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ABSTRACT

The talk explores connections between asymptotic com-
plexity and generalised entropy. Asymptotic complex-
ity of a language (a language is a set of finite or infinite
strings) is a way of formalising the complexity of pre-
dicting the next element in a sequence: it is the loss per
element of a strategy asymptotically optimal for that lan-
guage. Generalised entropy extends Shannon entropy to
arbitrary loss functions; it is the optimal expected loss
given a distribution on possible outcomes. It turns out that
the set of tuples of asymptotic complexities of a language
w.r.t. different loss functions can be described by means of
generalised entropies corresponding to the loss functions.

1. INTRODUCTION

The complete version of this paper has been accepted to
Information and Computation. An earlier version [1] ap-
peared in conference proceedings.

We consider the following on-line learning scenario:
given a sequence of previous outcomes x1, x2, . . . , xn−1,
a prediction strategy is required to output a prediction γn

for the next outcome xn.
We assume that outcomes belong to a finite outcome

space Ω. Predictions may be drawn from a compact pre-
diction space Γ. A loss function λ : Ω × Γ → [0,+∞]
is used to measure the discrepancy between predictions
and actual outcomes; it is assumed to be continuous. The
triple G = 〈Ω,Γ, λ〉 describing the prediction environ-
ment is called a game.

The performance of a strategy S on a finite string
x = (x1x2 . . . , xn) is measured by the cumulative loss
LossS(x) =

∑n
i=1 λ(xi, γi). Different aspects of this

prediction framework have been extensively studied; see
[2] for an overview.

One is tempted to define complexity of a string as the
loss of an optimal strategy so that elements of “simple”
strings x are easy to predict and elements of “compli-
cated” strings are hard to predict and large loss is incurred.
However this intuitive idea is difficult to implement for-
mally because it is hard to define an optimal strategy. If
x is fixed, the strategy can be tailored to suffer the mini-
mum possible loss on x (0 for natural loss functions such
as square, absolute, or logarithmic). If there is complete
flexibility in the choice of x, i.e., “anything can happen”,
then every strategy can be tricked into suffering large loss

and being greatly outperformed by some other strategy on
some sequences x.

One approach to this problem is predictive complexity
introduced in [3] and studied in [4, 5, 6]. This approach
replaces strategies by the class of semi-computable super-
loss processes. Under certain restrictions on Γ and λ this
class has a natural optimal element. Predictive complexity
of a finite string is defined up to a constant and is similar
in many respects to Kolmogorov complexity; predictive
complexity w.r.t. the logarithmic loss function equals the
negative logarithm of Levin’s a priori semi-measure.

This paper takes a different approach and introduces
asymptotic complexity, which is in some respects easier
and more intuitive. It is defined for languages (infinite
sets of finite strings and sets of infinite sequences) and it
equals the asymptotically optimal loss per element. This
idea leads to several versions of complexity that behave
slightly differently. An important advantage of this ap-
proach is that asymptotic complexity exists for all loss
functions λ thus eliminating the question of existence, still
partly unsolved for predictive complexity. One can con-
sider effective and polynomial-time versions of asymp-
totic complexity by restricting oneself to computable or
polynomial-time computable strategies. The existence of
corresponding asymptotic complexities follows trivially.

In this paper we study the following question. Let
Gk = 〈Ω,Γk, λk〉, k = 1, 2, . . . ,K, be games with the
same finite set of outcomes Ω. How do asymptotic com-
plexities of a same set of finite or infinite sequences of
elements of Ω compare? We answer this question by de-
scribing the set

(AC1(L),AC2(L), . . . ,ACK(L)) ⊆ RK ,

where ACk is an asymptotic complexity w.r.t. Gk and L
ranges over all non-trivial languages. The set turns out to
have a simple geometric description in terms of the gen-
eralised entropy studied in [7]. The set depends on the
type of asymptotic complexity and may be different for
different complexities 1.

For the Shannon entropy there are many results con-
necting it with complexity and Hausdorff dimension; see,

1Note that the statement of the main theorem in the conference ver-
sion [1] of this paper was inaccurate in this respect. A corrected journal
version will appear soon



e.g., Theorem 2.8.1 in [8] and [9]. This paper directly
generalises the main result of [10].

The set depends on the type of asymptotic complexity
and may be different for different complexities 2.

2. ASYMPTOTIC COMPLEXITY

2.1. Finite Sequences

Let L ⊆ Ω∗ be a set of finite strings. We call the values

AC(L) = inf
A

lim sup
n→+∞

max
x∈L∩Ωn

LossA(x)
n

, (1)

AC(L) = inf
A

lim inf
n→+∞

max
x∈L∩Ωn

LossA(x)
n

(2)

the upper and lower asymptotic complexity of L w.r.t. the
game G. We use subscripts for AC to specify a particular
game if it is not clear from the context.

In this paper we are concerned only with infinite sets
of finite sequences and asymptotic complexity of a finite
or an empty language L ⊆ Ω∗ is undefined. Thus by
assumption there are strings of infinitely many lengths in
L.

Still there may be no strings of a certain length in L.
Let us assume that the limits in (1) and (2) are taken over
the subsequence n1 < n2 < . . . of values such that L ∩
Ωni 6= ∅.

2.2. Infinite Sequences

There are two natural ways to define complexities of non-
empty languages L ⊆ Ω∞.

First we can extend the notions we have just defined.
Indeed, for a nonempty set of infinite sequences consider
the set of all finite prefixes of all its sequences. The lan-
guage thus obtained is infinite and has upper and lower
complexities. For the resulting complexities we shall re-
tain the notation AC(L) and AC(L). We refer to these
complexities as uniform.

The second way is the following. Let

AC(L) = inf
A

sup
x∈L

lim sup
n→+∞

LossA(x|n)
n

,

AC(L) = inf
A

sup
x∈L

lim inf
n→+∞

LossA(x|n)
n

.

We refer to this complexity as non-uniform.
The concept of asymptotic complexity generalises cer-

tain complexity measures studied in the literature. The
concepts of predictability and dimension studied in [10]
can be easily reduced to asymptotic complexity: the di-
mension is the lower non-uniform complexity w.r.t. a mul-
tidimensional generalisation of the logarithmic game and
predictability equals 1−AC, where AC is the lower non-
uniform complexity w.r.t. a multidimensional generalisa-
tion of the absolute-loss game.

2Note that the statement of the main theorem in the conference ver-
sion of this paper was inaccurate in this respect. A corrected journal
version will appear soon

3. OTHER DEFINITIONS

3.1. Entropy

Let P(Ω) be the set of probability distributions on Ω of
size M . The set Ω is finite and we can identify P(Ω) with
the standard (M − 1)-simplex

PM =
{(

p(0), p(1), . . . , p(M−1)
)
∈ [0, 1]M |
M−1∑
i=0

p(i) = 1

}
.

Generalised entropy H : P(Ω) → R is the infimum of
expected loss over γ ∈ Γ, i.e., for

p∗ =
(
p(0), p(1), . . . , p(M−1)

)
∈ P(Ω)

we have

H(p∗) = min
γ∈Γ

Ep∗λ(ω, γ) = min
γ∈Γ

M−1∑
i=0

p(i)λ(ω(i), γ) .

Since p(i) can be 0 and λ(ω(i), γ) can be +∞, we need to
resolve an ambiguity. Let us assume that in this definition
0× (+∞) = 0.

3.2. Sublattices and Subsemilattices

A set M ⊆ RK is a sublattice of RK if for every x, y ∈
M it contains their coordinate-wise greatest lower bound
min(x, y) and least upper bound max(x, y). Clearly, a
sublattice of RK contains the coordinate-wise maximum
and minimum of any finite subset. Similarly, a set M ⊆
RK is an upper subsemilattice if for every x, y ∈ M
it contains their smallest upper bound max(x, y); a set
M ⊆ RK is a lower subsemilattice if for every x, y ∈ M
it contains their largest lower bound min(x, y). In this
paper we mostly use upper subsemilattices and therefore
sometimes omit the word “upper” in what follows.

A sublattice closure of a set M ⊆ RK is the small-
est sublattice containing M. Respectively, an upper sub-
semilattice closure of a setM⊆ RK is the smallest upper
semilattice containing M and a lower subsemilattice clo-
sure of a setM⊆ RK is the smallest lower subsemilattice
containing M. The sub(semi)lattice closure of M exists
and it is the intersection of all sub(semi)lattices contain-
ing M. The sublattice closure contains the subsemilattice
closures because each sublattice is a subsemilattice.

Note that the definitions are coordinate-dependent.

3.3. Weak Mixability

The results of this paper are valid for the so called weakly
mixable games defined in [11]. A game G is weakly mix-
able if for every two prediction strategies S1 and S2 there
is a prediction strategy S such that

LossS(x) ≤ min (LossS1(x),LossS2(x))+α(|x|) (3)

for all finite strings x, where |x| is the length of x and
α(n) = o(n) as n → ∞. It is shown in [11] that weak



mixability is equivalent to the convexity of the set of su-
perpredictions w.r.t. G. In particular, if Γ is convex and λ
is convex in predictions, weak mixability holds.

3.4. Effective Versions of Complexities

One can restrict the range of possible strategies to com-
putable or polynomial-time computable and obtain effec-
tive and polynomial-time versions of the asymptotic com-
plexities.

The concept of a computable strategy requires clarifi-
cation. We will give a definition along the lines of [12];
see also [13, Sections 7 and 9.4].

A dyadic rational number is a number of the form
m/2n, where m is an integer and n is a positive inte-
ger. We call a triple 〈b, x,y〉, where b ∈ B is a bit and
x,y ∈ B∗ are binary strings, a representation of a dyadic
number d if x is the binary representation of a nonnegative
integer m > 0, y is the binary representation of a nonneg-
ative integer n > 0, and b represents a sign s (assume that
s = 1 if b = 1 and s = −1 if b = 0) so that d = sm/2n.

For every x ∈ R define a set CFx of dyadic Cauchy
sequences exponentially converging to x, i.e., functions
φx from non-negative integers to dyadic numbers such
that |φx(n) − x| ≤ 2−n for all n. Any element of CFx

can be thought of as a dyadic representation of x.

Let Ω be a finite set. A function f : Ω∗ → R is
computable if there is a Turing machine that given a finite
string x = x1x2 . . . xm ∈ Ω∗ and non-negative integer
precision n outputs a representation of a dyadic number
d such that |f(x) − d| ≤ 2−n. In other words, for every
x ∈ Ω∗ the machine calculates a function from CFf(x). If
there is a polynomial p(·, ·) such that the machine always
finishes work in p(m,n), we say that f is polynomial-time
computable. A function f = (f1, f2, . . . , fk) : Ω∗ →
Rk is (polynomial-time) computable if all its components
f1, f2, . . . , fk are (polynomial-time) computable.

A function f : M → R, where M ⊆ R, is com-
putable if there is an oracle Turing machine that given a
non-negative integer precision n (as a binary string) and
an oracle evaluating some φx ∈ CFx outputs a represen-
tation of a dyadic number d such that |f(x) − d| ≤ 2−n.
If there is a polynomial p(·) such that the machine finishes
work in p(n) for all x ∈ M , we say that f is polynomial-
time computable. Intuitively a machine can at any mo-
ment request a dyadic approximation of x up to 2−m and
get it in no time. Computable and polynomial-time com-
putable functions on M ⊆ Rk and M × Ω∗ to R and Rm

are defined in a similar fashion.

We call a game G = 〈Ω,Γ, λ〉 (polynomial-time) com-
putable if Γ ⊆ Rk is a closure of its interior and the func-
tion e−λ(ω,γ) is (polynomial-time) computable. Note that
we do not postulate computability of λ itself because if
would have implied boundedness of λ. A (polynomial-
time) computable strategy w.r.t. G is a (polynomial-time)
computable function Ω∗ → Γ.

3.5. Computability and Weak Mixability

A (polynomial-time) computable game G will be called
(polynomial-time) computable very weakly mixable if for
all (polynomial-time) computable strategies S1 and S2

and ε > 0 there is a (polynomial-time) computable strat-
egy S such that

LossS(x) ≤ min (LossS1(x),LossS2(x))+
ε|x|+ αε(|x|)

for all finite strings x, where αε(n) = o(n) as n →∞.
It is not easy to formulate a simple criterion of com-

putable mixability. The following rather general condi-
tion is sufficient. If a game G is (polynomial-time) com-
putable, the prediction space Γ is convex, and the loss
function λ(ω, γ) is convex in the second argument, then
G is (polynomial-time) computable weakly mixable.

If we add the requirement of boundness of λ, we can
achieve an effective version of (3), but this is not necessary
for the purpose of this paper.

4. MAIN RESULT

Consider K ≥ 1 games G1,G2, . . . ,GK with the same
finite set of outcomes Ω. Let Hk be Gk-entropy for k =
1, 2, . . . ,K. The G1/G2/ . . . /GK-entropy set is the set
{(H1(p),H2(p), . . . ,HK(p)) | p ∈ P(Ω)} ⊆ RK . The
convex hull of the G1/G2/ . . . /GK-entropy set is called
the G1/G2/ . . . /GK-entropy hull.

Theorem 1. If games G1,G2, . . . ,GK (K ≥ 1) have the
same finite outcome space Ω and are weakly mixable, then
the sublattice closure of the G1/G2/ . . . /GK-entropy hull
coincides with the following sets (here ACk is asymptotic
complexity w.r.t. Gk, k = 1, 2, . . . ,K):{

(AC1(L),AC2(L), . . . ,ACK(L)) |

L ⊆ Ω∗ and L is infinite
}

;

{
(AC1(L),AC2(L), . . . ,ACK(L)) |

L ⊆ Ω∞ and L 6= ∅
}

;

{(
AC

1
(L),AC

2
(L), . . . ,AC

K
(L)
)
|

L ⊆ Ω∞ and L 6= ∅
}

;

the upper subsemilattice closure of the G1/G2/ . . . /GK-
entropy hull coincides with the following sets:{(

AC1(L),AC2(L), . . . ,ACK(L)
)
|

L ⊆ Ω∗ and L is infinite
}

;



{(
AC1(L),AC2(L), . . . ,ACK(L)

)
|

L ⊆ Ω∞ and L 6= ∅
}

;

{(
AC1(L),AC2(L), . . . ,ACK(L)

)
|

L ⊆ Ω∞ and L 6= ∅
}

.

If the games G1,G2 . . . , GK are (polynomial-time) com-
putable very weakly mixable, the same holds for effective
and polynomial-time complexities.

The conference version [1] of the paper incorrectly
claimed that all the sets of complexity tuples coincide with
the upper subsemilattice closure of the entropy hull. This
is not true because upper subsemilattice closure of the en-
tropy hull may be different from the sublattice closure.

5. RECALIBRATION LEMMA

The key element of the proof is the following lemma:

Lemma 1. Let A1,A2, . . . ,AK be prediction strategies
for weakly mixable games G1,G2 . . . , GK with the same
set of outcomes Ω of size M . Then for every weakly mix-
able game G and ε > 0 there is a prediction strategy
S and a function f : N → R such that f(n) = o(n) as
n →∞ and for every finite string x ∈ Ω∗ there are distri-
butions p1, p2, . . . , pN ∈ PM and q = (q1, q2, . . . , qN ) ∈
PN such that

1. for all k = 1, 2, . . . ,K if Hk is the generalised en-
tropy w.r.t. Gk then

N∑
i=1

qiHk(pi) ≤
LossGk

Ak
(x)

|x|
+ ε ;

2. if H is the generalised entropy w.r.t. G then

LossG
S(x) ≤ |x|

(
N∑

i=1

qiH(pi) + ε

)
+ f(|x|) .

The idea behind the lemma can be described infor-
mally as follows. Consider a predictor outputting, say, the
likelihood of a rain. Suppose that by analysing its past per-
formance we have found a pattern of the following kind.
Whenever the predictor outputs the value of 70%, it ac-
tually rains in 90% of cases. We can thus improve the
predictor by recalibrating it: if we see the prognosis of
70%, we replace it by 90%. Generally speaking, we may
observe that whenever a predictor outputs a prediction γ1,
a more appropriate choice would be γ2. By outputting γ1,
the predictor signals us about a specific state of the nature;
however, γ2 is a better prediction for this state. The loss
per element of the optimised strategy is close to the gen-
eralised entropy w.r.t. some distribution and this leads to
the first part of the lemma.

The intuitive interpretation of the seond part is as fol-
lows. Predictions of (discretised) strategies allow us to
split a string to several (generally speaking, not contigu-
ous) substrings. The strategies tell us nothing of the be-
haviour of outcomes within the substrings so we can as-
sume that inside each substring the outcomes are i.i.d.
(independent identically distributed) and construct a new
strategy exploiting this. The loss per element of the new
strategy will be a convex combination of entropies w.r.t.
the distributions of outcomes from the substrings and the
new strategy will perform better or nearly as well as the
original strategies.
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