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ABSTRACT
We study online learning under logarithmic loss with reg-
ular parametric models. We show that a Bayesian strat-
egy predicts optimally only if it uses Jeffreys prior. This
result was known for canonical exponential families; we
extend it to parametric models for which the maximum
likelihood estimator is asymptotically normal. The opti-
mal prediction strategy, normalized maximum likelihood,
depends on the number n of rounds of the game, in gen-
eral. However, when a Bayesian strategy is optimal, nor-
malized maximum likelihood becomes independent of n.
Our proof uses this to exploit the asymptotics of normal-
ized maximum likelihood. The asymptotic normality of
the maximum likelihood estimator is responsible for the
necessity of Jeffreys prior.

1. INTRODUCTION

In the online learning setup, the goal is to predict a se-
quence of outcomes, revealed one at a time, almost as
well as a set of experts. We consider online density es-
timators with log loss, where the forecaster’s prediction
at each round takes the form of a probability distribution
over the next outcome, and the loss suffered is the neg-
ative logarithm of the forecaster’s probability of the out-
come. The aim is to minimize the regret, which is the dif-
ference between the cumulative loss of the forecaster (that
is, the sum of these negative logarithms) and that of the
best expert in hindsight. The optimal strategy for sequen-
tially assigning probability to outcomes is known to be
normalized maximum likelihood (NML) [see, for e.g. [1],
and [2], and see Definition 4 below]. NML suffers from
two major drawbacks: the horizon n of the problem needs
to be known in advance, and the strategy can be compu-
tationally expensive since it involves marginalizing over
subsequences. In this paper, we investigate the optimality
of two alternative strategies, namely the Bayesian strategy
and the sequential normalized maximum likelihood strat-
egy; see Definitions 5 and 6 below. Bayesian prediction
under Jeffreys prior has been shown to be asymptotically
optimal [see, for e.g. [2], chaps 7,8]. Moreover the regret
of SNML is within a constant of the minimax optimal [3].
We show that for a very general class of parametric mod-
els (Definition 1), optimality of a Bayesian strategy means

that the strategy uses Jeffreys prior. Furthermore we show
that optimality of the Bayesian strategy is equivalent to
optimality of sequential normalized maximum likelihood.
The major regularity condition for these parametric fami-
lies is that the maximum likelihood estimate is asymptot-
ically normal. This classical condition holds for a broad
class of parametric models. The proofs and further details
are in the full version of this paper [4].

2. DEFINITIONS AND NOTATION

We work in the same setup of [5] and use their definitions
and notation. The goal is to predict a sequence of out-
comes xt ∈ X , almost as well as a set of experts. We use
xt to denote (x1, x2, · · · , xt), x0 to denote the empty se-
quence, and xnm to denote (xm, xm+1, · · · , xn). At round
t, the forecaster’s prediction is a conditional probability
density qt(·|xt−1), where the density is with respect to
a fixed measure λ on X . For example, if X is discrete,
λ could be the counting measure; for X = <d, λ could
be Lebesgue measure. The loss that the forecaster suf-
fers at that round is − log qt(xt | xt−1), where xt is the
outcome revealed after the forecaster’s prediction. The
difference between the cumulative loss of the prediction
strategy and the best expert in a reference set is called the
regret. The goal is to minimize the regret in the worst
case over all possible data sequences. In this paper, we
consider i.i.d. parametric constant experts parametrized by
θ ∈ Θ.

Definition 1 (Parametric Constant Model) A constant ex-
pert is an iid stochastic process, that is, a joint probability
distribution p on sequences of elements of X such that for
all t > 0 and for all x in X , p

(
xt
∣∣xt−1

)
= p (xt). A

parametric constant model (Θ, (X ,Σ), λ, pθ) is a param-
eter set Θ, a measurable space (X ,Σ), a measure λ on
X , and a parameterized function pθ : X → [0,∞) for
which, for all θ ∈ Θ, pθ is a probability density on X
with respect to λ. It defines a set of constant experts via
pθ
(
xt
∣∣xt−1

)
= pθ (xt).

For convenience, we will often refer to a parametric
constant model as just pθ.

A strategy q is any sequential probability assignment
qt(· | xt−1) that, given a history xt−1, defines the condi-



tional density of xt ∈ X with respect to the measure λ. It
defines a joint distribution q on sequences of elements of
X in the obvious way,

q(xn) =

n∏
t=1

q(xt|xt−1). (1)

In general, a strategy depends on the sequence length n.
We denote such strategies by q(n).

Definition 2 (Regret) The regret of a strategy q(n) on se-
quences of length n with respect to a parametric constant
model pθ is

R(xn, q(n)) =

n∑
t=1

− log q
(n)
t (xt|xt−1)

− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)
(2)

We consider a generalization of the regret of Defini-
tion 2. This is because some strategies are only defined
conditioned on a fixed initial sequence of observations
xm−1. For such cases, we define the conditional regret of
xn, given a fixed initial sequence xm−1, in the following
way [see [2], chap. 11].

Definition 3 (Conditional Regret)

RΘ(xnm, q
(n)|xm−1) =

n∑
t=m

− log qt(xt|xt−1)

− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xnm | xm−1)
(3)

Notice that the strategy q(n) defines only the conditional
distribution q(n)(xnm | xm−1). We call such a strategy a
conditional strategy. In what follows, where we consider
a conditional strategy, we assume that xm−1 is such that
these conditional distributions are always well defined.

Definition 4 (NML) Given a fixed horizon n, the normal-
ized maximum likelihood (NML) strategy is defined via the
joint probability distribution

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(y

n) dλn(yn)
, (4)

provided that the integral in the denominator exists. For
t ≤ n, the conditional probability distribution is

p
(n)
nml(xt | x

t−1) =
p

(n)
nml(x

t)

p
(n)
nml(x

t−1)
, (5)

where p(n)
nml(x

t) and p
(n)
nml(x

t−1) are marginalized joint
probability distributions of p(n)

nml(x
n):

p
(n)
nml(x

t) =

∫
Xn−t

p
(n)
nml(x

n) dλn−t(xnt+1). (6)

The regret of the NML strategy achieves the minimax
bound, that is, q(n) = p

(n)
nml minimizes maxxn R(xn, q(n))

[see, for e.g. [2] chap. 6]. Note that p(n)
nml might not be de-

fined if the normalization is infinite. In many cases, for
a sequence xm−1 and for all n ≥ m, we can define the
conditional probabilities

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(x
n)∫

Xn−m+1 supθ∈Θ pθ(x
n) dλn−m+1(xnm)

(7)
For these cases the conditional NML again attains the min-
imax bound, that is, q(n) = p

(n)
nml minimizes

maxxn
m
R(xnm, q

(n) | xm−1) [see [2] chap. 11]. In both
cases, the nml strategy is an equalizer, meaning that the
regrets of all sequences of length n are equal.

Definition 5 (SNML) The sequential normalized maximum
likelihood (SNML) strategy has

psnml(xt | xt−1) =
supθ∈Θ pθ(x

t)∫
X supθ∈Θ pθ(x

t) dλ(xt)
. (8)

Notice that this update does not depend on the horizon.
Under mild conditions, the regret of SNML is no more
than a constant (independent of n) larger than the mini-
max regret [3]. Once again, psnml is not defined if the
integral in the denominator is infinite. In many cases, for
a sequence xm−1 and for all n ≥ m, the appropriate con-
ditional probabilities are properly defined. We restrict our
attention to these cases.

Definition 6 (Bayesian) For a prior distribution π on Θ,
the Bayesian strategy with π is defined as

pπ(xt) =

∫
θ∈Θ

pθ(x
t) dπ(θ). (9)

The conditional probability distribution is defined in the
obvious way,

pπ(xt | xt−1) =
pπ(xt)

pπ(xt−1)
. (10)

We denote the conditional Bayesian strategy for a fixed
xm−1 as pπ(xnm | xm−1).

Jeffreys prior [6] has the appealing property that it is
invariant under reparameterization.

Definition 7 (Jeffreys prior) For a parametric model pθ,
Jeffreys prior is the distribution over the parameter space
Θ that is proportional to

√
|I(θ)|, where I is the Fisher

information at θ (that is, the variance of the score,
∂/∂θ ln pθ(X), where X has density pθ).

Our main theorem uses the notion of exchangeability
of stochastic processes.

Definition 8 (Exchangeable) A stochastic process is called
exchangeable if the joint probability does not depend on
the order of observations, that is, for any n > 0, any
xn ∈ Xn, and any permutation σ on {1, . . . , n}, the prob-
ability of xn is the same as the probability of xn permuted
by σ.



When we consider the conditional distribution
p(xnm | xm−1) defined by a conditional strategy, we are
interested in exchangeability of the conditional stochas-
tic process, that is, invariance under any permutation that
leaves xm−1 unchanged.

The asymptotic normality of the maximum likelihood
estimator is the major regularity condition of the paramet-
ric models that is required for our main result to hold.

Definition 9 (Asymptotic Normality of MLE) Consider
a parametric constant model pθ. We say that the paramet-
ric model has an asymptotically normal MLE if, for all
θ0 ∈ Θ,

√
n
(
θ̂(xn) − θ0

)
d→ N

(
0, I-1 (θ0)

)
, (11)

where I(θ) is the Fisher information at θ, xn is a sample
path of pθ0 , and θ̂(xn) is the maximum likelihood estimate
of θ given xn, that is, θ̂(xn) maximizes pθ(xn).

Asymptotic normality holds for regular parametric mod-
els; for typical regularity conditions, see for example, The-
orem 3.3 in [7].

For parametric models whose maximum likelihood es-
timates take values in a countable set, we need the notion
of a lattice MLE.

Definition 10 (Lattice MLE) Consider a parametric model
pθ with θ ∈ Θ ⊆ <d. The parametric model is said to
have a lattice MLE with diminishing step-size hn, if for
any θ, the possible maximum likelihood estimates of n i.i.d
random variables generated by pθ are points in Θ that are
of the form (b+ k1hn, b+ k2hn, · · · , b+ kdhn), for some
integers k1, k2, · · · , kd and some real numbers b and hn.
Additionally hn is positive and diminishes to zero as n
goes to infinity.

We are now ready to state our main result.

3. MAIN RESULT

We show that in parametric models with an asymptotically
normal MLE, the optimality of a Bayesian strategy im-
plies that the strategy uses Jeffreys prior. Furthermore we
show that the optimality of a Bayesian strategy is equiva-
lent to the optimality of sequential normalized maximum
likelihood. This extends the result for canonical minimal
exponential family distributions from [5] to regular para-
metric models. Note that NML is the unique optimal strat-
egy, so when we say that some other strategy is equivalent
to NML, that is the same as saying that strategy predicts
optimally.

Theorem 3.1 Suppose we have a parametric model pθ
with an asymptotically normal MLE. Assume that the MLE
has a density with respect to Lebesgue measure or that
the model has a lattice MLE with diminishing step-size
hn. Also assume that I(θ), the Fisher information at θ
is continuous in θ, and that, for all x, pθ(x) is continu-
ous in θ. Also fix m > 0 and xm−1, and assume that
p

(n)
nml(x

n
m|xm−1) and pπ(xnm|xm−1) are well defined, where

π is the Jeffreys prior. Then the following are equivalent.

(a) NML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1) (12)

(b) NML = SNML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(x

n
m|xm−1) (13)

(c) NML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1) (14)

(d) psnml(·|xm−1) is exchangeable.

(e) SNML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1) (15)

(f) SNML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1) (16)

4. OPEN PROBLEM

Our main result, i.e. Theorem 3.1 shows that the Bayesian
strategy under Jeffreys prior, SNM and NML are all equiv-
alent if and only if SNM is exchangeable. This equiva-
lence holds for many exponential family distributions such
as Normal, Levy, Rayleigh, Exponential. On the other
hand it does not hold for some simple distributions such
as Bernoulli. What properties should a distribution from
an exponential family have that makes its sequential nor-
malized maximum likelihood process exchangeable?
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