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ABSTRACT

In previous contributions to WITMSE, [1] and [2], an ab-
stract theory of cognition, inspired by information theory
but going beyond classical Shannon theory in certain re-
spects was outlined. See also [3]. Here, we continue the
work by presenting three concrete problems: Sylvester’s
problem from geometric location theory, a problem of uni-
versal coding from information theory and the problem of
isotone regression from statistics. At first, we focus on
non-technical, philosophically oriented considerations. A
more complete analysis of isotone regression follows and
finally we point out a surprising connection between this
problem and the one from universal coding.

1. THREE PROBLEMS

First geometry: In 1857 Sylvester wrote “It is required to
find the least circle which shall contain a given system of
points in the plane.” In fact, this is the full text of [4]!
Thus, ifX denotes the set of points in the plane,‖ · − · ‖
Euclidean distance andP ⊆ X a given system – here
assumed finite – of points inX , we seek a pointy = y∗ in
X which minimizes the quantity

max
x∈P

‖x− y‖. (1)

For the two remaining problems,Ω = (Ω,≤) denotes
a finite partially ordered set provided with aweight func-
tionW . Little is lost if you takeW to be the uniform dis-
tribution (and this will be assumed if no special mention
of W is made). A real-valued functionf onΩ is isotone
if, for a, b ∈ Ω, the implicationa ≤ b ⇒ f(a) ≤ f(b)
holds. Andf is antitoneif −f is isotone.

The problem from information theory which we shall
deal with concerns themodelA of all antitone probability
distributions overΩ. Requested is the distributiony = y∗

which best representsA in the sense that

sup
x∈A

D(x‖y) (2)

is minimized. HereD stands forKullback-Leibler diver-
gence, i.e. D(x‖y) =

∑

a∈Ω x(a) ln x(a)
y(a) . This is a prob-

lem ofuniversal prediction.

The corresponding problem ofuniversal codingis to
find a suitablecode length function(in the sequal simply
acode), κ∗, which can be taken as the base for actual cod-
ing of observations from a source emitting independent
outputs fromΩ, generated by a distribution known only
to lie in A. Appealing to standard information theoretical
insight, the soughtuniversal codeis κ∗ given fromy∗ by
κ∗(a) = ln 1

y∗(a) for a ∈ Ω (the good sense of this also
involves an idealization and a replacement of logarithms
to the base 2 with natural logarithms). Our codes satisfy
Kraft’s equality:

∑

a∈Ω exp
(

− κ(a)
)

= 1.

As our final problem we takeisotone least squares
regression(below just isotone regression), an important
problem from statistics. Given is a real-valued function
y0 onΩ, referred to as avaluation. Sought is the isotone
valuationy = y∗ which is closest in mean-squared norm
to the given valuationy0. Thus, we should minimize

‖y0 − y‖2 =
∑

a∈Ω

W (a)|y0(a)− y(a)|2 (3)

subject to a requirement ony of isotonicity. Just as with
the two previous problems, existence and uniqueness of
the sought object is pretty evident. We refer to it as the
isotone regression ofy0 (or just theisotone regression).

2. A COMMON FRAMEWORK

There exists a common framework which allows an ef-
ficient treatment of problems as those presented and of
many others – e.g. from information theory, one could
point to problems of maximum entropy determination, in-
formation projections and capacity determination. The
reader is referred to [1] and [2] (or to a more compre-
hensive study, not yet in final form). Rather than spending
time here on technicalities, we shall emphasize some fea-
tures of the underlying theory as seen in the light of the
three problems above.

The problems presented are alloptimization problems.
The first two are quite similar, technically. Euclidean dis-
tance stands out for the first, Kullback-Leibler divergence
for the second. One should, however, note that optimiza-
tion as in (1) and (2), does not uniquely tell us which
are the basic quantities as any strictly increasing func-
tion of the appearing quantities could also be used. As we



shall argue below – and not all that surprising – squared
Euclidean distance is adequate for the first problem and
Kullback-Leibler divergence itself for the second.

A guiding principle for the choice of appropriate ba-
sic quantities is that – as recognized since long in opti-
mization theory and convex analysis – one benefits from
treating along with a given problem, also adual problem.
For this to work out conveniently, one needs certain strict
relationships to hold which essentially involve conditions
of linearity or affinity. Theoretically, introductory consid-
erations can be carried out without imposing such strict
conditions, cf. [1] and [2]. However, when it comes to
actually treating concrete problems of interest, you need
to be more specific.

In order to motivate necessary restrictions for a suc-
cessful model building, we claim that the “two-ness” of
duality considerations is best expressed by choosing a game-
theoretical setting involving certain asymmetrictwo-person
zero-sum games. For these games, the players have quite
different roles. The first player, considered female, is con-
ceived as “Nature” . Nature chooses a strategy which re-
flects “truth” , whereas the second player is a much more
easily understood being, “you” or “ Observer” – a mere
mortal person, male we reckon, seeking the truth but re-
stricted to “belief” . Analyzing these thoughts, you find
that though tempting to imagine Nature as a rational be-
ing reflecting “absolute truth” , really, this is naive and
what is involved is more sensibly thought of as another
side of yourself. The “zero-sumness” of the games you
are led to consider express an insight consistent with ideas
of Jaynes from the mid-fifties, cf. [5], viz. that acting in a
way which would contradict the zero-sum character would
reflect that “you have known something more” and, there-
fore, your model building would be incomplete and should
be adjusted.

An essential restriction in our model building then is
that the games considered should, typically, be inequilib-
rium, i.e. theminimaxandmaximinvalues should coin-
cide. In many cases this is not so at first sight. E.g., for the
two first problems, where a minimax-value is sought, we
find that the corresponding maximin-value is uninforma-
tive, indeed it vanishes identically. This may be remedied
if suitable extensions of the allowed strategise for Nature
can be deviced. For the two problems pointed to, this can
be achieved by allowingrandomized strategiesfor Nature
(and, regarding (1), replacing norm by squared norm). In
this way a common game theoretical base for the treat-
ment of these problems can be found. This also applies to
the third problem, though it is of a different type. There it
pays to consider the given valuationy0 as a parameter, cf.
Section 3.

One has to be realistic as to what can be expectecd
of a common theoretical base. In fact, though problems
we are able to deal with typically have unique solutions,
e.g. none of the three concrete problems considered allow
solutions in closed form. One has to be satisfied with nu-
merical algorithms or turn to special cases where solutions
can be written down in closed form or, more realistically,

where finite state algorithms of low complexity leeds to
the solution. Such algorithms are special. Often Galois
theory shows that even rather “small” problems have so-
lutions which cannot be expressed quantitatively using the
basic algebraic operations applied to the natural quantita-
tive specifications of the problems.

Thus, an appeal to game theory does not in itself lead
to solutions of the problems at hand. But it does help to
characterize what is required of a solution. Such results
of identificationare often derived from an application of
thesaddle-value inequalitiesnow associated with Nash’s
name. An example of this follows in the next section.

The overall theme of our investigations, that of estab-
lishing a useful theoretical base going “beyond Shannon” ,
has been pursued by several authors in one way or another
and appears right now to be gaining momentum, cf. also
[6]. Shannon himself was aware of the need to broaden
the theory he had initiated, e.g., in 1953 he writes “It is
hardly to be expected that a single concept of information
would satisfactorily account for the numerous possible ap-
plications of this general field” , cf. [7].

3. ISOTONE REGRESSION

Let us leave the airy considerations of the foregoing sec-
tion and turn to a closer study of isotone regression. The
key to a game-theoretical formulation is the binary func-
tionU|y0

= U|y0
(x, y) given by

U|y0
(x, y) = ‖x− y0‖

2 − ‖x− y‖2 . (4)

This is interpreted as theupdating gain, when theprior
y0 is updated by Observers choice of theposteriory, as-
suming that the strategy chosen by Nature isx. In (4), x
runs over the setX of all isotone valuations. These are
the strategies of Nature. The strategies of Observer may
be taken to be the set of all valuations, but it may also be
restricted toX .

If Nature choosesx, the best response by Observer is
also to choosex. The resulting value ofU|y0

will then
be‖x − y0‖

2 and it follows that theoptimal strategyfor
Nature is to choose the sought isotone regression.

Comparing with Section 3 of [2], you realize that all
conditions stated there are fulfilled. In particular, the squared
norm satisfies thecompensation identity(13) of [2]. From
Theorems 2 and 3 of [2], it follows that Nature and Ob-
server both have unique optimal strategiesx∗ andy∗ and
that these strategies coincide:x∗ = y∗. A key problem
is, therefore, to determine this commonbi-optimal strat-
egy. A suitable result of identification for this problem
will now be derived.

Let x∗ = y∗ be a given isotone valuation, from the
outset not known to be the sought bi-optimal strategy. Then,
by the general theory, thisis the sought strategy if and only
if the non-trivial part of Nash’s inequalities holds:

U|y0
(ξ, y∗) ≥ ‖x∗ − y0‖

2 for everyξ ∈ X . (5)

Expressing squared norm via the associated inner prod-
uct defined by〈f, g〉 =

∑

a∈ΩW (a)f(a)g(a), and recall-
ing that y∗ = x∗, we transform the requirement to the



condition

〈ξ − x∗, x∗ − y0〉 ≥ 0 for everyξ ∈ X . (6)

For the further analysis, we note that any valuationf

induces a special decomposition ofΩ, denotedSf . The
sets inSf are themaximal connected sets off -constancy,
i.e. the connected subsets ofΩ on whichf assumes the
same value and which are maximal with respect to these
properties. Further, we note that in casef is isotone, the
sets inSf are partially ordered in a natural way, viz. by
definingA < B to mean that, firstly,A 6= B and, sec-
ondly, thata < b for some(a, b) with a ∈ A andb ∈ B.

Any valuationf is specified by the decompositionSf

and the associated function values. For the isotone regres-
sion only the decompositionS∗ = Sx∗ needs to be speci-
fied as the function values can then be identified ascondi-
tional averages. Indeed, denoting byA|y0

(or simplyA)
the conditional average of the priory0 overA, i.e.

A =
∑

a∈A

W (a|A)y0(a) =
1

W (A)

∑

a∈A

W (a)y0(a) , (7)

then, for the isotone regressionx∗,

for all A ∈ S∗, x∗ = A onA . (8)

In fact, this is easy to prove by a differential argument
based on the considerations of valuations obtained from
x∗ by varying the value onA and keeping other values
fixed. The argument can be refined, yielding another cen-
tral property ofS∗, boundedness. This is the property, that
for eachA ∈ S∗ and eachlower setL which intersectsA
– a lower set being a set such thata < b ∈ L implies
a ∈ L – it holds that

A|y0
≤ A ∩ L|y0

. (9)

Theorem 1 (Identification) Letx be a valuation with as-
sociated decompositionS and associated function-values
α(A); A ∈ S. Then a necessary and sufficient condition
thatx = x∗, the sought isotone regression ofy0, is that the
following conditions hold: (i) [ordering]:S is partially
ordered; (ii) [monotonicity]: ifA,B ∈ S andA < B,
thenα(A) < α(B); (iii) [proper values]: α(A) = A|y0

for eachA ∈ S and (iv) [boundedness]: for everyA ∈ S
and every lower setL which meetsA, (9) holds.

Proof A proof that the stated conditions are necessary
was indicated above. In order to establish sufficiency, as-
sume that the conditions hold. The essential point is to
establish the validity of (6). An indication has to suffice:
First, write the inner product in (6) as a sum and then split
the sum in a sum over each of the classes inS. For the
essential argument we may assume thatS = {Ω}. Con-
sider a fixed isotone valuationξ. Let α0 < · · · < αn be
the values assumed byξ and writeξ in the form

ξ = αn −

n
∑

i=1

(αi − αi−1)1{ξ<αi} . (10)

Consider the valuationδ defined by

δ(a) = W (a)
(

Ω|y0
− y0(a)

)

. (11)

Then
∑

a∈Ω δ(a) = 0 and
∑

a∈L δ(a) ≤ 0 for each lower
setL. By (10) it follows that

∑

a∈Ω ξ(a)δ(a) ≥ 0 , which
is the required result.�

A discussion is in order. The reasoning demonstrates
that though Nash’s inequalities in principle contain the es-
sentials, this may be in a somewhat concealed form and
require quite a bit of extra work until a transformation into
a manageable form has been obtained. We may also note
that though the identification result is easy to use in exam-
ples of moderate size – see, e.g. the butterfly set discussed
in Figures 1 and 2 – the necessary checking of condition
(iv) of Theorem 1 may be forbidding for more elaborate
partially ordered sets as the number of lower sets may be
of exponential size in the number of parameters necessary
to specify the partial order.

Thus one should ask for further results aiming at the
actual construction of the isotone regression. Often, thisis
not feasible but, fortunately, the problem dealt with is one
for which satisfactory results exist, cf. [8] and references
referred to there, especially [9].

The problem is greatly simplified if we restrict atten-
tion to tree-like structures. We shall assume from now on
thatΩ is aco-tree, i.e. right sections are well ordered (or,
equivalently, the reverse partial ordering is a tree). This
is a significant simplification. For one thing, lower sets
can then be represented as disjoint unions of left sections,
thus the checking involved in the identification theorem
is feasible, as only left sections need to be checked when
checking the boundedness property.

Without being very specific, the existence of an ef-
ficient algorithm for the determination of the isotone re-
gression is indicated below. The ideas are contained in
the identification theorem. As it turns out, if you focus
on all propertiesexceptboundedness and aim at construc-
tion of the classes inS∗ “from below” , then an argu-
ment (not shown here) will reveal the fact that bounded-
ness is verified automatically. The build-up from below
exploits the idea of searching for violation of the mono-
tonicity requirement followed by pooling of adjacent al-
ready constructed classes if a violation occurs. This idea
is well known from the statistical literature on isotone re-
gression and there referred to aspooling of adjacent viola-
tors (PAV). The example of a linear ordering as displayed
in Figure 3 explains better than many words how the in-
tended algorithm works. And generalizing to a arbitrary
co-tree presents no further problems.

4. A SURPRISING CONNECTION

Consider again the problem of universal coding. The as-
sumption, still in force, thatΩ is a co-tree, implies that the
modelA is a simplex with the uniform distributions over
left sections as extremal elements. Denote bya↓ the left
section determined bya, byN(a) the number of elements
in a↓ and byUa the uniform distribution overa↓. Further,
let a− be the set of immediate predecessors ofa.
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Figure 1. Butterfly with valuation depending on a param-
etert.
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Figure 2. Isotone regression for the butterfly, depending
on the value of the parametert.

It is easy to check that there exists a distributionQ, not
necessarily isotone, such thatD(Ua‖Q) i s independent of
a. Indeed,Q is proportional toµ given by

µ(a) =

∏

b∈a− N(b)N(b)

N(a)N(a)
, a ∈ Ω . (12)

Theorem 2 Lety0 be the valuation given by

y0(a) = ln
1

µ(a)
; a ∈ Ω , (13)

and denote byy∗ the isotone regression ofy0. Then the
universal codeκ∗ is obtained fromy∗ by normalization,
i.e., for a suitable constant,c, κ∗(a) = y∗(a) + c for
everya ∈ Ω.

This follows, in a rather roundabout manner, by com-
paring [10] with results from isotone regression. A more
direct proof may well exist.

The special distributionQ with constant divergence to
a set of elements which generate the relevant model may
be called aSylvester point. It is easy to see that the uni-
versal predictor can be obtained as the information pro-
jection ofQ on the modelA. Analogous features apply to
Sylvester’s problem, though the existence of a Sylvester
point in that setting is only possible in very special cases,
e.g. for the illuminating case of a three-element modelP .
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