = (n — 1/2)(n — 3/2) - -
np=n(n—1)--- (& +1).

We may see that for fixet!, for sufficiently largeh for suf-
ficiently smalle > 0,

FE ) > M () > Y (n, 7).

This implies that Type 1 error probability becomes small in this
order while Type 2 error probability becomes large in this order.

4. DATA COMPRESSION WITH DMS

(t*+1/2)and

(12)

4.1. Data Compression

When we apply DMS of Definition 4 into data compression, we
have the following theorem on its total code-length:

Theorem 10 For anyz™, the total code-length for DMS, which
we denote ag(z"), is upper-bounded as follows:

£(z™) < min min min {log\/\/ﬂ + F(n,m)
M t0,...tm M(0),...M(m)
m ]+1
+ Z Z —log P(x¢|z" ™" : Mt))}7 (13)
J=0 t=t;+1

wherety = 0 < t1 <,...,< tm < tms+1 = n denote
change-pointsin is the number of change-pointd{(j) € M

is the model aft;,t;41) (¢ = 0,...,m), and the minimum is
taken under the condition thad/(j) — M(5 +1)| < 1 (j =
0,...,m —1). F(n,m) is code-length for a model sequence
M(0)..M(0)M (1).....M(m). For SM estimator, KT estimator,
and W estimator, we denof&n, m) asFsa (n, m), Fxr(n,m),
and Fy (n, m), respectively. They are expanded as follows:

Fs]u(n, m)

:mlog% +e(m+1)log mj—l
—mlogE

+ (m+1)log(1+¢) 5

_m_
n—1
+(m+1)log2

Frr(n,m) = (n—l)H( >+%10g(n— 1)

Fw(n,m):37ml — 4= logn+(2m—1)log2—|—m,

whereH (z) = —zlogx — (1 — x) log(1 — z).

For eachm, for any sufficiently largen, for sufficiently
smalle > 0, the following relation holds among SM, KT, and

Fsar(n,m) < Fxr(n,m) < Fw(n,m). (14)

4.2. Learning PSMSs

Let X be either discrete or continuous. L&t = {p(z;0) :

0 € O} be a parametric class of probability distributions (or
probability mass functions) whek@ is a parameter space. We
suppose that eacty of 2" = z1...xz, € X" is independently
generated according to a class of probability distributions with
m + 1 piecewise constant parameters as follows:

(1St§t1):
(th+1<t<t),

o1~ pla;
o0 ~ pla; as)

o~ p(@0(m)) (b +1< < ),

whered < t1 <ta < -+ <tm <n(o=0, tme1 =n)isa
sequence of change-points and ed¢f) € © (j = 0,...,m)
andf(j) #0(j+1)(j =0,...,m—1). We call such a source
apiecewise stationary memoryless soue8MS) [7],[9].

We consider any lossless data compression algotdhwmhich
takes as inputt™ and outputs a lossless compressed data se-
quence. We denote the total code-length 4#8r using A as
La(z™). We define as a measure for the goodnessidhe
expected redundan@s follows:

Definition 11 For any lossless data compression algoritdm
for a given PSMS as in (15), we define tiigpected redundancy
for A by

def

m _]+1

D IDIN

j=0t=t;+1

R —logp(z+;0(5))) | ,

where the expectation is taken with respect to (15).

Merhav[7] derived the following lower bound on the ex-
pected redundancy.

Theorem 12 [7] Suppose that the domahiis finite. Supposing
that each datum is independently generated according to almost
any PSMS with fixedh as the number of change-points and fixed
k as the degrees of freedom of each parameter, and under other
some conditions for any > 0 and sufficiently large:, we have
infRY > (1-2) (W logn -+ mlogn) . (@1e)
Inthe case wher® is 1-dimensional and compact, Kanazawa
and Yamanishi[4] applied DMS to develop an algorithm that
asymptotically matched (16).Below we introduce their approach.
The key ideas of their algorithm are summarized as follows:
1) Discretization of parameter spac&or a given positive
integer K, we discretized to obtain a finite set of siz&. Let
us define Fisher information associated wittand L; by

} , LY VI(0)do,

vco
1) be a discretization scale

9% log p(x; 6)

1) = Eo {_ 062

respectively. Letting; = L;/(K
andf; = Hmm, we defined; so that
I8 = (- 1)1 (=2, ...
01

K). 17)



We have® = {01,...,0x}. We assume that for each interval 6. CONCLUSION
0; < 0 < 0;41, eitherd/T < I > 0. . ) . .
0i < 0 < 041, eitherd/1(6)/d0 < 0 or d/1(9)/df > 0 We have applied DMS into the scenarios of change-detection

_2)Settings Of. mod(_el ransition probapilitieWhen the_ model  and data compression for time-varying sources. We have ana-
set is a set of discretized para_tmeters,_ it may_be difficult to 8- |yzed the performance of DMS in the both scenarios and have
sume that the parameter transits to neighbouring ones only as g,y how it is related to model transition estimation. We have
Definition 1). In that c_ase, we ?SS“me accordi_ng to [4] th_a_t_the argued how to discretize the real-valued parameter space to ob-
parameter value transits according to the following probabilities: . optimal performance in the both scenarios. It has turned out

o . . that change-detection may require more discriminability over the
Pr(iy i) = { K1 (ie # 6u-), (18) parameter space than data compression.
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