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ABSTRACT

We are concerned with the issue of detecting changes of
statistical models when they change over time. We intro-
duce the dynamic model selection (DMS) algorithm for
learning model sequences on the basis of the minimum
description length (MDL) principle. We first analyze it
from the view of hypothesis testing. We evaluate error
probabilities for testing the occurrences of change-points
and relate them to the model transition estimators and the
distance between the models to be distinguished. We then
apply the DMS algorithm into data compression via piece-
wise stationary memoryless sources (PSMS’s). We give a
method for discretizing the parameter space to obtain an
optimal data compression bound. From the both views of
hypothesis testing and data compression, we argue how
to discretize the parameter space in order to obtain ideal
performance. It yields a new view of distinguishability
of probabilistic models from the standpoint of change-
detection.

1. INTRODUCTION

We are concerned with the issue of detecting changes of
probabilistic models from a non-stationary data sequence.
Dynamic model selection, which we abbreviate as DMS,
has been proposed in [14],[13](see also [3]) in order to ad-
dress this issue. DMS algorithms have been designed on
the basis of the minimum description length (MDL) prin-
ciple ([8]). I.e., they output a model sequence so that the
sum of the code-length for a data sequence plus that for a
model sequence is minimum. DMS is related to works
by van Erven et.al.[2] on switching distributions, those
by Shamir and Merhav [10], Willems [11],Willems and
Casadei [12] on data compression for piecewise station-
ary memoryless sources (PSMSs).

In this paper we first analyze DMS from the view of
hypothesis testing. We apply DMS to the issue of testing
whether a change-point of statistical models exists or not,
and evaluate it in terms of Type 1 and 2 error probabili-
ties, which depend on how to estimate model transitions.
We investigate them for the three types of methods for es-
timating model transition probabilities: Shamir and Mer-
hav’s method [10], Krichevsky and Trofimov’s one [6],
and Willem’s one [11],[12].

We then apply DMS to data compression. We derive
upper bounds on the total code-length for the three meth-

ods for estimating model transitions. We also apply DMS
to learning piecewise stationary memoryless sources
(PSMSs[9]) and analyze it from the view of data compres-
sion. According to [4], we give a method for discretiz-
ing the parameter space in order to get an optimal code-
length bound. From the both views of hypothesis testing
and data compression, we argue how to discretize the pa-
rameter space to obtain ideal performance. This yields a
new insight into distinguishability([1],[8]) of probabilistic
models from the view of change-detection as well as data
compression.

2. DYNAMIC MODEL SELECTION

Following .[14],[13] we introduce a framework for DMS.
LetX be a domain, which may be either continuous or dis-
crete. Letx take a value inX . LetM be a class of models,
each of which is specified by a discrete parameter and is
properly ordered. For example, we may consider the case
whereM ∈ M is a dimension of real-valued parameters.
We denotex1 . . . xt−1 asxt−1. Let P (Xn|M) be a prob-
ability distribution specified by a modelM . For eachM ,
for eacht, we define a predictive distribution ofX given
xb

a by P (X|xt−1 : M) = P (X · xt−1|M)/P (xt−1|M).
We suppose that a model switches to neighboring ones

with some probabilities at each time. According to [14],
we consider model transition probability distributions:

Definition 1 Let M range over{1, . . . , M̄}. Let α be a
1-dimensional parameter. Assuming that a model transits
to neighbouring ones only, we define themodel transition
probability distributionas: P (M1|∅ : α) = 1/M̄,

P (Mt|M t−1 : α) =

8

>

>

<

>

>

:

1 − α if Mt = Mt−1, Mt 6= 1 or M̄,

1 − α/2 if Mt = Mt−1, Mt = 1 or M̄,

α/2 if |Mt − Mt−1| = 1,

0 otherwise.
Here are three methods for estimatingα.

Definition 2 Shamir and Merhav’s (SM) estimator̂α is
defined as follows[10]: Forε > 0,

α̂(M t) =
π(t − tc + 1)
Z∞ − Zt−tc

, (1)

wheretc is the latest change point beforet andπ(t) =
1

t1+ε , Zn =
∑n

j=1 π(j), Z∞ =
∑∞

j=1 π(j). Krichevsky
and Trofimov’s (KT) estimator̂α is defined as follows[6]:

α̂(M t) = (n(M t) + 1/2)/t, (2)



wheren(M t) is the number of model changes inM t.
Willem’s (W) estimator̂α is defined as follows[11]:

α̂(M t) = 1/(2(t − tc)), (3)

wheretc is the latest change-point beforet.

KT estimator is calculated using all the past data, while
SM and W estimators are calculated using the data starting
from the latest change-point.

We denoteP (Mt|M t−1 : α̂(M t−1)) asP̂t(Mt|M t−1).
Below we give a criterion for selecting an optimal se-
quence on the basis of the MDL principle.

Definition 3 [14] Given xn = x1 . . . xn, we define the
DMS criterionfor Mn = M1 . . .Mn by:

`(xn : Mn) =

n
X

t=1

`

− log P (xt|xt−1 : Mt)
´

+
n

X

t=1

“

− log P̂t(Mt|Mt−1)
”

. (4)

The first term is the total predictive code-length for
xn relative toMn while the second term is the total pre-
dictive code-length forkn. Hence the optimal sequence is
obtained as the one which minimizes the total code-length.
It leads to the DMS algorithm as follows:

Definition 4 [14] The DMS algorithm, denoted as DMS,
is an algorithm that takes as inputxn and outputsM̂n s.t.

M̂n = arg min
Mn

`(xn : Mn). (5)

An algorithm that computeŝMn as in (5) using the
dynamic programming has been proposed ([14]).

3. HYPOTHESIS TESTING WITH DMS

We simplify the problem of DMS so that there are only
two models;M1 andM2. We are then concerned with the
issue of testing whether a model has changed or not. Be-
low we assume that the model is eitherM1 or M2, the ini-
tial model isM1, and there exists only one change-point
in a model sequence. The problem is to detect when the
model has changed. We give the following specific form
of DMS in order to solve this issue.

Definition 5 DMS as a change-point detectoris an algo-
rithm that takes as inputxn and outputs the least time in-
dextc such that

`(xn : Mn
1 ) ≥ `(xn : Mn(tc)), (6)

whereMn(tc)
def=

tc︷ ︸︸ ︷
M1 . . .M1

n−tc︷ ︸︸ ︷
M2 . . .M2 andMn

1
def= M1 . . .M1.

We reduce the change-detection problem to the hy-
pothesis testing as follows: Lett∗ be a true change-point.
Consider the following two hypotheses:H0 andH1:

H0 : M1 for xn
1 = xn = x1 · · ·xn,

H1 :

(

M1 for xt∗
1 = x1 · · ·xt∗ ,

M2 for xn
t∗+1 = xt∗+1 · · ·xn.

SetP (xn
t∗+1|xt∗ : M1)

def=
∏n

j=t∗+1 P (xj |xj−1 : M1),

andP (xn
t∗+1|xt∗ : M2)

def=
∏n

j=t∗+1 P (xj |xj−1 : M2).Then

DMS as a change-point detector works as a hypothesis
testing algorithm such thatH0 is accepted if

n
X

t=t∗+1

(− log P (xt|xt−1 : M1))

−
n

X

t=t∗+1

(− log P (xt|xt−1 : M2)) < f(n, t∗), (7)

where
f(n, t∗)

def
= `(Mn(t∗)) − `(Mn

1 ), (8)

and

`(Mn
1 )

def
=

n
X

t=1

(− log P̂t(M1|M1)),

`(Mn(t∗))
def
=

t∗−1
X

t=1

(− log P̂t(M1|M1)) + (− log P̂t∗(M2|M1))

+
n

X

t=t∗+1

(− log P̂t(M2|M2)).

OtherwiseH1 is accepted.
We define as measures of performance of a change-point de-

tector Type 1 and 2 error probabilities as follows:

Definition 6 For given the length of data sequencen, the change-
point timet∗, we defineType 1 error probabilityfor DMS as a
change-point detector by:

Prob
ˆ

xn
t∗+1 ∼ P (Xn|M1) and Eq.(7) doesn′t hold

˜

,

andType 2 error probabilityfor DMS at delayh = n − t∗ by:

Prob
h

xn
t∗+1 ∼ P (Xn

t∗+1|xt∗ : M2) and Eq.(7) holds
i

.

Type 1 error probability is the probability that the model
change has not yet occurred until timen but the change is incor-
rectly reported at timet∗. Type 2 error probability is the proba-
bility that the model change has already occurred at timet∗, but
it is overlooked until timen whereh = n−t∗ is detection delay.

We make the following assumption forM1 andM2.

Assumption 7 Suppose that for some0 < K < ∞,for anyX,
| log P (X|Mi)| ≤ K for i = 1, 2 and that for some0 < V <
∞ the variance of the random variableVj = log P (Xj |Xj−1 :
M2)/P (Xj |Xj−1 : M1) with respect toP (Xj |Xj−1 : M2) is
upper-bounded byV for anyj.

We give the following theorem on Type 1 and 2 error proba-
bilities for general cases.

Theorem 8 For DMS as a change-point detector, we have

Type 1 error probability ≤ 2−f(n,t∗). (9)

Let us define theKullback-Leibler divergence(the KL-divergence)
betweenP (Xh|xt∗ : M2) andP (Xh|xt∗ : M1) by

Dh(M2||M1)|xt∗

def
=

X

Xn
t∗+1

P (Xn
t∗+1|xt∗ : M2) log

P (Xn
t∗+1|xt∗ : M2)

P (Xn
t∗+1|xt∗ : M1)

.

Under Assumption 7, ifDh(M2||M1)|xt∗ > f(n, t∗) holds, for
some0 < C < ∞, we have

Type 2 error probability ≤ 2 exp
`

−Chβ2
h

´

, (10)

where
βh

def
=

1

h
(Dh(M2||M1)|xt∗ − f(n, t∗)) , (11)



Theorem 8 shows that Type 1 error probability for DMS is
always upper-bounded by the exponential in the negativef(n, t∗),
which is determined by only the code-lengths for model transi-
tion. We also see that Type 2 error probability for DMS de-
cays in orderO(exp(−hβ2

h)), where the exponent factor de-
pends on the code-length for model transition as well as the KL-
divergence betweenM2 andM1. The larger the KL-divergence
minusf(n, t∗) is, the smaller Type 2 error probability is. The
largerf(n, t∗) is, the smaller Type 1 error probability is while
the larger Type 2 error probability is. The balance between Type
1 and 2 error probabilities depends on how to estimate model
transition probability distributions. We have the following corol-
laries for the respective model transition estimators.

Corollary 9 Let the values off(n, t∗) as in (8) for SM estima-
tor, KT estimator and W estimator befSM (n, t∗), fKY (n, t∗),and
fW (n, t∗), respectively. Then they are given as follows:

fSM (n, t∗) = log Z∞t∗(1+ε) + log

„

h + 1

h + 1 + ε

« „

h + 1

n

«εff

,

fKT (n, t∗) = log(2(t∗ + h) − 1),

fW (n, t∗) = log
(n − 1/2)hh!

nh(h − 1/2)h
+ log(2t∗ − 1),

where(n − 1/2)h = (n − 1/2)(n − 3/2) · · · (t∗ + 1/2) and
nh = n(n − 1) · · · (t∗ + 1).

We may see that for fixedt∗, for sufficiently largeh for suf-
ficiently smallε > 0,

fKT (n, t∗) > fSM (n, t∗) > fW (n, t∗). (12)

This implies that Type 1 error probability becomes small in this
order while Type 2 error probability becomes large in this order.

4. DATA COMPRESSION WITH DMS

4.1. Data Compression

When we apply DMS of Definition 4 into data compression, we
have the following theorem on its total code-length:

Theorem 10 For anyxn, the total code-length for DMS, which
we denote as̀(xn), is upper-bounded as follows:

`(xn) ≤ min
m

min
t0,...tm

min
M(0),...M(m)



log |M| + F (n, m)

+
m

X

j=0

tj+1
X

t=tj+1

`

− log P (xt|xt−1 : Mt)
´

ff

, (13)

where t0 = 0 < t1 <, . . . , < tm < tm+1 = n denote
change-points,m is the number of change-points,M(j) ∈ M
is the model at[tj , tj+1) (i = 0, . . . , m), and the minimum is
taken under the condition that|M(j) − M(j + 1)| ≤ 1 (j =
0, . . . , m − 1). F (n, m) is code-length for a model sequence
M(0)..M(0)M(1).....M(m). For SM estimator, KT estimator,
and W estimator, we denoteF (n, m) asFSM (n, m), FKT (n, m),
andFW (n, m), respectively. They are expanded as follows:

FSM (n, m) = m log
n

m
+ ε(m + 1) log

n

m + 1

+ (m + 1) log(1 + ε) − m log
ε

2
,

FKT (n, m) = (n − 1)H

„

m

n − 1

«

+
1

2
log(n − 1)

+ (m + 1) log 2,

FW (n, m) =
3m

2
log

n

m
+

1

2
log n + (2m − 1) log 2 + m,

whereH(x) = −x log x − (1 − x) log(1 − x).

For eachm, for any sufficiently largen, for sufficiently
small ε > 0, the following relation holds among SM, KT, and
W:

FSM (n, m) < FKT (n, m) < FW (n, m). (14)

4.2. Learning PSMSs

Let X be either discrete or continuous. LetF = {p(x; θ) :
θ ∈ Θ} be a parametric class of probability distributions (or
probability mass functions) whereΘ is a parameter space. We
suppose that eachxt of xn = x1 . . . xn ∈ Xn is independently
generated according to a class of probability distributions with
m + 1 piecewise constant parameters as follows:

8

>

>

>

<

>

>

>

:

xt ∼ p(x; θ(0)) (1 ≤ t ≤ t1),

xt ∼ p(x; θ(1)) (t1 + 1 ≤ t ≤ t2),
...

xt ∼ p(xt; θ(m)) (tm + 1 ≤ t ≤ n),

(15)

where0 < t1 < t2 < · · · < tm < n (t0 = 0, tm+1 = n) is a
sequence of change-points and eachθ(j) ∈ Θ (j = 0, . . . , m)
andθ(j) 6= θ(j + 1) (j = 0, . . . , m− 1). We call such a source
apiecewise stationary memoryless source(PSMS) [7],[9].

We consider any lossless data compression algorithmA, which
takes as inputxn and outputs a lossless compressed data se-
quence. We denote the total code-length forxn using A as
LA(xn). We define as a measure for the goodness ofA the
expected redundancyas follows:

Definition 11 For any lossless data compression algorithmA,
for a given PSMS as in (15), we define theexpected redundancy
for A by

Rn
A

def
= E

2

4L(xn) −
m

X

j=0

tj+1
X

t=tj+1

`

− log p(xt; θ(j))
´

3

5 ,

where the expectation is taken with respect to (15).

Merhav[7] derived the following lower bound on the ex-
pected redundancy.

Theorem 12 [7] Suppose that the domainX is finite. Supposing
that each datum is independently generated according to almost
any PSMS with fixedm as the number of change-points and fixed
k as the degrees of freedom of each parameter, and under other
some conditions for anyε > 0 and sufficiently largen, we have

inf
A

Rn
A ≥ (1 − ε)

„

k(m + 1)

2
log n + m log n

«

. (16)

In the case whereΘ is 1-dimensional and compact, Kanazawa
and Yamanishi[4] applied DMS to develop an algorithm that
asymptotically matched (16).Below we introduce their approach.
The key ideas of their algorithm are summarized as follows:

1) Discretization of parameter space:For a given positive
integerK, we discretizeΘ to obtain a finite set of sizeK. Let
us define Fisher information associated withF andLI by

I(θ)
def
= Eθ

»

−∂2 log p(x; θ)

∂θ2

–

, LI
def
=

Z

θ∈Θ

p

I(θ)dθ,

respectively. LettingδI = LI/(K − 1) be a discretization scale
andθ̄1 = θmin, we definēθi so that

Z θ̄i

θ̄1

p

I(θ)dθ = (i − 1)δI (i = 2, . . . , K). (17)



We haveΘ̄ = {θ̄1, . . . , θ̄K}. We assume that for each interval
θ̄i ≤ θ ≤ θ̄i+1, eitherd

p

I(θ)/dθ ≤ 0 or d
p

I(θ)/dθ ≥ 0.

2)Settings of model transition probabilities:When the model
set is a set of discretized parameters, it may be difficult to as-
sume that the parameter transits to neighbouring ones only as in
Definition 1). In that case, we assume according to [4] that the
parameter value transits according to the following probabilities:

Pr(it | it−1) =

8

>

>

<

>

>

:

α
K−1

(it 6= it−1),

1 − α (it = it−1).
(18)

where we setK andα as

K = b
√

nc, α = 1/n.

Under the above setting Kanazawa and Yamanishi [4] pro-
posed an algorithm for learning PSMSs that takesxn as input
and outputs the parameter sequence(θ̄i1 , . . . , θ̄in) wherei1, . . . , in
are those which attain the DMS criterion. Its performance is
summarized in the following theorem:

Theorem 13 [4] Suppose that each datum is independently drawn
according to a PSMS. There exists an algorithmA for which time
complexity isO(n3/2) and the expected redundancy satisfies:

Rn
A <

m + 1

2
log n + m log n +

L2
I

2
+ log e + O(n−1/2). (19)

The bound (19) implies that the expected redundancy for the al-
gorithm asymptotically matches the lower bound (16).

5. DISTINGUISHABILITY

Let us employF = {p(x; θ) : θ ∈ Θ} as a model class of
probability distributions (or probability mass functions) where
Θ is a 1-dimensional real-valued parameter space. We consider
how to discretizeΘ to get a finite subsetΘ. From the argument
in Section 4.2(see 17), we see that if we let the discretization
scaleδ = maxi |θ̄i − θ̄i+1| be

δ = O
“

p

1/n
”

(20)

then we have an upper bound on the expected redundancy which
attains Merhav’s lower bound. In this sense the discretization
scale as in (20) is optimal in the scenario of data compression. It
coincides with results in [8],[1].

Meanwhile, let us consider the case where DMS is applied
into change-point detection over a discretized parameter setΘ.
When either SM, KT, W estimator or the uniform model transi-
tion probability as in (18) is employed for model transition esti-
mation, we see from Theorem 8 that Type 2 error probability for
DMS decreases exponentially with respect ton if

min
θ̄( 6=)θ̄′∈Θ

D(θ||θ′) > f(n, t∗)/n = O(log n/n). (21)

Note that for anyθ, θ′ ∈ Θ, we haveD(θ||θ′) = (1/2)I(θ)δ2,
whereδ is the discretization scale. If

δ = O
“

p

log n/n
”

(22)

then (21) holds. The discretization scale (22) makes the total
code-length(1/2) log n larger than the bound (19). This im-
plies that (22) doesn’t lead to optimal data compression. Hence
there is a gap between the optimal discretization in the sense of
change-detection and that of data compression. Change-detection
requires more discriminability over the parameter space than data
compression.

6. CONCLUSION

We have applied DMS into the scenarios of change-detection
and data compression for time-varying sources. We have ana-
lyzed the performance of DMS in the both scenarios and have
shown how it is related to model transition estimation. We have
argued how to discretize the real-valued parameter space to ob-
tain optimal performance in the both scenarios. It has turned out
that change-detection may require more discriminability over the
parameter space than data compression.
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