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ABSTRACT

In this paper we address the problem of model selection
for the set of finite memory stochastic processes with fi-
nite alphabet, when the data is contaminated. We consider
m independent samples, with most of them being realiza-
tions of the same stochastic process with law (), which is
the one we want to retrieve. We devise a model selection
procedure such that for a sample size large enough, the se-
lected process is the one with law ). Our model selection
strategy is based on estimating relative entropies to select
a subset of samples that are realizations of the same law.
Although the procedure is valid for any family of finite
order Markov models, we will focus on the family of vari-
able length Markov chain models, which include the fixed
order Markov chain model family. We define the asymp-
totic breakdown point ~ for a model selection procedure,
and we show the value v for our procedure. This means
that if the proportion of contaminated samples is smaller
than ~, then, as the sample size grows our procedure se-
lects a model for the process with law Q).

1. INTRODUCTION

In this paper we propose a robust strategy to select mo-
dels from samples coming from a process which is con-
taminated and it is a discrete time stochastic process, on a
finite alphabet. We will only consider the family of vari-
able length Markov chain models, from now on VLMC
(see [4, 1,2, 5]) because it includes the fixed order Markov
chain models and the independent case. For VLMC model
selection we will use the version of the CTM algorithm in-
troduced by [2], which is based on the Bayesian Informa-
tion Criterion (BIC). It has been shown by [3] that a small
Bernoulli random perturbation on a sample produced by
a VLMC will effectively transform the process to an in-
finity memory process. They also show a variation of the
original context algorithm given by [4] which can recover
the VLMC model of the original chain, provided that the
noise is small enough.

In this work we consider a different kind of contamina-
tion, we have a set of m independent samples, with most
of them being from the same stochastic process with law
@, whose model we want to recover. The approach of this
paper can be applied yet in the case in which we have only
one sample produced by the concatenation of realizations
of a mixture process which is the process () plus a con-

taminant process. We define the asymptotic breakdown
point y for the model selection problem and we show the
value of v for our procedure.

Our procedure can be applied when the data is coming
from a mixture of stochastic processes, for example in the
problem of classification of languages according to their
rhythmic features, using speech samples. The usual pro-
cedure to deal with this topic has been choose a subset of
the original sample which seems best represent each lan-
guage. Instead, if we apply this kind of robust procedure
can be taken the complete dataset, see [6].

2. PRELIMINARIES

Let (X;) be a discrete time stochastic process on a finite
alphabet A with cardinal |A|. Denote the string (concate-
nation of elements from A) ajai1...a, by aj, where
a; € A, k < i < r. If the stochastic process (X;) has
probability law @, and if 27 is a n realization of that pro-
cess, we denote Q(x}) = Prob(X} = 7). The transi-
tion probability from the sequence z7 to the symbol a €
Ais Q(alzy) = Prob(X,+1 = a|X7] = z¥). Given a
string s = agag+1 - - - a, we denote its length as I(s) =
r — k + 1. The empty string is denoted by @) and I(()) = 0.
We say that the string v is a postfix of a string s when
there exists a string w such that s = uv. When s # v, v is
a proper postfix of s.

Definition 1 A set T of strings is called a tree if satisfies
the following rules

1. no sy € T is a postfix of any other s € T,

2. no s1 € T can be replaced by a proper postfix with-
out violating rule 1.

We denote by d(7) = max (I(s), s € T) the depth of the
tree 7.

Definition 2 Let (X;) be a finite order stationary ergodic
stochastic process on a finite alphabet A with probability
law Q. We will say that the tree T is a context tree for (Xy)
if for any n > d(T) and for any sequence of symbols in
A, x7, there exist a postfix s € T such that

Q(alzy) = Q(als), Va € A, ()

and no proper postfix of s satisfies equation (1). In that
case s is called a context for the process Q).



Definition 3 We will say that the stochastic process (X;)
is a variable length Markov chain compatible with the
context tree T if it verify definition 2.

Each model in the family of variable length Markov chain
models, is identified by its context tree. For more details
see [4, 1]. There are diverse methodologies for the se-
lection and estimation of context trees, see for example
[1, 2, 4, 5]. The context tree maximization CTM algo-
rithm proposed by [2] is based on the BIC criterion and it
will be used in this work for the statistical estimation of
context trees.
For a given value D with n > D, if s is some string
I(s) < D,a € A we denote by N, (s,a) the number of
occurrences of the string s followed by a in the sample 27,
Nu(s,a) = |{i : D <i < n,2i"}, = s,a; = a}|. The
number of occurrences of s in the sample z7 is denoted by
N, (s) and N, (s ’{z:D<Z<n,x1D—s}‘We
denote by (931 , D) the family of feasible context trees,
where a feasible context tree T is such that d(7) < D
and N,(s) > 1 for all s € T and for each string s” with
N, (s') > 1lithasapostfix s € T. Now we can define the
context tree estimator
T(af) = arg
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where P,(z7) = n~ PML (x). ]SML,S(QC?) =
Ny(s.a) )V ; ny —
[loca ( ) ) if No(s) > Land Pypp ,(27) =
1if N, (s) = 0.
For fixed n is considered D = D(n) = log(n). For a
finite memory Markov process, ’f'(m’f) converges eventu-
ally almost surely to the true 7 of the law ). The algo-
rithm in [2] allows to compute these estimators in O(n)
time, and to compute them on-line for all ¢ < nin o(nlog(n))
time. Accordmg to the corollary 2.12 in [2] the emplrlcal

probabilities QT( als) = NA’;(?S) a € As € T con-
verges to the true conditional probabilities Q(als),a €
A, s € T almost surely as n — oo.

In order to simplify the notation we avoid the reference to
the context tree 7 (or7") when the underlying context tree

is understood and we adopt the notation

Q = CTM((x)i=y)
to emphasize that the estimation uses the CTM algorithm.

3. RELATIVE ENTROPY

Definition 4 Given two probability mass functions P(-)
and Q(+), the relative entropy is

> Pa)tog (59

TEX

D(P||Q) =

Remark 1 Let P(-), Q(-) be two probability functions.
Then, D(P||Q) > 0. The equality occurs if and only if
P(z) = Q(z),Vx € x.

Definition 5 Let Tp and Tq be two context trees follow-
ing the definition 2 with probability law P and Q) respec-
tively. Tpq is defined by all the strings from Tp and Tq,
such that Tpg satisfy the definition 1.

From the previous definition,

Trq ={s€TpUTqg :As" € Tp UTg postfix of s}.From
Theorem 3 (see [6]), using Tp¢ it is possible to express
the entropy between two processes through its conditional

entropies as D (P||Q) = Y seTro P(s)D(P(-[s)|Q(:]s)).

Remark 2 For s € Tpq, we observe that P(-|s) is the
usual probability when s € Tp. If s ¢ Tp, 3s1 € Tp and
x some string, such that s = xs1 and P(-|s) = P(:|s1).

4. ASYMPTOTIC BREAKDOWN POINT

Assumption 1 For a family F of stochastic processes,
consider a collection {(X;),i = 1,...,m} of m inde-
pendent finite memory stationary processes belonging to
F, where (X; ;) has probability law Q;. If Jo, =
{je{1,...m}: (X;1) ~ Q},suppose that exists iy such
that Yi # o, |Jq,, | > [JTq.l, with i,ig € {1,...,m},
Qi, will be called as majority law of F. Denote by C)"* =
{(x1,0)7=1, (®2,0)}y - - -, (®mt) 7oy } @ collection of m sam-
ples of size n from (X, ,),i=1,...,m

Let S be a strategy of estimation, i.e.
S: Q}' — F

where Q z is the sample space of processes in F and S(C!)
denotes the value of the estimator from the sample collec-
tion C;".

Remark 3 Under the Assumption 1, S(C7") indicates some
strategy to select a sample (from C"* ) or some set of sam-
ples (the best ones) to make the estimation of the majority

law Q.

We define now the asymptotic breakdown point of the
model estimator S(C)").

Definition 6 Under the Assumption 1, the model estima-
tor S(CI7") has an asymptotic breakdown point equal to
for thefamily F, if v is the smallest value into (0, 1] such

that, if Q‘“' < ~ then,

h_)m S(C) # Qi , almost surely.

5. ESTIMATORS

Given the collection of samples C*, foreach i € {1, ..., m}

denote Q; = CTM ((%;,4)7—;) the model estimated from
the sample (x; )7, using the algorithm introduced in

[2]. Foreach i,j € {1,...,m}, denote by d(ZHJ (CI™) the
relative entropy between Q; and Qj7 ie. (i(inj)(C;”) =

D (QZ| |Qj) . Define then,

dgi ) (C) + dgy (Co)
2
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We will refer to d(; ;)(CI") as being the Symmetrized Re-
lative Entropy (SRE) between the samples ¢ and 7 from
C™. We will also say that V;(C™) is the mean SRE be-
tween the sample j and the other samples in C,".

Now, sort in increasing order the set {V;(C"), j = 1,...,m}

and call 5} (C]) the index of the sample in the ith position
on the ordered set, i.e.

also

Jm(Cy) = arg max

{viem}-

Remark 4 To evaluate D (QZHQJ) it is used Theorem 3

(see [6]), replacing the true probabilities by its empirical
estimators and taking by the set of strings, the common
tree given by definition 5 using the estimated trees from

Q; and Q;.

Theorem 1 Under the Assumption 1, if the estimator S(C;")

is defined as being Q)+ cm) for some natural number i <
m/2, then, S(C7") has asymptotic breakdown point equal
to 5.

2

(See details of the proof in [6]).
In terms of quality of estimation, we can use Theorem 1 in
order to propose a better strategy that can take advantage

of the best samples detected by {VJ (CQ“)}
more powerful estimator for the majority law Q;, .

to construct a

Definition 7 Under the Assumption 1, we define the o-
trimmed CTM model estimator for Q) as being

Q“ =CTM ((:Ej;(cmyt)::l vi=1,...,[(1 - a)m]) ,

for o such that [(1 — a)m] > 1. Where [(1 — «)m] is the
integer part of (1 — a)m.

Remark 5 QO‘ computes the CTM estimator assuming the
selected samples as independent, this means that to com-
pute the occurrences of each string s followed by a € A

RSl with N3 (s) =

SETING(s) and N7 (s,0) = ST N(s.a)
where N are the occurrences computed from the sample
(a:j; (c;y),t):: - Where each string s comes from the set
of feasible trees, with the same restriction as was assumed
for equation(2).

will be necessary compute Q(a\s) =

Theorem 2 Under the Assumption I, for a such that [(1—
a)m| > 1. The estimator S(C)") defined by Q% has

(i) an asymptotic breakdown point equal to o, when
a€(0,3)and

(ii) an asymptotic breakdown point equal to + when

2
o€ [3,1].

(See details of the proof in [6]).

Remark 6 If o = (1 — %) the estimator is given by
Q jz(cm)s i.e. the most representative empirical law, be-
cause the sample (= cm) +){—1 would be considered the
most representative in terms of the mean SRE.

6. CONCLUSION

In this paper we introduce a strategy of robust estimation
to estimate the majority law from a collection of samples
coming from VLMC processes. That strategy takes ad-
vantage from the convergence “almost surely” guaranteed
by the CTM algorithm, but it is not restricted to this al-
gorithm and can be applied using other algorithms of esti-
mation. From a practical point of view, the strategy takes
advantage also from the structure of trees (of VLMC), be-
cause the structure of tree allows to express the relative
entropy between two processes in terms of the conditional
probabilities. Using a very convenient structure of tree,
that is a composition between the trees of the two pro-
cesses (from [6]) the strategy can be formulated as a pre-
cise calculus between the empirical probability laws. The
strategy achieves the best level of robustness, that is at
most 50% of contamination. In addition, the strategy re-
veals how to improve the estimation, doing to grow the
number of samples used for it, with the selection of the
best samples to do the estimation.
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