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ABSTRACT

In previous contributions to WITMSE, [1] and [2], an ab-
stract theory of cognition, inspired by information theory

but going beyond classical Shannon theory in certain re-
spects was outlined. See also [3]. Here, we continue the
work by presenting three concrete problems: Sylvester’s

problem from geometric location theory, a problem of uni-
versal coding from information theory and the problem of

The corresponding problem ahiversal codings to
find a suitablecode length functiofin the sequal simply
acodd, x*, which can be taken as the base for actual cod-
ing of observations from a source emitting independent
outputs fromS2, generated by a distribution known only
to lie in A. Appealing to standard information theoretical

insight, the soughtiniversal codés x* given fromy™* by

k*(a) = In y;w) for a € Q (the good sense of this also

isotone regression from statistics. At first, we focus on INvolves an idealization and a replacement of logarithms

non-technical, philosophically oriented consideratiohs

more complete analysis of isotone regression follows and Kraft's equality. >, ., exp (- r(a))
finally we point out a surprising connection between this

problem and the one from universal coding.
1. THREE PROBLEMS

First geometry: In 1857 Sylvester wrote “It is required to

to the base 2 with natural logarithms). Our codes satisfy
=1.

As our final problem we takésotone least squares
regression(below justisotone regression an important
problem from statistics. Given is a real-valued function
yo on 2, referred to as aaluation Sought is the isotone
valuationy = y* which is closest in mean-squared norm

find the least circle which shall contain a given system of to the given valuationy,. Thus, we should minimize

points in the plane.” In fact, this is the full text of [4]!
Thus, if X denotes the set of points in the plafie,— - ||
Euclidean distance an® C X a given system — here
assumed finite — of points i, we seek a poing = y* in
X which minimizes the quantity
max ||z -y 1)
For the two remaining problemg, = (2, <) denotes
a finite partially ordered set provided withwaeight func-
tion W. Little is lost if you takelV to be the uniform dis-
tribution (and this will be assumed if no special mention
of W is made). A real-valued functiofion {2 is isotone
if, for a,b € Q, the implicationa < b = f(a) < f(b)
holds. Andf is antitoneif — f is isotone.

The problem from information theory which we shall
deal with concerns themodel A of all antitone probability
distributions ovef2. Requested is the distribution= *
which best represeni4 in the sense that

sup D(z([y) )
zeA
is minimized. HereD stands forKullback-Leibler diver-
gencei.e. D(zlly) = > cqz(a)ln % This is a prob-
lem of universal prediction

lyo = ylI*> =D W(a)lyo(a) — y(a)|?

a€eN

3)

subject to a requirement agnof isotonicity. Just as with
the two previous problems, existence and uniqueness of
the sought object is pretty evident. We refer to it as the
isotone regression afy (or just theisotone regression

2. ACOMMON FRAMEWORK

There exists a common framework which allows an ef-
ficient treatment of problems as those presented and of
many others — e.g. from information theory, one could
point to problems of maximum entropy determination, in-
formation projections and capacity determination. The
reader is referred to [1] and [2] (or to a more compre-
hensive study, not yet in final form). Rather than spending
time here on technicalities, we shall emphasize some fea-
tures of the underlying theory as seen in the light of the
three problems above.

The problems presented are@fitimization problems
The first two are quite similar, technically. Euclidean dis-
tance stands out for the first, Kullback-Leibler divergence
for the second. One should, however, note that optimiza-
tion as in (1) and (2), does not uniquely tell us which
are the basic quantities as any strictly increasing func-
tion of the appearing quantities could also be used. As we



shall argue below — and not all that surprising — squaredwhere finite state algorithms of low complexity leeds to
Euclidean distance is adequate for the first problem andthe solution. Such algorithms are special. Often Galois
Kullback-Leibler divergence itself for the second. theory shows that even rather “small” problems have so-
A guiding principle for the choice of appropriate ba- lutions which cannot be expressed quantitatively using the
sic quantities is that — as recognized since long in opti- basic algebraic operations applied to the natural quantita
mization theory and convex analysis — one benefits from tive specifications of the problems.
treating along with a given problem, alsalaal problem. Thus, an appeal to game theory does not in itself lead
For this to work out conveniently, one needs certain strict to solutions of the problems at hand. But it does help to
relationships to hold which essentially involve condison characterize what is required of a solution. Such results
of linearity or affinity. Theoretically, introductory coias of identificationare often derived from an application of
erations can be carried out without imposing such strict the saddle-value inequalitiesow associated with Nash’s
conditions, cf. [1] and [2]. However, when it comes to name. An example of this follows in the next section.

actually treating concrete problems of interest, you need 114 gverall theme of our investigations, that of estab-

to be more specmc.. o lishing a useful theoretical base going “beyond Shannon”,
In order to motivate necessary restrictions for a SUC- a5 heen pursued by several authors in one way or another
cessful model building, we claim that the “two-ness” of 5 appears right now to be gaining momentum, cf. also
duality considerations is best expressed by choosing a9amegy. shannon himself was aware of the need to broaden
theoretical setting involving certain asymmetr/ia)-person. the theory he had initiated, e.g., in 1953 he writes “It is
zero-sum games-or these games, the players have quite parqly to be expected that a single concept of information

differentroles. The first player, considered female, is-con \4y|q satisfactorily account for the numerous possible ap-
ceived as Nature’. Nature chooses a strategy which re- plications of this general field”, cf. [7].

flects ‘truth”, whereas the second player is a much more
easily understood beingy®tu’ or “Observet— a mere 3. ISOTONE REGRESSION

mortal person, male we reckon, seeking the truth but ré-| o ;5 jeave the airy considerations of the foregoing sec-

srt]rlct(:]d to r;behef’ " A”a'YZ'”g, these thoughts, you f|r|1cti) tion and turn to a closer study of isotone regression. The
_t att oug' tempting to imagine Naturt_a asa rgtlona e key to a game-theoretical formulation is the binary func-
ing reflecting ‘absolute truth, really, this is naive and tion U, = U, (z, y) given by

Yo Yo\

what is involved is more sensibly thought of as another
side of yourself. The Zero-sumnessof the games you Uy (2, 9) = [lz = yoll* = [lz — ylI?. (4)
are led to consider express an insight consistent with ideasl_h_ o d heodati inwhen theori

of Jaynes from the mid-fifties, cf. [5], viz. that acting in a IS 1S Interpreted as thap atmg gain when t eprior
way which would contradict the zero-sum character would 0 'S updated by Observers choice of iesteriory, as-
reflect that “you have known something more” and, there- suming that the strategy chosen by Nature.idn (4), z

fore, your model building would be incomplete and should runs over t_he seK of all isotone valugtlons. These are
be adjusted. the strategies of Nature. The strategies of Observer may

An essential restriction in our model building then is be taken to be the set of all valuations, but it may also be

that the games considered should, typically, bequilib- restricted taX. .
. . o - . If Nature chooseg, the best response by Observer is
rium, i.e. theminimaxand maximinvalues should coin- ) .
; L ! : also to chooser. The resulting value oy}, will then
cide. In many cases this is not so at first sight. E.g., for the 9 . 1Yo
. > : be ||z — yo||> and it follows that theoptimal strategyfor

two first problems, where a minimax-value is sought, we . . .

. . - . . Nature is to choose the sought isotone regression.
find that the corresponding maximin-value is uninforma-

tive, indeed it vanishes identically. This may be remedied C_o.mparlng with Section 3.Of [21, you .reallze that all
I . . conditions stated there are fulfilled. In particular, theaed
if suitable extensions of the allowed strategise for Nature

can be deviced. For the two problems pointed to, this cano'm satisfies theompensation identitfa.3) of [2]. From

. : . . Theorems 2 and 3 of [2], it follows that Nature and Ob-
be achieved by allowingandomized strategiefer Nature . . : )
. ; server both have unigue optimal strategi¢sandy* and
(and, regarding (1), replacing norm by squared norm). In . L
) . that these strategies coincide* = y*. A key problem
this way a common game theoretical base for the treat-. . ) L
; : is, therefore, to determine this commbiroptimal strat-
ment of these problems can be found. This also applies toe A suitable result of identification for this problem
the third problem, though it is of a different type. There it 9y P

X : ) will now be derived.
pays to consider the given valuatiggas a parameter, cf. N 3 : . .
Section 3. Let z* = y* be a given isotone valuation, from the

outset not known to be the sought bi-optimal strategy. Then,

One has to be realistic as to what can be expectecdby the general theory, thisthe sought strategy if and only
of a common theoretical base. In fact, though problems if the non-trivial part of Nash’s inequalities holds:
we are able to deal with typically have unique solutions, . . 2
e.g. none of the three conZFete p);oblems cgnsidered allow Ulyo(§,y7) = [l — yol|” foreverys € X. (5)
solutions in closed form. One has to be satisfied with nu- Expressing squared norm via the associated inner prod-
merical algorithms or turn to special cases where solutionsuct defined by f, g) = >, .o W(a) f(a)g(a), and recall-
can be written down in closed form or, more realistically, ing thaty* = z*, we transform the requirement to the



condition

(€ —a*,x* —yo) > 0forevery € X . (6)
For the further analysis, we note that any valuatfon
induces a special decomposition@f denotedS;. The
sets inSy are themaximal connected sets ffconstancy
i.e. the connected subsets{@fon which f assumes the

Consider the valuatiof defined by

d(a) = W(a)(Qy, —yo(a)) - (11)
Then)_ .o d(a) =0and)_, ., d(a) <0 for each lower
setL. By (10) it follows that) | _, {(a)d(a) > 0, which

is the required result]
A discussion is in order. The reasoning demonstrates

same value and which are maximal with respect to thesethat though Nash’s inequalities in principle contain the es

properties. Further, we note that in cgsés isotone, the
sets inS; are partially ordered in a natural way, viz. by
defining A < B to mean that, firstyA # B and, sec-
ondly, thata < b for some(a, b) with a € A andb € B.
Any valuationf is specified by the decompositicty

sentials, this may be in a somewhat concealed form and
require quite a bit of extra work until a transformation into

a manageable form has been obtained. We may also note
that though the identification result is easy to use in exam-
ples of moderate size — see, e.g. the butterfly set discussed

and the associated function values. For the isotone regresin Figures 1 and 2 — the necessary checking of condition

sion only the decompositiofi* = S,.- needs to be speci-
fied as the function values can then be identifiedasi-
tional averages Indeed, denoting byl,,, (or simply A)
the conditional average of the prigg over A, i.e.

A=Y W(a|A)yo(a) = ﬁ > W(a)yola), (7)
acA

a€A

then, for the isotone regressiah,

forall A€ S*, 2* = AonA. (8)

In fact, this is easy to prove by a differential argument
based on the considerations of valuations obtained from
x* by varying the value oM and keeping other values
fixed. The argument can be refined, yielding another cen-
tral property ofS*, boundedness his is the property, that
for eachA € §* and eaclower setl. which intersectsA
— a lower set being a set such that< b € L implies
a € L —itholds that

Theorem 1 (Identification) Letx be a valuation with as-
sociated decompositiafi and associated function-values
a(A); A € S. Then a necessary and sufficient condition
thatx = x*, the sought isotone regressionf is that the
following conditions hold: (i) [ordering]: S is partially
ordered; (ii) [monotonicity]: fA,B € Sand A < B,
thena(A4) < a(B); (iii) [proper values]: a(A4) = A4,

for eachA € § and (iv) [boundedness]: for everyt € S
and every lower set which meetsi, (9) holds.

Yo *

Proof A proof that the stated conditions are necessary
was indicated above. In order to establish sufficiency, as-
sume that the conditions hold. The essential point is to
establish the validity of (6). An indication has to suffice:
First, write the inner productin (6) as a sum and then split
the sum in a sum over each of the classe§.inFor the
essential argument we may assume that {Q2}. Con-
sider a fixed isotone valuatiagh Letag < - < «y, be
the values assumed lgyand write€ in the form

n

E=ay, — Z(ai - ai—1)1{£<m} :

i=1

(10)

(iv) of Theorem 1 may be forbidding for more elaborate
partially ordered sets as the number of lower sets may be
of exponential size in the number of parameters necessary
to specify the partial order.

Thus one should ask for further results aiming at the
actual construction of the isotone regression. Oftenjshis
not feasible but, fortunately, the problem dealt with is one
for which satisfactory results exist, cf. [8] and referesice
referred to there, especially [9].

The problem is greatly simplified if we restrict atten-
tion to tree-like structures. We shall assume from now on
that() is aco-tree i.e. right sections are well ordered (or,
equivalently, the reverse partial ordering is a tree). This
is a significant simplification. For one thing, lower sets
can then be represented as disjoint unions of left sections,
thus the checking involved in the identification theorem
is feasible, as only left sections need to be checked when
checking the boundedness property.

Without being very specific, the existence of an ef-
ficient algorithm for the determination of the isotone re-
gression is indicated below. The ideas are contained in
the identification theorem. As it turns out, if you focus
on all propertiegxceptboundedness and aim at construc-
tion of the classes irs* “from below”, then an argu-
ment (not shown here) will reveal the fact that bounded-
ness is verified automatically. The build-up from below
exploits the idea of searching for violation of the mono-
tonicity requirement followed by pooling of adjacent al-
ready constructed classes if a violation occurs. This idea
is well known from the statistical literature on isotone re-
gression and there referred topmling of adjacent viola-
tors (PAV). The example of a linear ordering as displayed
in Figure 3 explains better than many words how the in-
tended algorithm works. And generalizing to a arbitrary
co-tree presents no further problems.

4. A SURPRISING CONNECTION

Consider again the problem of universal coding. The as-
sumption, still in force, tha® is a co-tree, implies that the
modelA is a simplex with the uniform distributions over
left sections as extremal elements. Denoteibyhe left
section determined ly, by N (a) the number of elements

in a* and byU,, the uniform distribution oves*. Further,

let o~ be the set of immediate predecessors.of
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Figure 3. Algorithmic construction of the isotone regres-

_ ) . sion for a 6-element linear order with valuatignp =
Figure 2. Isotone regression for the butterfly, depending (4,5,3,6,9,7)

on the value of the parameter
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