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ABSTRACT

We are concerned with the issue of detecting changes of
clustering structures from multivariate time series. From
the viewpoint of the minimum description length (MDL)
principle, we introduce an algorithm that tracks changes
of clustering structures so that the sum of the code-length
for data and that for clustering changes is minimum. Here
we employ a Gaussian mixture model (GMM) as repre-
sentation of clustering, and compute the code-length for
data sequences using the normalized maximum likelihood
(NML) coding. The introduced algorithm enables us to
deal with clustering dynamics including merging, split-
ting, emergence, disappearance of clusters from a unify-
ing view of the MDL principle. We empirically demon-
strate using artificial data sets that our proposed method
is able to detect cluster changes significantly more accu-
rately than an existing statistical-test based method and
AIC/BIC-based methods. We further use real customers’
transaction data sets to demonstrate the validity of our al-
gorithm in market analysis.

1. SUMMARY

1.1. Problem Setting

This paper is organized as a brief summary of our recent
paper [1]. We address the issue of clustering multi-variate
data sequences. Suppose that the nature of data changes
over time. We are then specifically interested in track-
ing changes of clustering structures, which we callclus-
tering change detection. We are concerned with the sit-
uation where time series data are sequentially given and
the clustering must be conducted in a sequential fashion.
The main purpose of this talk is to introduce, according to
our recent work [1], a novel clustering change detection
algorithm in the sequential setting. We employ a Gaus-
sian mixture model (GMM) as a representation of clus-
tering and design the algorithm on the basis of the mini-
mum description length (MDL) principle [2]. That is, it
tracks changes of clustering structures so that the sum of
the code-length for data and that for clustering changes is
minimum.

1.2. Previous Works

There exist a number of methods for tracking changes
of clustering structures. For example, Song and Wang
[3] proposed a statistical-test based algorithm for dynamic
clustering. It estimates a GMM in an on-line manner and
then conducts a statistical test to determine whether a new
cluster is identical to an old one or not. If it is, the new
cluster is merged into the older one, otherwise it is rec-
ognized as a cluster which has newly emerged. Sato [4]
proposed an algorithm for merging and splitting of clus-
ters in a GMM based on the variational Bayes method.
Note that changes of clusters are not necessarily classi-
fied into merging or splitting. Siddiqui et.al.[5] proposed
a method of tracking clutering changes using the EM al-
gorithm and Kalman filters. Our work is different from
Siddiqui et.al.’s one in that the former is concerned with
changes of the number of clusters while the latter is con-
cerned with parameter trajectories keeping the number of
clusters fixed.

1.3. Novelty of Our Approach

The novelty of the approach in [1] may be summarized as
follows:

1)An extension of DMS into a sequential clustering
setting:Yamanishi and Maruyama [6, 7] developed a the-
ory of dynamic model selection (DMS) for tracking changes
of statistical models on the basis of the MDL principle.
We extend DMS to the sequential setting to introduce a
sequential DMS algorithm[1]. Every time data is input,
it sequentially detects changes of clustering structures on
the basis of the MDL principle so that the sum of the
code-length for the data and that for the clustering change
is minimum. This algorithm enables us to deal with the
dynamics of clustering structures, including “merging”,
“splitting”, “emergence”, “disappearance”, etc. within a
unified framework from the viewpoint of the MDL princi-
ple.

2)A new application of the NML code-length to se-
quential DMS:In the sequential DMS algorithm,it is cru-
cial how to choose a method for coding. The best choice is
the NML coding since it has turned out to be the optimal



code-length in the sense of minimax criterion [2]. How-
ever, the normalization term diverges for a multi-dimensional
Gaussian distribution and it is computationally difficult
to straightforwardly compute the NML code-length for a
GMM exactly. Hirai and Yamanishi proposed a method
for efficiently computing the NML code-length for GMMs
[8], inspired by Kontkanen and Myllym̈aki’s work [9] in
which the the efficient computation of the NML code-
lengths for discrete distributions was addressed. They re-
cently modified their method using the renormalizing tech-
nique as in [10], to develop an efficient method for com-
puting the renormalized maximum likelihood code-length
(RNML) for a GMM [11]. We employ the RNML coding
for GMMs in the computation process of the sequential
DMS. This is the first work on the usage of the RNML
coding in the scenario of sequential clustering change de-
tection.

3)Empirical demonstration of the superiority of the se-
quential DMS with the RNML code-length over the ex-
isting methods:Using artificial data sets, we empirically
demonstrate the validity of our method in comparison with
Song and Wang’s method [3], AIC (Akaike’s information
criteria)[12] / BIC (Bayesian information criteria)[13]-based
tracking methods etc. We also use a real data set consist-
ing of customers’ purchase records for a number of kinds
of beers. Tracking changes of clusters of customers leads
to the understanding of how customers’ purchase patterns
change over time and how customers move from clusters
to clusters. This demonstrates the validity of our method
in the area of marketing.
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