PUTTING BAYES TO SLEEP
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ABSTRACT

Consider sequential prediction algorithms that are given
the predictions from a set of models as inputs. If the nature
of the data is changing over time in that different models
predict well on different segments of the data, then adap-
tivity is typically achieved by mixing into the weights in
each round a bit of the initial prior (kind of like a weak
restart). However, what if the favored models in each seg-
ment are from a small subset, i.e. the data is likely to be
predicted well by models that predicted well before? Curi-
ously, fitting such “sparse composite models” is achieved
by mixing in a bit of all the past posteriors. This self-
referential updating method is rather peculiar, but it is effi-
cient and gives superior performance on many natural data
sets. Also it is important because it introduces a long-term
memory: any model that has done well in the past can be
recovered quickly. While Bayesian interpretations can be
found for mixing in a bit of the initial prior, no Bayesian
interpretation is known for mixing in past posteriors.

We build atop the “specialist” framework from the on-
line learning literature to give the Mixing Past Posteri-
ors update a proper Bayesian foundation. We apply our
method to a well-studied multitask learning problem and
obtain a new intriguing efficient update that achieves a sig-
nificantly better bound.

1. INTRODUCTION

We consider sequential prediction of outcomes y1, ys, - . .
using a set of models m = 1, ..., M for this task. In prac-
tice m could range over a mix of human experts, paramet-
ric models, or even complex machine learning algorithms.
In any case we denote the prediction of model m for out-
come y; given past observations y<; = (y1,...,4:—1) by
P(yt|y<+,m). The goal is to design a computationally ef-
ficient predictor P(y:|y<:) that maximally leverages the
predictive power of these models as measured in log loss.
The yardstick in this paper is a notion of regret defined
w.r.t. a given comparator class of models or composite
models: it is the additional loss of the predictor over the
best comparator. For example if the comparator class is
the set of base models m = 1,..., M, then the regret for
a sequence of T outcomes y<r = (Y1,-..,yr) is

T M L
R = Z—lnP(yt|y<t) - nfgliq Z—lnP(yt|y<t,m).

t=1 t=1

The Bayesian predictor with uniform model prior has re-
gret at most In M for all T'.

Now assume the nature of the data is changing with
time: in an initial segment one model predicts well, fol-
lowed by a second segment in which another model has
small loss and so forth. For this scenario the natural com-
parator class is the set of partition models which divide the
sequence of 7" outcomes into B segments and specify the
model that predicts in each segment. By running Bayes
on all exponentially many partition models comprising
the comparator class, we can guarantee regret In (gj) +
Bln M. The goal then is to find efficient algorithms with
approximately the same guarantee as full Bayes. In this
case this is achieved by the Fixed Share [1] predictor. It
assigns a certain prior to all partition models for which
the exponentially many posterior weights collapse to M
posterior weights that can be maintained efficiently. Mod-
ifications of this algorithm achieve essentially the same
bound for all 7', B and M simultaneously [2, 3].

In an open problem Yoav Freund [4] asked whether
there are algorithms that have small regret against sparse
partition models where the base models allocated to the
segments are from a small subset of N of the M mod-
els. The Bayes algorithm when run on all such partition
models achieves regret In (%) + In (g:i) + Bln N, but
contrary to the non-sparse case, emulating this algorithm
is NP-hard. However in a breakthrough paper, Bousquet
and Warmuth in 2001 [4] gave the efficient MPP algo-
rithm with only a slightly weaker regret bound. Like Fixed
Share, MPP maintains M “posterior” weights, but it in-
stead mixes in a bit of all past posteriors in each update.
This causes weights of previously good models to “glow”
a little bit, even if they perform bad locally. When the data
later favors one of those good models, its weight is pulled
up quickly. However the term “posterior” is a misnomer
because no Bayesian interpretation for this curious self-
referential update was known. Understanding the MPP
update is a very important problem because in many prac-
tical applications [5, 6]! it significantly outperforms Fixed
Share.

Our main philosophical contribution is finding a fully
Bayesian interpretation for MPP. We employ the special-

'The experiments reported in [5] are based on precursors of MPP.
However MPP outperforms these algorithms in later experiments we
have done on natural data for the same problem (not shown).
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(a) A comparator partition model: segmentation and model assign-

ment
[ 9 ] [9]

(b) Decomposition into 3 partition specialists, asleep at shaded times
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ist framework from online learning [7, 8, 9]. So-called
specialist models are either awake or asleep. When they
are awake, they predict as usual. However when they are
asleep, they “go with the rest”, i.e. they predict with the
combined prediction of all awake models.

Instead of fully coordinated partition models, we con-
struct partition specialists consisting of a base model and
a set of segments where this base model is awake. The fig-
ure to the right shows how a comparator partition model
is assembled from partition specialists. We can emulate
Bayes on all partition specialists; the NP-completeness is
avoided by forgoing a-priori segment synchronization. By
carefully choosing the prior, the exponentially many pos-
terior weights collapse to the small number of weights
used by the efficient MPP algorithm. Our analysis tech-
nique magically aggregates the contribution of the IV par-
tition specialists that constitute the comparator partition,
showing that we achieve regret close to the regret of Bayes
when run on all full partition models. Actually our new in-
sights into the nature of MPP result in slightly improved
regret bounds.

We then apply our methods to the online multitask
learning problem where a small subset of models from a
big set solve a large number of tasks. Again simulating
Bayes on all sparse assignments of models to tasks is NP-
hard. We split an assignment into subset specialists that
assign a single base model to a subset of tasks. With the
right prior, Bayes on these subset specialists again gently
collapses to an efficient algorithm with a regret bound not
much larger than Bayes on all assignments. This consid-
erably improves the previous regret bound of [10]. Our al-
gorithm simply maintains one weight per model/task pair
and does not rely on sampling (often used for multitask
learning).

Why is this line of research important? We found
a new intuitive Bayesian method to quickly recover in-
formation that was learned before, allowing us to exploit
sparse composite models. Moreover, it expressly avoids
computational hardness by splitting coordinated compos-
ite models into smaller constituent “specialists” that are
asleep in time steps outside their jurisdiction. This method
clearly beats Fixed Share when few base models constitute
a partition, i.e. the composite models are sparse.

We expect this methodology to become a main tool
for making Bayesian prediction adapt to sparse models.
The goal is to develop general tools for adding this type
of adaptivity to existing Bayesian models without losing

efficiency. It also lets us look again at the updates used in
Nature in a new light, where species/genes cannot dare
adapt too quickly to the current environment and must
guard themselves against an environment that changes or
fluctuates at a large scale. Surprisingly these type of up-
dates might now be amenable to a Bayesian analysis. For
example, it might be possible to interpret sex and the dou-
ble stranded recessive/dominant gene device employed by
Nature as a Bayesian update of genes that are either awake
or asleep.
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