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ABSTRACT

In model selection one attempts to use the data to find
a single “winning” model, whereas with model averag-
ing (MA) one seeks a smooth compromise across a set of
competing models. Most existing MA methods are based
on estimation of single model weights using some appro-
priate criterion. The problem of selecting the best subset
or subsets of predictor variables is a common challenge
for a regression analyst. The number of candidate mod-
els may become huge and any approach based on estima-
tion of all single weights may become computationally in-
feasible. Our approach is to convert estimation of model
weights into estimation of shrinkage factors with trivial
computational burden. We define the class of shrinkage
estimators in view of MA and show that the estimators
can be constructed using penalized least squares (LS) es-
timation by putting appropriate restrictions on the penalty
function. The relationship between shrinkage and param-
eter penalization provides tools to build up computation-
ally efficient MA estimators which are easy to implement
into practice.

1. THE MODEL

Our framework is the linear model

y=XB+Zvy+e, e~ (0,0%1,), (1)
where X and Z are n X p and n x m matrices of nonrandom
regressors, (X, Z) is assumed to be of full column-rank
p+m < n, B and v are p x 1 and m x 1 vectors of
unknown parameters. Our interest is in the effect of X on
y, that is, we want to estimate 3 while the role of Z is to
improve the estimation of 3.

We will work with the canonical form of the model
(1), where z-variables are orthogonalized by writing the
systematic part of the model (1) as

XB+Zy = Xa+MZy
= Xa+ U6, )

where a = 3 + (X'X) "1 X'Z~,

M=I,-P and P=XXX)"'X' (@3

are symmetric idempotent matrices. Since (MZ)' MZ =
Z'MZ is positive definite [15], then there exists a nonsin-
gular matrix C such that [9]

C'ZMZC = (MZC)(MZC) =U'U =1,,. (4

In (4) U = MZC denotes the matrix of orthogonal canon-
ical auxiliary regressors. Introducing the canonical auxil-
iary parameters & = C '~ we can write in (2)

MZ~ = MZCC '~ = U8.
2. MODEL AVERAGING

A least squares MA estimator for 3 takes the form

B

M R M R R
D AiB = Ni(By — QW,0)
=0 =0

= By —QW8, (5)

where B, = (X'X) "' X'y, W = ¥ A\, W, and Q =
(X'X)~!X'ZC. The weights

Ao =N(My) >0, i=0,1,..., M,

are assumed to depend on the least squares residuals My
and Zﬁo A; = 1. Note especially that 6 is a function of
My. The selection matrices W;, 0 < ¢ < M are nonran-
dom m x m diagonal matrices with diagonal elements 0
or 1 whereas W is a random m x m diagonal matrix with
diagonal elements

w=(w,...,wy), 0<w;<1,i=1,...,m.

The equivalence theorem of Danilov and Magnus [3]
provides a useful representation for the expectation, vari-
ance and M SFE of the estimator B given in (5). The the-
orem was proved under the assumptions that the distur-
bances ¢1, . .., &, are i.i.d. N(0,02). By the theorem

E[(B~B)(B - B)]
= }(X'X)"! + QMSE(W8)Q'.

MSE(B)

The quality of B essentially depends on statistical prop-
erties of the shrinkage estimator W6 and hence the rela-
tively simple estimator WO of 0 characterizes the impor-
tant features of the more complicated estimator 3 of 3. It
can be shown (Hansen [8]) that a least squares MA estima-
tor like (5) can achieve lower M SFE than any individual
LS estimator.



3. PENALIZED LS AND SRINKAGE

We introduce a set S of shrinkage estimators for 3 and
characterize them by using penalized least squares tech-
nique. Then we derive the efficiency bound for the shrink-
age estimators with respect to M .S E (mean squared error)
when observations follow the normal distribution. Our
aim is to find estimators whose M SE is uniformly as
close to the efficiency bound as possible. It turns out that
many interesting known estimators, like for example the
soft and firm thresholding estimators, non-negative gar-
rote [2] and the SCAD (smoothly clipped absolute devia-
tion, [6]) estimators belong to this shrinkage class S. On
the other hand, for example the hard thresholding rule (pre
testing) and the ridge estimator do not belong to S.

Fitting the orthogonalized model (2) can be consid-
ered as a two-step least squares procedure [15]. The first
step is to calculate Bo = (X’X) !X’y and to replace y
by y — XBO = My, where M is defined in (3). Then
denote z = Uy, and note from the definition of U in (4)
the equality U'M = U’. Then the model (2) takes the
form

z=0+Ueg, U'e ~ (0,0°1,,). (6)

The second step is to estimate 6 from the model (6).

Magnus et al. [13] estimated the weights 0 < w; <
1, ¢+ = 1,...,m in (5) using a Bayesian technique, and
decided on to advocate the Laplace estimator which is of
a shrinkage type. Such estimators are computationally su-
perior to estimators that require estimation of every single
model weight \; in (5). We are now ready to define the
important class S of shrinkage estimators for # which we
call simply shrinkage estimators.

Definition A real valued estimator § of 6 is a shrinkage
estimator if the following four conditions hold:

(@) 0<6(6) <6 forf >0,

(b) 6(~0) = —3(0).
(c¢) 6(6)/0 is nondecreasing on [0, 00) and
(d) 6(6) is continuous,

where 6 is the LS estimator of 6.

In estimation of @ we will use the penalized LS tech-
nique. If the penalty function satisfies proper regularity
conditions, the penalized LS yields a solution which is a
shrinkage estimator of 6. In this approach we choose a
suitable penalty function in order to get a shinkage estima-
tor with good risk properties. The penalized least squares
estimate (PenLS) of @ = (01,...,6,,) is the minimizer
of

m m

1
52(%‘ —ei)2+ZpA(|9iD7 @)
=1

i=1

where A > 0. It is assumed that the penalty function py (+)
is

(i) nonnegative,
(i) nondecreasing and ®)
(iii) differentiable on [0, co).

Minimization of (7) is equivalent to minimization compo-
nentwise. Thus we may simply minimize

16) = 3 (=~ )" + pa(10) ©

with respect to 6.

Example There are close connections between the PenLLS
and variable selection or the PenLS and ridge regression,
for example. Taking the Lo penalty px(|6]) = 5(60|? yields
the ridge estimator

i 1
p=——
R=17,7

)

where p > 0 depends on A. The hard thresholding penalty
function

pa(10]) = 22 = 2161 = 2(1(0] < 1)

yields the hard thresholding rule

O = z{I(]z| > \)}, (10)

where I(-) is the indicator function. Then the minimizer of
the expression (7) is z;{I(|6;| > A)}, j=1,...,m, and
it coincides with the best subset selection for orthonormal
designs. In statistics (see e.g. Morris et al. [14]) and in
econometrics (see, e.g. Judge et al. [10]), the hard thresh-
olding rule is traditionally called the pretest estimator.

The following theorem gives sufficient conditions for
the PenLS estimate 6 of 6 to be a shrinkage estimator. Fur-
ther, the theorem provides the lower bound of the mean
squared error

MSE(9,0) = E[0(z) — 6]°. (11)
This lower bound is called the efficiency bound.

Theorem 3.1. We assume that the penalty function p)(-)
satisfies the assumptions (8). We make two assertions.

(i) If the three conditions hold
(1) the function —0 — p'\(0) is strictly unimodal
on [0, c0),

(2) p\(-) is continuous and nonincreasing on [0, cc),
and

(3) ming{|0] +pr(16])} = pA(0),

then the PenLS estimate 0 of 8 belongs to the shrink-
age family S.



(ii) If the conditions of the assertion (i) hold and z fol-
lows the normal distribution NQO7 o?), where o? is
known, the efficiency bound of 0 is

3 02
inf MSE(0,0) = .
bes (6,9) 1+ 62

(12)

Note that the pretest estimator 6 given in (10) is not
continuous, and hence it does not belong to the class of
shrinkage estimators S. Magnus [11] demonstrates a num-
ber of undesiderable properties of the pretest estimator. It
is inadmissible and there is a range of values for which
the MSE of 0y is greater than the M SE of both the
least squares estimator (z) = z and the null estimator
0(z) = 0. The traditional pretest at the usual 5% level of
significance results in an estimator that is close to having
worst possible performance with respect to the M SE cri-
terion in the neighborhood of the value |6/0| = 1 which
was shown to be of crucial importance.

Example The L, penalty px(|6]) = A|6]?, ¢ > O results
in a bridge regression [7]. The derivative p/, (-) of the L,
penalty is nonincreasing on [0, c0) only when ¢ < 1 and
the solution is continuous only when ¢ > 1. Therefore,
only L; penalty in this family yields a shrinkage estimator.
This estimator is the soft thresholding rule, proposed by
Donoho and Johnstone [4],

Os = sgn(2)(|z] — N4, (13)

where z is shorthand for max{z,0}. LASSO [16] is the
PenLS estimate with the L; penalty in the general least
squares and likelihood settings.

If the PenLS estimators satisfy the conditions of The-
orem 3.1, the efficiency bound is known and the regret of

6(z) can be defined as

92

We wish to find an estimator with the desirable property
that its M.SE is uniformly close to the infeasible effi-
ciency bound. In theoretical considerations o is assumed
to be known, and hence we can always consider the vari-
able z/o. Then the expectation E is simply taken with
respect to the N (6, 1) distribution (cf. Figure 1), and com-
parison of estimators risk performance is done under this
assumption. In practical applications we replace the un-
known o2 with s2, the estimate of o2 in the unrestricted
model. Danilov [3] demonstrated that effects of estimat-
ing o2 are small in case of Laplace estimator. We expect
the approximation to be accurate for other shrinkage esti-
mators too, although more work is needed to clarify this
issue.

3.1. Good PenLS shrinkage estimators

In this subsection we consider properties of two well known
PenLS estimators which are shrinkage estimators. Bruce
and Gao [1] compared the hard and soft thresholding rules

and showed that the hard thresholding rule tends to have
bigger variance than the soft thresholding rule whereas
soft thresholding tends to have bigger bias. To remedy the
drawbacks of hard and soft thresholding, Fan and Li [6]
suggested using continuous differentiable penalty func-
tion defined by

(A6,
(a—1)A

for some @ > 2 and A > 0. If the penalty function in (7) is
constant, i.e. p’(|f]) = 0, then the PenLS takes the form
0(z) = z which is unbiased. Since the SCAD penalty
P (6) = 0 for & > al, the resulting solution (Fan and Li
[61)

px(16]) = AMI(0] < A) + (101> A)} (14)

sgn (2) (|2 = A)4, if |z[ <24,
Bacad(2) = { LUmtlzsgnl2od - ifoy < |2] < a),
Z, 1f|Z| > al

5)
tends to be unbiased for large values of z. The estimator
(15) can be viewed as a combination of soft thresholding
for ”small” |z| and hard thresholding for large” |z|, with
a piecewise linear interpolation inbetween.

Breiman [2] applied the non-negative garrote rule
() = {0, if 2] < A,

16
if |z] > A (16)

z— A%z,

to subset selection in regression to overcome the draw-
backs of stepwise variable selection rule and ridge regres-
sion. It is straightforward to show that the soft threshold-
ing (13), SCAD (15) and non-negative garrote (16) esti-
mators belong to the shrinkage class S (cf. Definition).
The ordinary LS (OLS) estimator (z) = z is a good can-
didate for large z, and hence we wish that for large z an
estimator () is close to z in the sense that z — 6(z) con-
verges to zero when |z| increases. It can be readily seen
that the estimators 9scad and 9G have this property. For
the soft thresholding rule z — fg(z) converges to a posi-
tive constant, but not to zero.

3.2. The Laplace and Subbotin estimators

Magnus [12] addressed the question of finding an estima-
tor of # which is admissible, has bounded risk, has good
risk performance around # = 1, and is optimal or near op-
timal in terms of minimax regret when z ~ N(6,1). The
Laplace estimator

01(2) = z = h(y)e (17)

proved to be such an estimator, when ¢ = log 2 and h(-)
is a given antisymmetric monotonically increasing func-
tion on (—oo,00) with A(0) = 0 and h(co) = 1. The
Laplace estimator is the mean of the posterior distribution
of 8|z when a Laplace prior for § with median(#) = 0 and
median(#?) = 1 is assumed. In search of a prior which
appropriately reflects the notion of ignorance, Einmahl et
al. [5] arrived at the Subbotin prior that belongs to the
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Figure 1. M SFE of the OLS, the hard thresholding (10),
Laplace (17), SCAD (15) , Subbotin, soft thresholding
estimators (13) and the effieciency bound (12) for the
shrinkage estimators S.

class of reflected gamma densities. In practical applica-
tions they recommended the Subbotin prior

2
C C|9‘1/2

m(0) = Ze_

with ¢ = 1.6783 which should stay close to the Laplace
prior. .

4. CONCLUDING REMARKS

Many existing MA methods require estimation of every
single model weight. For example, in regression analysis
selection of the best subset from a set of m predictors,
say, requires assessing 2™ models, and consequently the
computational burden soon increases too heavy when m
becomes large.

It turns out, that the quality of the least squares MA es-
timator (5) depends on the shrinkage estimator of the aux-
iliary parameter «y. So, estimation of 2™ model weights is
converted into estimation of m shrinkage factors with triv-
ial computational burden. We define the class of shrinkage
estimators in view of MA and show that these shrinkage
estimators can be constructed by putting appropriate re-
strictions on the penalty function. Utilizing the relation-
ship between shrinkage and parameter penalization, we
are able to build up computationally efficient MA estima-
tors which are easy to implement into practice. These esti-
mators include some well known estimators, like the non-
negative garrote of Breiman [2], the lasso-type estimator
of Tibshirani [16] and the SCAD estimator of Fan and Li
[6]. In the simulation experiments we have assessed the
quality of estimators in terms of estimated M SE’s. In
this competition the winners were the SCAD and non-
negative garrote but the Laplace estimator did almost as
well. However, the results of the simulation study are not
reported here.
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