
EFFICIENT MESSAGE-PASSING FOR DISTRIBUTED QUADRATIC OPTIMIZATION

Guoqiang Zhang and Richard Heusdens

Department of Intelligent Systems

Delft University of Technology

Delft, the Netherlands

{g.zhang-1,r.heusdens}@tudelft.nl

ABSTRACT

Distributed quadratic optimization (DQO) has found

many applications in computer science and engineering.

In designing a message-passing algorithm for DQO, the

basic idea is to decompose the quadratic function into a

set of local functions with respect to a graphic model. The

nodes in the graph send local information of the quadratic

function in message-form to their neighbors iteratively un-

til reaching the global optimal solution. The efficiency

of a message-passing algorithm depends on its computa-

tional complexity, the number of parameters to be trans-

mitted, and its convergence speed. In this work, we study

several message-passing algorithms for comparison. In

particular, we consider the Jacobi-relaxation algorithm,

the generalized linear coordinate descent (GLiCD) algo-

rithm and the min-sum-min algorithm.

1. INTRODUCTION

In this work, we consider solving the quadratic optimiza-

tion problem in a distributed fashion, namely

min
x∈Rn

f(x) = min
x∈Rn

(

1

2
x⊤Jx− h⊤x

)

, (1)

where the quadratic matrix J is real symmetric positive

definite and x is a real vector in n-dimensional space. It is

known that the optimal solution is given by x∗ = J−1h.

We suppose that the quadratic matrix J is sparse and the

dimensionality n is large. In this situation, the direct com-

putation (without using the sparse structure of J) of the

optimal solution may be expensive and unscalable. The

research challenge is how to exploit the sparse geometry

of J to efficiently obtain the optimal solution.

A common approach that exploits the sparsity of J is

to associate the function f(x) with an undirected graph

G = (V,E). That is, the graph has a node for each vari-

able xi and an edge between node i and j only if the ele-

ment Jij is nonzero. By doing so, the sparsity of J is fully

captured by the graph. As a consequence, the function can

be decomposed with respect to G = (V,E) as

f(x) =
∑

i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj), (2)

where each edge-function fij(xi, xj) characterizes the in-

teraction of xi and xj as specified by Jij . With the graphic

model (2), distributed quadratic optimization (DQO) boils

down to how to spread the global information of (J, h) in

(1) over the graph efficiently by exchanging local infor-

mation between neighboring nodes.

DQO over graphic models has found many applica-

tions in computer science and engineering in the past. Some

applications are motivated by emerging parallel computa-

tional architectures (e.g., multicore CPUs and GPUs [1]),

such as support vector machine [2] and channel coding

[3, 4]. Other applications are motivated from the dis-

tributed nature carried by the problem, such as distributed

speech enhancement in wireless microphone networks [5],

distributed Kalman filter [6] and multiuser detection[7].

2. ALGORITHM COMPARISON

In the literature, the Jacobi algorithm is a classic method

for solving the quadratic problem over the associated graph

[8]. At each iteration, the algorithm performs node-oriented

minimizations over all the nodes in the graph, of which the

messages are in a form of linear functions (see Table 1). It

is known that when the matrix J is walk-summable1, the

Jacobi algorithm converges to the optimal solution [9, 10].

To fix the convergence for a general matrix J , the Jacobi

algorithm was under-relaxed by incorporating an estimate

of x∗ from last iteration in computing a new estimate (see

Table 1). It is well known that the Jacobi-relaxation al-

gorithm possesses a guaranteed convergence if the relax-

ation parameter is properly chosen [8]. For the above two

algorithms, once a node-estimate is updated, this estimate

is broadcast to all its neighbors. Because the information

transmitted is general, and not edge-specific, the two al-

gorithms are known to converge slowly [8].

To accelerate the convergence of the Jacobi algorithm,

we proposed the linear coordinate descent (LiCD) algo-

rithm [11]. At each iteration, the LiCD algorithm per-

forms pairwise minimizations over all the edges in the

graph, of which the messages are in a form of linear func-

tions (see Table 1). As shown in [11], if the quadratic ma-

trix J is walk-summable, the LiCD algorithm converges

to the optimal solution. Inspired by the Jacobi-relaxation

1A positive definite matrix J ∈ R
n×n, with all ones on its diagonal,

is walk-summable if the spectral radius of the matrix R̄, where R =
I−J and R̄ = [|Rij |]

n
i,j=1

, is less than one (i.e., ρ(R̄) < 1). We note

that if the matrix J is diagonally dominant, it is also walk-summable.

J is walk-summable J is general

Jacobi Alg.:

* node-oriented minimization

* linear message

Jacobi-relaxation Alg.:

* introduce feedback in Jacobi Alg.

LiCD Alg.:

* pairwise minimization

* linear message

GLiCD Alg.:

* introduce feedback in LiCD Alg.

min-sum Alg.:

* pairwise minimization

* quadratic message

min-sum-min Alg.:

* introduce feedback in min-sum Alg.

Table 1. Algorithm comparison.

algorithm, we also extended the LiCD algorithm by incor-

porating feedback from last iteration in computing new

messages in [12]. We name the new algorithm as the

generalized LiCD (GLiCD) algorithm. The GLiCD algo-

rithm was shown in [12] to converge to the optimal solu-

tion for a general matrix J when the amount of feedback

signal is set to be large enough. For both the LiCD and

the GLiCD algorithms, each node computes and transmits

edge-specific information instead of broadcasting some

common parameters to all its neighbors. Such edge-specific

operation helps to spread the global information of (J, h)
over the graph more effectively.

An alternative scheme for solving the quadratic prob-

lem is by using the framework of probability theory [13].

The optimal solution x∗ is viewed as the mean value of a

random vector x ∈ R
n with Gaussian distribution

p(x) ∝ exp

(

−
1

2
x⊤Jx+ h⊤x

)

. (3)

The min-sum algorithm is one popular approach to esti-

mate both the mean value x∗ = J−1h and individual vari-

ances [14]. At each iteration, the algorithm essentially

performs pairwise minimizations over all the edges in the

graph, of which the messages are in a form of quadratic

functions (see Table 1). For a graph with a tree-structure,

the min-sum algorithm converges to the optimal solution

in finite steps [14]. The question of convergence for loopy

graphic models has been proven difficult. In [9, 10], it was

shown when the matrix J is walk-summable, the min-sum

algorithm converges to the optimal solution.

Due to the fact that the min-sum algorithm may fail

a general matrix J , we proposed the min-sum-min algo-

rithm [15] recently. The derivation of the min-sum-min

algorithm follows the line of work in [12] for the GLiCD

algorithm. Similarly to the GLiCD algorithm, the basic

idea of the min-sum-min algorithm is to incorporate feed-

back from last iteration in computing new messages. We

have shown in [15] that if the amount of the feedback is

large enough, the min-sum-min algorithms converges to

the optimal solution. We note that for the min-sum and the

min-sum-min algorithms, each node computes and trans-

mits edge-specific information to its neighbors, which is

similar to that of the LiCD and the GLiCD algorithms.

The main properties of the above algorithms are sum-

marized in Table 1. One observes that the Jacobi and the

LiCD algorithms share the property that their messages

are in the form of linear functions. On the other hand, the

LiCD and the min-sum algorithms share the property that

both algorithms perform pairwise minimization at each it-

eration. From the viewpoint of minimization strategies

and message-forms, the LiCD algorithm acts as an inter-

mediate method between the Jacobi and the min-sum al-

gorithms. As is analyzed in [11], the computational com-

plexities of the three algorithms at each iteration are in the

order of

Jacobi Alg. → LiCD Alg. → min-sum Alg.

where the min-sum algorithm is most expensive for im-

plementation.

3. UNIFIED MESSAGE-PASSING FRAMEWORK

We note that all the algorithms listed in Table 1 share a

unified message-passing framework despite the fact that

different minimization strategies and message-forms are

applied in the algorithms. We present the unified message-

passing framework in the following.

Consider the quadratic optimization problem (1). We

may assume, without loss of generality, that J is of unit-

diagonal. The local node and edge functions for the graph

G = (V,E) can be constructed as

fi(xi) =
1

2
x2
i − hixi i ∈ V (4)

fij(xi, xj) = Jijxixj (i, j) ∈ E. (5)

An edge exists between node i and j in the graph only

if Jij 6= 0. As a consequence, a sparse matrix J leads

to a sparse graph G = (V,E). We use N(i) to denote

the set of all neighbors of node i ∈ V . The set N(i)\j
excludes the node j from N(i). For each edge (i, j) ∈ E,

we use [j, i] and [i, j] to denote its two directed edges.

Correspondingly, we denote the set of all directed edges

of the graph as ~E.

A message-passing algorithm exchanges information

between neighboring nodes iteratively until reaching con-

sensus. In particular, at time t, each node j collects a

set of messages
{

m
(t)
v→j(xj)|v ∈ N(j)

}

and a set of es-

timates
{

x̂
(t)
j|v , v ∈ N(j)

}

of x∗
j by cooperating with its

neighbors. We note that for a directed edge [v, j] ∈ ~E, the

(a): Messsages (b): Estimates

Figure 1. An example of the information-flow for node j

at time step k.

associated message m
(t)
v→j(xi) and estimate x̂j|v are ob-

tained by combining the local information of node v and

j at time t− 1 (see Fig. 1). For the Jacobi and the Jacobi-

relaxation algorithms, the elements in {x̂
(t)
j|v, v ∈ N(j)}

for each node j are identical, since both algorithms per-

form node-oriented minimizations.

Given the messages at time t, one can define new local

functions as

f
(t)
i (xi) = fi(xi) +

∑

u∈N(i)

m
(t)
u→i(xi) i ∈ V

f
(t)
ij (xi, xj) =

[

fij(xi, xj)−m
(t)
j→i(xi)

−m
(t)
i→j(xj)

]

(i, j) ∈ E

By summing up all the new local functions, it is straight-

forward that

f(x) =
∑

i∈V

f
(t)
i (xi) +

∑

(i,j)∈E

f
(t)
ij (xi, xj). (6)

Thus, the overall objective function remains the same. The

new local functions can be viewed as a reformulation of

the objective function.

The key part of a message-passing algorithm is the

derivation of the updating expressions for
{

(m
(t+1)
j→i (xi),

x̂
(t+1)
i|j), [j, i] ∈ ~E

}

given the information at time t. Note

that for each node i, the estimates {x̂
(t)
i|u, u ∈ N(i)} pro-

vide information about the optimal solution x∗
i . Thus, the

estimates can be used as feedback in computing new mes-

sages and estimates in next iteration if necessary. An iter-

ative algorithm converges to the optimal solution x∗ if

lim
t→∞

x̂
(t)
i|j = x∗

i , [j, i] ∈ ~E. (7)

Different iterative algorithms can be derived by choos-

ing different minimization strategies and message-forms

(see Table 1). As an example, we briefly present the Jacobi-

relaxation algorithm in the following for demonstration.

At time t, each node i keeps track of an estimate x̂
(t)
i of

x∗
i and a set of linear messages {m

(t)
u→i(xi) = Jiux̂

(t)
u }.

The estimate x̂
(t+1)
i at time step t+ 1 is computed as [8]

x̂
(t+1)
i = min

xi

[

f
(t)
i (xi) +

α

2
(xi − x̂

(t)
i)2

]

i ∈ V,(8)

where the parameter α ∈ R controls the amount of feed-

back in computing x̂
(t+1)
i . Note that the feedback in (8)

is represented by a quadratic penalty function in terms of

x̂
(t)
i , which can be easily merged into the local function

f
(t)
i (xi). By letting α = 1 − 1

s
, the above expression can

be reformulated as

x̂
(t+1)
i = min

xi

[

sfi(xi) +
∑

u∈N(i)

sJuix̂
(t)
u

+
1− s

2
(xi − x̂

(t)
i)2

]

i ∈ V.

In the literature, s is named as the relaxation parame-

ter. When s = 1 (or equivalently, α = 0), the Jacobi-

relaxation algorithm reduces to the Jacobi algorithm. For

a general matrix J in (1), the Jacobi-relaxation algorithm

converges to the optimal solution x∗ if the relaxation pa-

rameter s is sufficiently close to zero from above.

For those who are interested in the GLiCD and the

min-sum-min algorithms, we refer the readers to [12] and

[15]. Similarly to that of the Jacobi-relaxation, the feed-

backs in the GLiCD and the min-sum-min algorithms are

also represented by some quadratic penalty functions. The

amount of feedback signal in the GLiCD algorithm or the

min-sum-min algorithm is again controlled by a relaxation

parameter.

4. FUTURE WORK

We note that the Jacobi and the Jacobi-relaxation algo-

rithms have a wide range of applications in practice. Nat-

urally, it is worth trying other algorithms as listed in Ta-

ble 1 for solving the same kind of problems. In future

work, we will consider applying the GLiCD algorithm the

min-sum-min algorithms for some practical problems.

5. REFERENCES

[1] Y. El-Kurdi, W. J. Gross, and D. Giannacopoulos,

“Efficient implementation of gaussin belief propaga-

tion solver for large sparse diagonally domiant linear

systems,” IEEE Trans. Magn., vol. 48, no. 2, pp.

471–474, 2012.

[2] D. Bickson, D. Dolev, and E. Yom-Tov, “A Gaus-

sian belief propagation solver for large scale Support

Vector Machines,” in 5th European Conference on

Complex Systems, Sept. 2008.

[3] H. Uchikawa, B. M. Kurkoski, K. Kasai, and

K. Sakaniwa, “Iterative Encoding with Gauss-Seidel

Method for Spatially-Coupled Low-Density Lattice

Codes,” in Proc. IEEE Int. Symp. Information Tho-

ery, MIT Campus, USA, 2012.

[4] N. Sommer, M. Feder, and O. Shalvi, “Low-density

lattice codes,” IEEE Trans. Information Theory, vol.

54, pp. 15611585, Apr. 2008.

[5] R. Heusdens, G. Zhang, R. C. Hendriks, Y. Zeng,

and W. B. Kleijn, “Distributed MVDR Beam-

forming for (Wireless) Microphone Networks Using

Message Passing,” accepted by International Work-

shop on Acoustic Signal Enhancement (IWAENC),

2012.

[6] D. Bickson, O. Shental, and D. Dolev, “Distributed

Kalman Filter via Gaussian Belief Propagation,” in

the 46th Allerton Conf. on Communications, Control

and Computing, 2008.

[7] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and

D. Dolev, “DGaussian belief propagation based mul-

tiuser detection,” in In IEEE Int. Symp. on Inform.

Theory (ISIT), July 2008, pp. 1878–1882.

[8] D. P. Bertsekas and J. N. Tsitsikis, Parallel and

distributed Computation: Numerical Methods, Bel-

mont, MA: Athena Scientific, 1997.

[9] J. K. Johnson, D. M. Malioutov, and A. S. Willsky,

“Walk-sum Interpretation and Analysis of Gaussian

Belief Propagation,” in Advances in Neural Infor-

mation Processing Systems, Cambridge, MA: MIT

Press, 2006, vol. 18.

[10] D. M. Malioutov, J. K. Johnson, and A. S. Will-

sky, “Walk-Sums and Belief Propagation in Gaus-

sian Graphical Models,” J. Mach. Learn. Res., vol.

7, pp. 2031–2064, 2006.

[11] G. Zhang and R. Heusdens, “Linear Coordinate-

Descent Message-Passing for Quadratic Optimiza-

tion,” appering in Neural Computation.

[12] G. Zhang and R. Heusdens, “Convergence of Gener-

alized Linear Coordinate-Descent Message-Passing

for Quadratic Optimization,” in Proc. IEEE Inter-

national Symposium on Information Theory, June

2012.

[13] S.L. Lauritzen, Graphical Models, Oxford Univer-

sity Press, 1996.

[14] J. Pearl, “Probabilistic Reasoning in Intelligent Sys-

tems: Networks of Plausible Inference,” Morgan

Kaufman Publishers, 1988.

[15] G. Zhang and R. Heusdens, “Convergence of Min-

Sum-Min Message-Passing for Quadratic Optimiza-

tion,” in preparation for submission.

