
SUMMARISING EVENT SEQUENCES WITH SERIAL EPISODES

Jilles Vreeken and Nikolaj Tatti

Department of Mathematics and Computer Science,
University of Antwerp, Belgium,
{firstname.lastname}@ua.ac.be

ABSTRACT

The discovery of patterns is an important aspect of data
mining. Data mining is the field of research concerned with
the extraction of useful insight from large databases. The
process of finding patterns in data is called pattern mining.
A pattern can be any type of regularity in the data, such
as, e.g., items are typically sold together, or events that
often happen in close vicinity. An ideal outcome of pattern
mining is a small set of patterns, containing no redundancy
or noise, that identifies the key structure of the data.

We pursue this ideal for sequential data, employing a
pattern set mining approach. We employ the MDL prin-
ciple to identify the best set of sequential patterns, and
propose two approaches for mining good pattern sets: the
first algorithm selects a good pattern set from a large can-
didate set, while the second is a parameter-free any-time
algorithm that mines pattern sets directly from the data.
Experimentation on synthetic and real data demonstrates
we efficiently discover small sets of informative patterns.

1. INTRODUCTION

Suppose we have an event sequence database, and are in-
terested in its most important patterns. Traditionally, we
would apply frequent pattern mining, and mine all patterns
that occur at least so-many times. For non-trivial thresh-
olds, however, by the pattern explosion we would then
be buried in huge amounts of highly redundant patterns—
making the patterns the problem instead of the solution.

We therefore adopt a different approach. Instead of
considering patterns individually, which is where the ex-
plosion stems from, we are after the set of patterns that
summarises the data best. Desired properties of such a
summary include that it should be small, generalise the
data well, and be non-redundant. To this end, we employ
the Minimum Description Length principle [1], by which
we can identify the best set of patterns as the set by which
we can describe the data most succinctly.

This approach has been shown to be highly successful
for transaction data [2], where the discovered patterns pro-
vide insight, as well as high performance in a wide range
of data mining tasks, including clustering, missing value
estimation, and anomaly detection.

Sequence data, however, poses additional challenges
over binary data. For starters, event orders are important,
and we have to take gaps in patterns into account. As such,

encoding the data given a cover, finding a good cover given
a set of patterns, as well as finding good sets of patterns,
are all much more complicated for sequence data.

As we identify the best model by compression, and con-
sider strings as data, standard compression approaches are
related. However, although general purpose compressors
provide top-notch compression, they do not result inter-
pretable models. In our case, compression is not the goal,
but a means for identifying those patterns that together
describe the data most succinctly.

We here introduce a statistically well-founded approach
for succinctly summarising event sequences, or SQS for
short—pronounced as ‘squeeze’. We formalise how to
encode a sequence dataset given a set of episodes, and
formalise an MDL score for pattern sets. To optimise this
score, we give an efficient heuristic to determine which
pattern best describes what part of your data. To find
good sets of patterns, we introduce two heuristics: SQS-
CANDIDATES filters a given candidate collection, and SQS-
SEARCH is a parameter-free any-time algorithm that effi-
ciently mines models directly from data.

In this extended abstract we give a quick overview of
SQS, only sketching the encoding and algorithms, and only
report on some highlights of the empirical evaluation. For
more detail, we refer the reader to [3].

2. MDL FOR EVENT SEQUENCES

As data type we consider event sequences. A sequence
database D over an event alphabet Ω consists of |D| se-
quences S ∈ D. Every S ∈ D is a sequence of |S| events
e ∈ Ω, i.e. S ∈ Ω|S|. We write S[i] to mean the ith event
in S and S[i, j] to mean a subsequence S[i] · · ·S[j]. We
denote by ||D|| the sum of the lengths of all Si ∈ D, i.e.
||D|| =

∑
Si∈D |Si|. The support of an event e in S is

its occurrences in S, i.e. supp(e | S) = |{i ∈ S|i = e}|,
and the support of e in a database D is defined as supp(e |
D) =

∑
S∈D supp(e | S).

As patterns we consider serial episodes. A serial episode
X is a sequence of events and we say that a sequence S
contains X if there is a subsequence in S equal to X . Note
that we are allowing gap events between the events of X .
A singleton pattern is a single event e ∈ Ω.

As models we consider code tables. A code table has
four columns, one for patterns, one for pattern codes, and
the latter two contain codes for indicating presence/absence

of a gap within a pattern. To ensure any sequence over
Ω can be encoded by a code table, we require that all the
singleton events in the alphabet, X ∈ Ω, are included in a
code table CT .

Encoding a Database

An encoded database consists of two code streams, Cp and
Cg, that follow from the cover C chosen to encode the
database. The first code stream, the pattern-stream, de-
noted by Cp, is a list of |Cp| codes, codep(·), for patterns
X ∈ CT corresponding to the patterns chosen by ‘cover’
algorithm. For example, codep(a)codep(b) codep(c) en-
codes the sequence ‘abc’.

For L(codep(X)), the lengths of pattern codes in Cp,
as stored in the second column of CT , we use optimal pre-
fix codes. Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y ∈ Cp | Y =
codep(X)}|. Then, the probability of codep(X) in Cp is
its relative occurrence in Cp. So, we have

L(codep(X) | CT) = − log

(
usage(X)∑

Y ∈CT usage(Y)

)
.

Serial episodes allow for gaps—only when we read
the code for a singleton pattern X we can unambiguously
append X to the decoded data. When X is a non-singleton
pattern, we may only append the first symbol x1, as before
writing event x2 of X , we need to know whether or not
one or more gap events occur in between.

This is what Cg, the gap code stream, encodes. It is a
list of optimal prefix codes for gap occurrences/absences
within pattern embeddings. These code lengths, L(codeg(X))
and L(coden(X)), are dependent on their relative fre-
quency. Let us write gaps(X) to refer to the number of
gap events within the usage of pattern X in the cover of D.
We then resp. have fills(X) = usage(X)(|X| − 1), for
the number of non-gaps in the usage of pattern X , and

L(codeg(X) | CT) = − log

(
gaps(X)

gaps(X) + fills(X)

)
,

for the length of a gap code within a pattern X , and ana-
logue for L(coden(X) | CT).

Combining the above, we straightforwardly arrive at
L(Cp | CT) =

∑
X∈CT usage(X)L(codep(X)) for the

encoded length of the pattern-stream, and analogously have

L(Cg | CT) =
∑

X∈CT
|X|>1

(
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
)

for Cg. We can then define L(D | CT), the length of a
database D given code table CT and cover C as

L(D | CT) = LN(|D|) +
∑
S∈D

LN(|S|) +

L(Cp | CT) + L(Cg | CT) ,

where |D| is the number of sequences in D, and |S| is the
length of a sequence S ∈ D. To encode these values, we
use LN, Rissanen’s universal code for integers [4].

Data D: a b d c a d b a a b c

Encoding 1: using only singletons
Cp a b d c a d b a a b c

Encoding 2: using patterns
Cp p d a q b p

Cg

alignment
a b d c a d b a a b c
p q p

gap gap

CT 1: a a

b b

c c

d d

CT 2: a a

b b

c c

d d

abc p

da q

ga
ps

no
n-g

ap
s

Figure 1. Toy example of two possible encodings. The first
encoding uses only singletons. The second encoding uses
singletons and two patterns, namely, abc and da

An Example. Consider the toy example in Fig. 1. One
possible encoding is to use only singletons, meaning that
gap stream is empty. Another encoding is to use patterns.
For example, to encode ‘abdc’, we first give the code for
abc in the pattern stream, then a no-gap code (white) in Cg
to indicate b, then a gap code (black) in Cg, next the code
for d in Cp, and we finish with a no-gap code in Cg .

Encoding a Code Table

Next we discuss how to calculate L(CT), the encoded
length of a code table CT . We encode its number of
entries using LN. For later use, and to avoid bias by large
or small alphabets, we encode the number of singletons,
|Ω|, and the number of non-singleton entries, |CT \ Ω|,
separately. We disregard any non-singleton pattern with
usage(X) = 0, as it is not used for describing the data.

The simplest valid code table consists of only single-
tons. We refer to this as the standard code table, or ST .
We encode the patterns in the left-hand side column using
ST , which allows us to decode up to the names of events.

The usage of Y ∈ ST is the support of Y in D. Hence,
the code length of Y in ST is defined as L(codep(Y) |
ST) = − log supp(Y |D)

||D|| . Before we can use these codes,
the recipient needs these supports. We transmit these by
the index of a number composition, the number of com-
binations of summing to m with n, non-zero, terms. The
length in bits of such an index is LU (m,n) = log

(
m−1
n−1

)
,

where for m = 0, and n = 0, we define LU (m,n) = 0.
We can now reconstruct the first column of CT . To

encode a pattern X ∈ CT , the number of bits is the
length of X , |X|, and the sum of the singleton codes, i.e.
LN(|X|) +

∑
xi∈X L(code(xi) | ST).

Next, we encode the second column. To avoid bias,
we treat the singletons and non-singleton entries of CT
differently. Let us write P to refer to the non-singleton
patterns in CT , i.e. P = CT \ Ω. For the elements
of P , we first encode the sum of their usages, denoted
by usage(P), and use LU identify the individual usages.
Together with ST , we can reconstruct all usages in CT .

This leaves the gap-codes of CT , for which we encode
gaps(X) using LN. The number of non-gaps then follows

from the length of a pattern X and its usage.
Together, we have L(CT | C , D), the encoded size in

bits of a code table CT for a cover C of a database D, as

L(CT | C) =LN(|Ω|) + LU (||D||, |Ω|)+
LN(|P|+ 1) + LN(usage(P) + 1)+

LU (usage(P), |P|) +
∑
X∈P

L(X,CT) ,

where L(X,CT), the encoded length for the events, length,
and the number of gaps of a pattern X in CT , is

L(X,CT)

= LN(|X|) + LN(gaps(X) + 1) +
∑
x∈X

L(codep(x | ST)) .

By MDL, we define the optimal set of serial episodes
for a given sequence database as the set for which the
optimal cover and associated optimal code table minimises

L(CT , D) = L(CT | C) + L(D | CT) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let Ω be a set of events
and let D be a sequence database over Ω, find the minimal
set of serial episodes P such that for the optimal cover C
of D using P and Ω, the total encoded cost L(CT , D) is
minimal, where CT is the code-optimal code table for C .

This problem entails a large search space. First of all,
there are many different ways to cover a database given
a set of patterns. Second, there are many sets of serial
episodes P we can consider. However, neither of these
problems exhibits trivial structure that we can exploit for
fast search, e.g. (weak) monotonicity.

3. COVERING A STRING

Encoding, or covering, a sequence is more difficult than de-
coding one. The reason is simple: when decoding there is
no ambiguity, while when encoding there are many choices,
i.e. what pattern to encode a symbol with. In other words,
given a set of episodes, there are many valid ways to cover
a sequence, where by our problem definition we are after
the cover C that minimises L(CT , D).

Assume we are decoding a sequence Sk ∈ D. Assume
we decode the beginning of a pattern X at Sk[i] and that the
last symbol belonging to this instance of X is, say, Sk[j].
We say that Sk[i, j] is an active window for X . Moreover,
we can use FINDWINDOWS in [5] to discover all minimal
windows for a pattern X in O(|X|||D||).

Let P be the set of non-singleton patterns used by the
encoding. We define an alignment A to be the set of all
active windows for all non-singleton patterns X ∈ P : A =
{(i, j,X, k) | Sk[i, j] is an active window for X,Sk ∈ D}.
An alignment corresponding to the second encoding given
in Figure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the
cover of the sequence, as it does not take into account how

the intermediate symbols (if any) within the active win-
dows of a pattern X are encoded. However, an alignment
A for a sequence database D does define an equivalence
class over covers of the same encoded length. In fact, given
a sequence database D and an alignment A, we can de-
termine the number of bits our encoding scheme would
require, as we can distill the usage(X) and gaps(X) from
A. As such, given an alignment A for D, we can trivially
construct a valid cover C for D, simply by following A
and greedily covering Sk with pattern symbols if possi-
ble, and singletons otherwise. Likewise, we can derive the
associated code-optimal code table CT for A.

In [3] we show that given a code table CT , we can
find the alignment of D that minimises the encoded length
using the code lengths in CT . With the above, we can then
calculate the optimal codes for this new alignment. By
iterating these steps, we can heuristically approximate the
optimal cover of D given a set of patterns P .

4. MINING CODE TABLES

With the above, we can score the quality of a pattern set,
and heuristically optimise the alignment of a pattern set.
This leaves us with the problem of finding good sets of
patterns. We sketch our two algorithms to do so.

4.1. Filtering Candidates

Our first algorithm, SQS-CANDIDATES, assumes that we
have a (large) set of candidate patterns F . In practice,
we assume the user obtains this set of patterns using a
frequent pattern miner, although any set of patterns over
Ω will do. From F we select that subset P ⊆ F such that
the optimal alignment A and associated code table CT
minimises L(D,CT).

We sort candidates F ascending by L(D, {X}). We
then iteratively greedily test each pattern X ∈ F . If adding
X to P improves the score, we keep X in P , otherwise it
is permanently removed.

Over time, new patterns can take over the role of older
patterns. To this end, we prune redundant patterns after
each successful addition. During pruning, we iteratively
consider each pattern Y ∈ P in order of insertion. If P \X
improves the total encoded size, we remove X from P . As
testing every pattern in P at every successful addition may
become rather time-consuming, we use a simple heuristic:
if the total gain of the windows of X is higher than the cost
of X in the code table we do not test X .

After SQS-CANDIDATES considered every pattern of
F , we run one final round of pruning without this heuristic.
Finally, we order the patterns in P by L(D,P)−L(D,P \
X). That is, by the impact on the total encoded length when
removing X from P . This order tells us which patterns in
P are most important.

4.2. Directly Mining Good Code Tables

The SQS-CANDIDATES algorithm requires a collection of
candidate patterns to be materialised, which in practice
can be troublesome; the well-known pattern explosion may
prevent patterns to be mined at as low thresholds as desired.

We therefore propose an alternative strategy, that discovers
good code tables directly from data. Instead of filtering a
pre-mined candidate set, we now discover candidates on
the fly, considering only patterns that we expect to optimise
the score given the current alignment.

To illustrate the general idea, consider that we have
a current set of patterns P . We iteratively find patterns
of form XY , where X,Y ∈ P ∪ Ω producing the lowest
L(D,P ∪{XY }). We add XY to P and continue until no
gain is possible. Unfortunately, as testing each combination
takes O((|P| + |Ω|)2(|P| + 1) ‖D‖) time, we cannot do
this exhaustively and exactly within reasonable time.

To guarantee the fast discovery of good candidates, we
design a heuristic that, given a pattern P , will find a pattern
PQ of high expected gain in only O(|P|+ |Ω|+ ‖D‖).

In [3], we show that if we take N active windows of
P , and N active windows of Q, and convert them into
N active windows of PQ, the difference in total encoded
length can be calculated in constant time—as we know
which N active windows to use: those with shortest length.

This gives the outline of SQS-SEARCH. We enumerate
minimal windows of PQ from shortest to largest. At each
step we compute the score using Proposition 3 of [3], and
among these scores we the pick optimal one. We can do
this in linear time by considering the active windows of P
ascending on length, ignoring all singleton gap elements,
and counting all elements occurring right after P .

To save on computation, we do not iteratively consider
the estimated optimal PQ, but instead iteratively compute
and rank all PQ on estimated gain, consider these in turn,
and recompute once the candidate pool is depleted. Like for
SQS-CANDIDATES, we apply pruning after each accepted
candidate, as well as at the end of the search.

5. EXPERIMENTS

We here give a quick taste of the results obtained with SQS,
and refer the interested reader to the full publication for
further empirical evaluation [3].

Synthetic Data. First, we consider the synthetic Indep,
P10, and P50 datasets. Each consists of a single sequence
of 10 000 events over an alphabet of 1 000. In the former,
all events are independent, whereas in the latter two we
planted resp. 10 and 50 patterns of 5 events 10 times each,
with 10% probability of having a gap between consecutive
events, but are independent otherwise.

For the Indep dataset, though 9 000+ episodes occur
at least twice, both methods correctly identify it does not
contain significant structure. For P10 both methods return
the 10 patterns. P50 has a very high density of pattern
symbols (25%). SQS-CANDIDATES and SQS-SEARCH
resp. find 47 and 46 patterns exactly, plus fragments, due
to partial overwrites during generation, of the others.

Real Data. In order to interpret the patterns, we con-
sider 788 abstracts of papers from the Journal of Machine
Learning Research website. The events are the stemmed
words from the text, with stop words removed. We obtain
compression of about 30 000 bits, with 563 and 580 pat-
terns respectively, more than two orders of magnitude less

Table 1. JMLR data. Top-10 patterns by SQS-SEARCH

patterns ∆L patterns ∆L

1. supp. vec. mach. 850 6. large scale 329
2. machine learn. 646 7. near. neighbor 322
3. state [of the] art 480 8. dec. tree 293
4. data set 446 9. neural netw. 289
5. Bayesian netw. 374 10. cross val. 279

5 25 50 100

1 800

2 500

3 200

3 900

4 600

5 300

support threshold σ

∆
L

(b
its

)

5 35 65 95 125155

1 100
1 800
2 500
3 200
3 900
4 600
5 300

iteration

∆
L

(b
its

)

SQS-SRCH

SQS-CND

Figure 2. Addresses dataset, ∆L. (left) varying sup-
port thresholds for SQS-CANDIDATES. (right) SQS-
CANDIDATES and SQS-SEARCH per accepted candidate.

than the number of candidates for SQS-CANDIDATES.
Table 1 depicts the top-10 patterns most aiding com-

pression, as found by SQS-SEARCH. ∆L is the increase
in bits the pattern would be removed from CT . The left-
hand plot of Fig. 2, for SQS-CANDIDATES, shows the gain
in compression for different support thresholds. Lower
thresholds, i.e richer candidate sets, allow for better mod-
els. In the right-hand plot, we compare SQS-CANDIDATES
and SQS-SEARCH, showing the gain in bits over ST per
candidate accepted into CT . Both search processes con-
sider patterns aiding compression strongly first. The slight
dip of SQS-SEARCH is by its batch-wise search.

6. CONCLUSION

Altogether, the long and the short of it is that SQS mines
small sets of highly informative, non-redundant, serial
episodes that succinctly describe the data at hand.

7. REFERENCES

[1] Jorma Rissanen, “Modeling by shortest data descrip-
tion,” Automatica, vol. 14, no. 1, pp. 465–471, 1978.

[2] Jilles Vreeken, Matthijs van Leeuwen, and Arno
Siebes, “KRIMP: Mining itemsets that compress,”
Data Min. Knowl. Disc., vol. 23, no. 1, pp. 169–214,
2011.

[3] Nikolaj Tatti and Jilles Vreeken, “The long and the
short of it: Summarising event sequences with serial
episodes,” in KDD, 2012.

[4] Jorma Rissanen, “Modeling by shortest data descrip-
tion,” Annals Stat., vol. 11, no. 2, pp. 416–431, 1983.

[5] Nikolaj Tatti and Boris Cule, “Mining closed strict
episodes,” Data Min. Knowl. Disc., 2011.

