
AN INFORMATION-THEORETIC METHOD FOR ESTIMATING THE PERFORMANCE
OF COMPUTER SYSTEMS

Boris Ryabko

Siberian State University of Telecommunications and Information Sciences,
Institute of Computational Technology of Siberian Branch of Russian

Academy of Science, Novosibirsk, Russia; boris@ryabko.net

ABSTRACT

We consider a notion of computer capacity as a novel ap-
proach to evaluation of computer performance. Computer
capacity is based on the number of different tasks that can
be executed in a given time. This characteristic does not
depend on any particular task and is determined only by
the computer architecture. It can be easily computed at
the design stage and used for optimizing architectural de-
cisions.

1. INTRODUCTION

The problem of computer performance evaluation attracts
much research because various aspects of performance are
the key goals of any new computer design, see, e.g., [1, 2].
Simple performance metrics, such as the number of inte-
ger or floating point operations executed per second, are
not adequate for complex computer architectures we face
today. A more appropriate and widely used approach is to
measure performance by execution time of specially de-
veloped programs called benchmarks. The main issues of
benchmarking are well known, we only mention a few.
First, it is very difficult, if ever possible, to find an ad-
equate set of tasks (in fact, any two different researchers
suggest quite different benchmarks). Then, when a bench-
mark is used at the design stage, it must be run under
a simulated environment which slows down the execu-
tion in many orders of magnitude, making it difficult to
test various design decisions in the time-limited produc-
tion process. As a consequence, the designers reduce the
lengths and the number of benchmarks, which raises the
question of conformity with real applications. Quite of-
ten, benchmarking is applied to already made devices for
the purposes of evaluation and comparison. Here, the
benchmarks produced by a hardware manufacturer may be
suspected of being specially tuned just to facilitate sales.
The benchmarks suggested by independent companies are
prone to be outdated when applied to technologically novel
devices. All these appeal to objectivity of evaluation re-
sults. The performance figures obtained in this way may
be suitable for one kind of applications but useless for an-
other.

We suggest a completely different approach to evalu-
ation of computer performance which allows to circum-
vent the difficulties outlined above. The new approach is

based on calculation of the number of different tasks that
can be executed in time T . This is quite similar to deter-
mining the channel capacity in information theory through
the number of different signals that can be transmitted in
a unit of time [3]. If one computer can execute, say, 1010

different tasks in one hour while another one can execute
1020 tasks, we may conclude that the latter computer is
more capable in doing its work. The number of different
tasks does not depend on any particular task and is deter-
mined only by the computer architecture which, in turn,
is described by the instruction set, execution times of in-
structions, structure of pipelines and parallel processing
units, memory structure and access time, and some other
basic computer parameters. All these parameters can be
set and adapted at the design stage to optimize the perfor-
mance.

It is important to note that, generally speaking, the
number of different tasks grows exponentially as a func-
tion of time. Indeed, if we have two different tasks X and
Y , each executed in time T , then their succession XY
will require 2T , and the whole number of different tasks
will grow from N to about N2 (not N2 exactly because
there are some instructions that may start before and end
after the moment T). So we may write N(2T) ≈ N2(T)
and, generally, N(kT) ≈ Nk(T), where N(T) denotes
the number of task whose execution time equals T . This
shows informally that the number of tasks grows expo-
nentially as a function of time. Formal arguments will be
presented below. So it makes sense to consider logN(T)
and to deal only with exponents, which may differ for dif-
ferent computers.

The idea of computer capacity was first suggested in
[4, 5], where it was applied to Knuth’s MMIX computer
[7]. In this paper, we extend the approach to modern
computers that incorporate cache memory, pipelines and
parallel processing units. Thus we prepare a theoretical
basis for determining capacities and making comparisons
against benchmarks of well-known processors of Intel x86
family which was presented in [8].

2. COMPUTER CAPACITY

Denote by I = {u1, u2, . . . , us} the instruction set of a
computer (processor). An admissible sequence of instruc-
tions X = x1x2 . . . xt, xi ∈ I , seen as a process in time,

is called a computer task. The term “admissible” means
that the instruction sequence X can be executed up to the
last element without errors in computation (so-called ex-
ceptions), such as division by zero or illegal memory ref-
erence. We consider two tasksX and Y as different if they
differ at least in one instruction, i.e., there is an i such that
xi 6= yi. Notice also the difference between the computer
task and the computer program. The task, as we think of
it, is the flow of instructions executed by the processor. It
is produced as a realization of some program. For exam-
ple, if the program contains a loop which is to be iterated
100 times, the corresponding task will contain the body of
the loop repeated 100 times.

Denote the execution time of instruction x by τ(x).
Then the execution time τ(X) of a task X is given by

τ(X) =

t∑
i=1

τ(xi).

The number of different tasks whose execution time equals
T may be written as

N(T) = |{X : τ(X) = T}|.

The main performance characteristic which is essen-
tial in our approach, is the computer capacity C(I) de-
fined as

C(I) = lim sup
T→∞

logN(T)

T
. (1)

Notice that this definition is virtually the same as the
definition of channel capacity in [3], where N(T) means
the number of different signal sequences of duration T .
The majority of modern computers are synchronous de-
vices, i.e., they operate in discrete time scale determined
by a clock cycle. In this case τ(x) can be measured in the
number of processor cycles. It was shown in [5] that if all
τ(x) are integers with the greatest common divisor 1, then
the limsup in (1) equals lim and always exists.

Notice also the following thing. Let there be given
two computers with identical sets of instructions I1 and
I2 apart that the first computer is twice faster than the sec-
ond one, i.e. τ1(x) = τ2(x)/2 for any x ∈ I1 (I2). From
definition (1) we immediately obtain that the capacity of
the first computer is two times greater than that of the sec-
ond one, i.e. C(I1) = 2C(I2). Apparently, this equation
is quite natural.

The suggested approach can be applied to multipro-
cessor systems. Consider a computer system that consists
of l processors which can operate independently. Let each
j-th processor has an instruction set Ij and can perform
Nj(T) tasks in time T . Then the total number of tasks
N(T) = N1(T)N2(T) · · ·Nl(T), and from (1) we have

C(⊗lj=1Ij) = C(I1) + C(I2) + ...+ C(Il) , (2)

where C(⊗lj=1Ij) is the capacity of the considered multi-
processor system. In particular, the capacity of computer
system with l identical processors is l times greater than
the capacity of computer with one processor. The same ar-
guments are relevant to distributed computer systems, or

computer networks. Note that (2) is not a simple sum if
the processors have some shared resources, such as shared
memory. In this case the individual capacities must be di-
minished due to competitions for shared resources.

The definition of computer capacity is quite general,
it does not restrain us from using one or other model of
computer task formation. We may apply restrictions on
instruction sequences, consider dependence of instruction
execution times upon preceding instructions, and so on.
Generally, the calculation of the limit in (1) becomes a
complicated combinatorial problem. But as a first step,
we can use a simple method suggested by Shannon in
[3] for finding the capacity of noiseless channel where
code symbols had different durations. When we use this
simple method, we assume that all sequences of instruc-
tions are admissible. Clearly, by doing that we obtain
an upper bound of capacity, which we denote by Ĉ(I),
because the number of admissible instruction sequences
N(T) cannot be larger than the number of all possible
sequences, denoted thus by N̂(T). Despite this simplifi-
cation, we take proper account of the effects of caches,
pipelines and parallel processing, as will be shown be-
low. More specifically, following [3], for the instruction
set I = {u1, u2, . . . , us} we may state that the number of
all possible instruction sequences must satisfy the differ-
ence equation

N̂(T) = N̂(T − τ1) + N̂(T − τ2) + · · ·+ N̂(T − τs).

Here N̂(T − τj) is the number of instruction sequences
of duration T ending in instruction uj . It is well-known
from the theory of finite dirrerences that asymptotically, as
T → ∞, N̂(T) = ZT0 , where Z0 is the greatest positive
root of the characteristic equation

Z−τ(u1) + Z−τ(u2) + · · ·+ Z−τ(us) = 1. (3)

So from the definition of computer capacity (1) we have

Ĉ(I) = logZ0.

In what follows we will estimate Ĉ(I) as a first approxi-
mation of real computer capacity, realizing that there are
more complicated and more exact methods of findingC(I).

Consider some examples. Let the first computer has
only two instructions and execution time of each instruc-
tion is one clock cycle. So we have I1 = {u1, u2}, τ(u1) =
τ(u2) = 1 and the characteristic equation is 2Z−1 =
1. Hence Z0 = 2 and the computer capacity C(I1) =
log 2 = 1 bit per cycle. Now add a third instruction with
duration 2 cycles: I2 = {u1, u2, u3}, τ(u1) = τ(u2) = 1,
τ(u3) = 2. The characteristic equation is 2Z−1 +Z−2 =
1, its greatest root Z0 = 2.414. The capacity C(I2) =
1.27 bit per cycle, it is greater than C(I1) due to “more
rich” instruction set I2.

In practice, the computer instructions are often built of
operation codes and operands, which may be references to
internal registers, memory, or some immediate data. The
key point is that to find the computer capacity we must
consider the instruction set containing all operations with

all combinations of operands. Let, for example, the com-
puter have 8 registers, 216 memory locations, and can per-
form two operations op1 and op2 of the following format:
(op1 reg reg) and (op2 reg mem), where reg is one of 8
registers, and mem is a reference to one of 216 memory
locations. Let op1 require 1 cycle and op2 2 cycles. Then
the characteristic equation will be

8 · 8
Z

+
8 · 216

Z2
= 1.

The solution Z0 = 757 and C(I3) = 9.56 bits per cycle.

3. ENTROPY EFFICIENCY

It should be noted that to calculate the computer capacity,
no probabilities or frequencies of instructions are needed.
It does not mean that all the instructions are assumed to
be equiprobable. In fact, the capacity is attained if the
instructions appear with some “optimal” probabilities. In
other words, the capacity is a maximal value which can be
obtained if we use the processor instructions with certain
frequencies. A connection between the computer capacity
and various probabilistic models is established with the
aid of the notion of entropy efficiency. There the sense of
“optimal” probabilities mentioned above is clarified.

Consider the situation when computer is used for solv-
ing a particular kind of problems. For example, we use
computer for solving differential equations. In this case
the set of tasks to be performed is a subset of all possi-
ble tasks. We assume that the tasks of the set of interest
can be modeled as realizations of a stationary and ergodic
stochastic process. Let X = x1x2x3 . . . be a sequence of
random variables taking values over instruction set I . De-
note by PX(w) the probability that x1x2 . . . xn+1 = w,
w ∈ In+1 for any n ≥ 0. The entropy rate is defined as
usually, see, e.g., [9]:

h(X) = lim
n→∞

− 1

n+ 1

∑
w∈In+1

PX(w) logPX(w).

Now the entropy efficiency, as a measure of computer per-
formance, is defined as follows:

c(I,X) = h(X)/
∑
u∈I

PX(u)τ(u). (4)

In other words, c(I,X) is the ratio of the entropy rate of
instruction flow X to the average execution time of in-
struction.

To motivate this definition, notice that if we take a
large integer t and consider all t-element instruction se-
quences x1 . . . xt, then the number of “typical” sequences
will be approximately 2th(X), whereas the total execution
time of any sequence will be approximately t

∑
u∈I PX(u)τ(u).

(By definition of a typical sequence, the frequency of any
word w in it is close to the probability PX(w). The total
probability of the set of all typical sequences is close to
1.) So the ratio between log(2th(X)) and the average exe-
cution time will be asymptotically equal to (4) if t → ∞.

This observation shows the relation between computer ca-
pacity (1) and entropy efficiency: the former is defined
through the number of all tasks, the latter through the
number of typical tasks, executed in one time unit. An-
other conclusion from this consideration is that

c(I,X) ≤ C(I). (5)

Now we shall say some words about estimation of the
entropy efficiency. To do that we must observe the flow of
instructions generated by the application of interest. Then
we may use any method known in Information Theory to
estimate the entropy of the instruction sequence and prob-
abilities of particular instructions. Again, the simplest ap-
proach is to consider the case where all instructions are
independent and identically distributed (i.i.d. sequence).
In this situation the definition of entropy efficiency may
be re-written in the following form:

ĉ(I,X) = −
∑
u∈I

PX(u) logPX(u)/
∑
u∈I

PX(u)τ(u).

It can be easily checked now by direct calculation that if
PX(u) = Z

−τ(u)
0 for all u ∈ I , where Z0 is the greatest

root of characteristic equation (3), then

ĉ(I,X) = logZ0 = Ĉ(I),

i.e. the entropy efficiency reaches the computer capacity
and is maximal according to (5).

4. COMPUTER CAPACITY IN MODERN
COMPUTER ARCHITECTURES

The most essential elements of modern computer archi-
tectures that influence the capacity defined in (1) are cache
memory (usually organized in several levels), parallel exe-
cution units (such as floating point unit), instruction pipelines
and closely connected branch predictors, and multiple cores
(including such technologies as hyperthreading). In this
section, we address all these issues and show simple ways
of their solution when determining computer capacity.

To assess the effect of cache memory on computer ca-
pacity we observe what happens at every time instant. Let,
for example, instruction “ADD REG, MEM” is executed
which adds a word in memory to a register and stores the
result in the register. In our approach to estimation of ca-
pacity we assume that any register and any memory lo-
cation can be accessed. Let there be R registers and M
words in memory available. To show the main idea, con-
sider a cache memory consisting of two levels L1 and L2
of sizes L1 and L2, respectively. If the address MEM hits
L1 cache, let the execution time of the instruction be τL1.
Otherwise, if the address hits L2 cache, let the execution
time be τL2 (usually, much greater than τL1). If the ad-
dress is not cached, let the execution time be τM (usually,
much more greater than τL2). Suppose that L1 and L2 are
not exclusive, i.e. a memory location cached in L1 is also
cached in L2. Then the corresponding part of characteris-
tic equation will look like this:

RL1
1

ZτL1
+R(L2−L1)

1

ZτL2
+R(M −L2−L1)

1

ZτM
.

If L1 and L2 are exclusive then we should not subtract L1

in the second summand. All other processor instructions
that operate with memory can be considered similarly.

The other issue is the presence of some units U1, U2,
. . . that can operate concurrently with the “main” part that
performs basic operations (e.g., FPU, MMX and XMM
blocks in x86 processors). Although the instructions ex-
ecuted by those units usually alternate with basic instruc-
tions and may have dependences, to find an upper bound
on computer capacity we may consider these units as in-
dependent processors, i.e. to find their own capacities and
sum them up according to (2). However, we must take into
account that some units may be mutually exclusive (e.g.,
FPU and MMX blocks cannot operate concurently in x86
processors since they are based on one and the same reg-
ister pool [10]). The solution is to consider all subsets
of mutually compatible units and calculate capacities of
those subsets. Then, since we are interested in an upper
bound of computer capacity, we may choose the greatest
capacity estimate. For example, there are two compati-
ble subsets in x86 processors: MAIN + FPU + XMM
and MAIN+MMX+XMM (obviously, there is no need
to consider the subsets of smaller sizes). The subset hav-
ing greater capacity determines the capacity of the whole
computer.

The next architectural feature is the pipeline process-
ing combined with branch prediction. Instruction timings
provided in documentation assume that the pipeline is op-
timally filled, i.e., there are no empty stages and execution
time is determined solely by the complexity of instruction.
However, the pipeline operation is stopped when a mispre-
dicted branch occurs. The instruction that must follow the
mispredicted branch is delayed for the number of cycles,
k, equal to the number of pipeline stages from the fetch
stage to the execute stage. The next instruction is delayed
for k−1 cycles and so on. The exact model would require
to consider all k-element instruction sequences with any
mispredicted branch. But we prefer a simpler way, suf-
ficient for obtaining an upper bound of capacity. Assume
that after any mispredicted branch we wait for k cycles be-
fore the execution of next instructions. That is, the execu-
tion time of mispredicted jump instruction is increased by
k cycles. Since the computer capacity is defined through
the number of all computer tasks, we can separately con-
sider predicted and mispredicted jump instructions.

Finally, we address the problem of parallelism which
is essential in hyper-threading and multicore technologies.

It is demonstrated there that computer performance in-
dicators obtained through calculation of computer capac-
ity and by benchmarks are very close to each other. So
the computer capacity approach definitely can be used at
the design stage when benchmarking is time-consuming
or not at all possible.

5. REFERENCES

[1] W. Stallings, Computer Organization and Architec-
ture: Designing for Performance. Prentice-Hall, 2009.

[2] A. S. Tanenbaum, Structured Computer Organization.
Prentice Hall, 2005.

[3] C. E. Shannon, “A mathematical theory of communi-
cation,” Bell Sys. Tech. J., Vol. 27, 1948, pp. 379–423,
pp. 623–656.

[4] B. Ryabko, “Using information theory to study the
efficiency and capacity of computers and similar de-
vices,” Proc. of the 2010 Workshop on Information
Theoretic Methods in Science and Engineering (Tam-
pere, Finland, 16-18 August 2010) .

[5] B. Ryabko , “On the efficiency and capacity of com-
puters,” Applied Mathematics Letters, v. 25, 2012, pp.
398 - 400

[6] B. Ryabko, “An information-theoretic approach to es-
timate the capacity of processing units,” Performance
Evaluation, V. 69, 2012, pp. 267–273.

[7] D. E. Knuth, The Art of Computer Programming. Vol.
1, Fascicle 1: MMIX – A RISC Computer for the New
Millennium. Addison-Wesley, 2005.

[8] A. Fionov, Yu. Polyakov, and B. Ryabko, “Applica-
tion of computer capacity to evaluation of Intel x86
processors,” 2nd International Congress on Computer
Applications and Computational Science, November
15–17, 2011, Bali, Indonesia, (Springer, Advances in
Intelligent and Soft Computing, Vol. 145, 2012, pp.
99–104).

[9] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley, 2006.

[10] Intel 64 and IA-32 Architectures Software Develop-
ers Manual Volume 1: Basic Architecture, Intel Corp.,
2011.

