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ABSTRACT

There are two methods of set prediction that are provably
valid under the assumption of randomness: transductive
conformal prediction and inductive conformal prediction.
The former method is informationally efficient but often
lacks computational efficiency. The latter method is, vice
versa, computationally efficient but less efficient informa-
tionally. This talk discusses a new method, which we call
cross-conformal prediction, that combines informational
efficiency of transductive conformal prediction with com-
putational efficiency of inductive conformal prediction.
The downside of the new method is that its validity is an
empirical rather than mathematical fact.

1. INTRODUCTION

The method of (transductive) conformal prediction pro-
duces set predictions that are automatically valid in the
sense that their unconditional coverage probability is
equal to or exceeds a preset confidence level ([1], Chap-
ter 2). A more computationally efficient method of this
kind is that of inductive conformal prediction ([2], [1],
Section 4.1, [3]). However, inductive conformal predic-
tors are typically less informationally efficient, in the
sense of producing larger prediction sets as compared
with conformal predictors. Motivated by the method
of cross-validation, this talk explores a hybrid method,
which we call cross-conformal prediction.

We are mainly interested in the problems of classifica-
tion and regression, in which we are given a training set
consisting of examples, each example consisting of an ob-
ject and a label, and asked to predict the label of a new test
object; in the problem of classification labels are elements
of a given finite set, and in the problem of regression la-
bels are real numbers. If we are asked to predict labels
for more than one test object, the same prediction proce-
dure can be applied to each test object separately. In this
introductory section and in our empirical studies we con-
sider the problem of binary classification, in which labels
can take only two values, which we will encode as 0 and 1.

The empirical studies described in this paper used the R system and
the gbm package written by Greg Ridgeway (based on the work of Fre-
und, Schapire, and Friedman). This work was partially supported by the
Cyprus Research Promotion Foundation.

We always assume that the examples (both the training ex-
amples and the test examples, consisting of given objects
and unknown labels) are generated from an exchangeable
probability measure (i.e., a probability measure that is in-
variant under permuting the examples). This exchange-
ability assumption is slightly weaker than the assumption
of randomness that the examples are generated indepen-
dently from the same probability measure.

The idea of conformal prediction is to try the two dif-
ferent labels, 0 and 1, for the test object, and for either
postulated label to test the assumption of exchangeability
by checking how well the test example conforms to the
training set; the output of the procedure is the correspond-
ing p-values p0 and p1. Two standard ways to package the
pair (p0, p1) are:

• Report the confidence 1−min(p0, p1) and credibil-
ity max(p0, p1).

• For a given significance level ε ∈ (0, 1) output the
corresponding prediction set {y | py > ε}.

In inductive conformal prediction the training set is
split into two parts, the proper training set and the cali-
bration set. The two p-values p0 and p1 are computed by
checking how well the test example conforms to the cali-
bration set. The way of checking conformity is based on a
prediction rule found from the proper training set and pro-
duces, for each example in the calibration set and for the
test example, the corresponding “conformity score”. The
conformity score of the test example is then calibrated to
the conformity scores of the calibration set to obtain the
p-value. For details, see Section 2.

Inductive conformal predictors are usually much more
computationally efficient than the corresponding confor-
mal predictors. However, they are less informationally
efficient: they use only the proper training set when de-
veloping the prediction rule and only the calibration set
when calibrating the conformity score of the test example,
whereas conformal predictors use the full training set for
both purposes.

Cross-conformal prediction modifies inductive con-
formal prediction in order to use the full training set for
calibration and significant parts of the training set (such as
80% or 90%) for developing prediction rules. The train-
ing set is split intoK folds of equal (or almost equal) size.



For each k = 1, . . . ,K we construct a separate inductive
conformal predictor using the kth fold as the calibration
set and the rest of the training set as the proper training
set. Let (p0k, p

1
k) be the corresponding p-values. Next the

two sets of p-values, p0k and p1k, are merged into combined
p-values p0 and p1, which are the result of the procedure.

In Section 3 we describe the method of cross-
conformal prediction. Since we have no theoretical results
about the validity of cross-conformal prediction in this
talk, we rely on empirical studies involving the standard
Spambase data set. Finally, we use the same data set
to demonstrate the efficiency of cross-conformal predic-
tors as compared with inductive conformal predictors.
Section 4 states an open problem.

For the full version of this extended abstract, see [4].

2. INDUCTIVE CONFORMAL PREDICTORS

We fix two measurable spaces: X, called the object space,
and Y, called the label space. The Cartesian product
Z := X × Y is the example space. A training set is a
sequence (z1, . . . , zl) ∈ Zl of examples zi = (xi, yi),
where xi ∈ X are the objects and yi ∈ Y are the la-
bels. For S ⊆ {1, . . . , l}, we let zS stand for the sequence
(zs1 , . . . , zsn), where s1, . . . , sn is the sequence of all ele-
ments of S listed in the increasing order (so that n := |S|).

In the method of inductive conformal prediction, we
split the training set into two non-empty parts, the proper
training set zT and the calibration set zC , where (T,C)
is a partition of {1, . . . , l}. An inductive conformity mea-
sure is a measurable function A : Z∗ × Z → R (we are
interested in the case where A(ζ, z) does not depend on
the order of the elements of ζ ∈ Z∗). The idea behind the
conformity score A(zT , z) is that it should measure how
well the example z conforms to the proper training set zT .
A standard choice is

A(zT , (x, y)) := ∆(y, f(x)), (1)

where f : X → Y′ is a prediction rule found from zT
as the training set and ∆ : Y ×Y′ → R is a measure of
similarity between a label and a prediction. Allowing Y′

to be different from Y (usually Y′ ⊃ Y) may be useful
when the underlying prediction method gives additional
information to the predicted label; e.g., the MART pro-
cedure used in Section 3 gives the logit of the predicted
probability that the label is 1.

The inductive conformal predictor (ICP) correspond-
ing to A is defined as the set predictor

Γε(z1, . . . , zl, x) := {y | py > ε}, (2)

where ε ∈ (0, 1) is the chosen significance level (1 − ε is
known as the confidence level), the p-values py , y ∈ Y,
are defined by

py :=
|{i ∈ C | αi ≤ αy}|+ 1

|C|+ 1
,

and

αi := A(zT , zi), i ∈ C, αy := A(zT , (x, y)) (3)

are the conformity scores. Given the training set and a test
object x the ICP predicts its label y; it makes an error if
y /∈ Γε(z1, . . . , zl, x).

The random variables whose realizations are xi, yi, zi,
x, y, z will be denoted by the corresponding upper case
letters (Xi, Yi, Zi, X , Y , Z, respectively). The following
proposition of validity is almost obvious.

Proposition 1 ([1], Proposition 4.1). If random examples
Z1, . . . , Zl, Z = (X,Y ) are exchangeable (i.e., their dis-
tribution is invariant under permutations), the probability
of error Y /∈ Γε(Z1, . . . , Zl, X) does not exceed ε for any
ε and any inductive conformal predictor Γ.

We call the property of inductive conformal predictors
asserted in Proposition 1 unconditional validity since it
is about the unconditional probability of error. Various
conditional properties of validity are discussed in [5] and,
in more detail, [6].

The family of prediction sets Γε(z1, . . . , zl, x), ε ∈
(0, 1), is just one possible way of packaging the p-values
py . Another way, already discussed in Section 1 in the
context of binary classification, is as the confidence 1− p,
where p is the second largest p-value among py , and the
credibility maxy p

y . In the case of binary classification
confidence and credibility carry the same information as
the full set {py | y ∈ Y} of p-values, but this is not true
in general.

In our experiments reported in the next section we split
the training set into the proper training set and the calibra-
tion set in proportion 2 : 1. This is the most standard
proportion (cf. [7], p. 222, where the validation set plays
a similar role to our calibration set), but the ideal propor-
tion depends on the learning curve for the given problem
of prediction (cf. [7], Figure 7.8). Too small a calibration
set leads to a high variance of confidence (since calibrat-
ing conformity scores becomes unreliable) and too small
a proper training set leads to a downward bias in confi-
dence (conformity scores based on a small proper train-
ing set cannot produce confident predictions). In the next
section we will see that using cross-conformal predictors
improves both bias and variance (cf. Table 1).

3. CROSS-CONFORMAL PREDICTORS

Cross-conformal predictors (CCP) are defined as follows.
The training set is split into K non-empty subsets (folds)
zSk

, k = 1, . . . ,K, where K ∈ {2, 3, . . .} is a param-
eter of the algorithm and (S1, . . . , SK) is a partition of
{1, . . . , l}. For each k ∈ {1, . . . ,K} and each potential
label y ∈ Y of the test object x find the conformity scores
of the examples in zSk

and of (x, y) by

αi,k := A(zS−k
, zi), i ∈ Sk, αyk := A(zS−k

, (x, y)),
(4)

where S−k := ∪j 6=kSj and A is a given inductive con-
formity measure. The corresponding p-values are defined
by

py :=

∑K
k=1 |{i ∈ Sk | αi,k ≤ α

y
k}|+ 1

l + 1
. (5)



Confidence and credibility are now defined as before; the
set predictor Γε is also defined as before, by (2), where
ε > 0 is another parameter.

The definition of CCPs parallels that of ICPs, except
that now we use the whole training set for calibration. The
conformity scores (4) are computed as in (3) but using the
union of all the folds except for the current one as the
proper training set. Calibration (5) is done by combining
the ranks of the test example (x, y) with a postulated label
in all the folds.

If we define the separate p-value

pyk :=
|{i ∈ Sk | αi,k ≤ αyk}|+ 1

|Sk|+ 1

for each fold, we can see that py is essentially the average
of pyk. In particular, if each fold has the same size, |S1| =
· · · = |SK |, a simple calculation gives

py = p̄y +
K − 1

l + 1
(p̄y − 1) ≈ p̄y,

where p̄y := 1
K

∑K
k=1 p

y
k is the arithmetic mean of pyk and

the ≈ assumes K � l.
We give calibration plots for 5-fold and 10-fold cross-

conformal prediction taking K ∈ {5, 10} following the
advice in [7] (who refer to Breiman and Spector’s and
Kohavi’s work). In our experiments we use the popular
Spambase data set. The size of the data set is 4601, and
there are two labels: spam, encoded as 1, and email,
encoded as 0.

We consider the conformity measure (1) where f is
output by MART ([7], Chapter 10) and

∆(y, f(x)) :=

{
f(x) if y = 1

−f(x) if y = 0.
(6)

MART’s output f(x) models the log-odds of spam vs
email,

f(x) = log
P (1 | x)

P (0 | x)
,

which makes the interpretation of (6) as conformity score
very natural. (MART is known [7] to give good results on
the Spambase dataset.)

Figure 1 gives the calibration plots for the CCP and
for 8 random splits of the data set into a training set of
size 3600 and a test set of size 1001 and of the training set
into 5 or 10 folds. There is a further source of randomness
as the MART procedure is itself randomized. The func-
tions plotted in Figure 1 map each significance level ε to
the percentage of erroneous predictions made by the set
predictor Γε on the test set. Visually, the plots are well-
calibrated (close to the bisector of the first quadrant).

As for the efficiency of the CCP, see Table 1, which
gives some statistics for the confidence and credibility
output by the ICP and the 5-fold and 10-fold CCP. The
columns labelled “0” to “7” give the mean values of confi-
dence and credibility over the test set for various values of

the seed for the R pseudorandom number generator. The
column labelled “Average” gives the average

v̄ :=
1

8

7∑
i=0

vi

of all the 8 mean values (which we denote v0, . . . , v7) for
the seeds 0–7, and the column labelled “St. dev.” gives the
standard unbiased estimate√√√√1

7

7∑
i=0

(vi − v̄)
2

of the standard deviation of the mean values computed
from v0, . . . , v7. The biggest advantage of the CCP is in
the stability of its confidence values: the standard devi-
ation of the mean confidences is much less than that for
the ICP. However, the CCP also gives higher confidence;
to some degree this can be seen from the table, but the
high variance of the ICP confidence masks it: e.g., for the
first 100 seeds the average of the mean confidence for ICP
is 99.16% (with the standard deviation of the mean con-
fidences equal to 0.149%, corresponding to the standard
deviation of 0.015% of the average mean confidence).

4. CONCLUSION

At this time there are no theoretical results about the valid-
ity of cross-conformal predictors (like Proposition 1), and
it is an interesting open problem to establish such results.
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Figure 1. Top panels: the calibration plots for the cross-conformal predictor with K = 5 (left) and K = 10 (right)
folds and the first 8 seeds, 0–7, for the R pseudorandom number generator. Bottom panels: the lower left corner of the
corresponding top panel (which is the most important part of the calibration plot in applications).

Seed 0 1 2 3 4 5 6 7 Average St. dev.
mean conf., ICP 99.25% 99.23% 99.00% 99.17% 99.30% 99.12% 99.38% 99.25% 99.21% 0.116%
mean cred., ICP 51.31% 50.37% 49.93% 52.45% 48.98% 50.34% 50.18% 52.00% 50.69% 1.148%
mean conf., K = 5 99.22% 99.17% 99.17% 99.24% 99.27% 99.27% 99.30% 99.30% 99.24% 0.054%
mean cred., K = 5 51.11% 49.74% 50.34% 50.69% 49.85% 49.49% 50.95% 51.46% 50.45% 0.713%
mean conf., K = 10 99.24% 99.20% 99.20% 99.23% 99.26% 99.28% 99.34% 99.32% 99.26% 0.051%
mean cred., K = 10 51.08% 49.74% 50.29% 50.77% 49.75% 49.48% 50.96% 51.45% 50.44% 0.727%

Table 1. Mean (over the test set) confidence and credibility for the ICP and the 5-fold and 10-fold CCP. The results are
given for various values of the seed for the R pseudorandom number generator; column “Average” gives the average of
all the 8 values for the seeds 0–7, and column “St. dev.” gives the standard unbiased estimate of the standard deviation
computed from those 8 values.


