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ABSTRACT

We address the problem of model selection for a multi-
variate source with finite alphabet. Families of Markov
models and model selection algorithms are generalized for
the multivariate case. For Markovian sources our model
selection procedures are consistent in the sense that, even-
tually, as the collected data grows, the sources Markov
model will be retrieved exactly and it will be described
with a minimal number of parameters.

1. INTRODUCTION

Multivariate Markov chains are used for modeling stochas-
tic processes arising on many areas as for example linguis-
tics, biology and neuroscience. There are diverse models
families from which to choose a model for a given data
set. For example Markov chains of order m, variable
length Markov chains (VLMC) see for example (5), (6),
(2) or partition Markov models see (4). On each family,
the selection of a specific Markov model gives informa-
tion about the dependence structure for the dataset.

A recurrent problem is to model multiple streams of
finite memory data with distributions that are suspected
to be dependent or similar or equal. In the case of in-
dependent sources, the interest is to find the differences
and similarities between the distribution of the sources. In
the dependent case we want to find de dependence struc-
ture for the multivariate source. In this paper we propose
a class of Markov models for each of that cases (depen-
dent or independent sources), that generalize the partition
Markov models for multivariate sources. We show pro-
cedures to, given a dataset, select a model in our class
of models, that approximate the joint law of the source.
The procedure are consistent in the sense that if the law
of the source is Markovian, eventually, as the collected
data grow, the source’s Markov model will be retrieved
exactly. This work extend and generalize previous results
about minimal Markov models and context tree models
as in (4), (6), (2), (1) and (3). In section 2 we revisit
the family of partition Markov models. In section 3 we
address the problem of simultaneously modeling multiple
data sources. Finally in section 4 we show a procedure to
estimate the internal structure of dependence between the
coordinates of a multivariate stationary source.

2. MARKOV CHAIN WITH PARTITION L

Let (Xt) be a discrete time, finite memory Markov chain
on a finite alphabet A. Denote the string amam+1 . . . an
by anm, where ai ∈ A, m ≤ i ≤ n. Let M be the maxi-
mum memory for the process, and S = AM .

For each a ∈ A and s ∈ S,

P (a|s) = Prob(Xt = a|Xt−1
t−M = s);

Definition 2.1. Let (Xt) be a discrete time order M Markov
chain on a finite alphabet A. We will say that s, r ∈ S are
equivalent (denoted by s ∼p r) if P (a|s) = P (a|r) ∀a ∈
A.
For any s ∈ S, the equivalence class of s is given by
[s] = {r ∈ S|r ∼p s}.

Remark 2.1. The equivalence relationship defines a par-
tition of S. The parts of this partition are the equivalence
classes. The classes are the subsets of S with the same
transition probabilities i.e. s, r ∈ S belongs to different
classes if and only if they have different transition proba-
bilities.

Remark 2.2. We can think that each element of S on the
same equivalence class activates the same random mech-
anism to choose the next element in the Markov chain.

We can define now the a Markov chain with partition L.

Definition 2.2. let (Xt) be a discrete time, order M Markov
chain on A and let L = {L1, L2, . . . , LK} be a partition
of S. We will say that (Xt) is a Markov chain with parti-
tionL if this partition is the one defined by the equivalence
relationship ∼p introduced by definition 2.1.

Let L = {L1, L2, . . . , LK} be the partition of (Xt)

P (a|Li) = P (a|s), for any s ∈ Li

Remark 2.3. The set of parameters for a Markov chain
over the alphabet A with partition L can be denoted by,

{P (a|L) : a ∈ A,L ∈ L}.

If we know the equivalence relationship for a given Markov
chain, then we need (|A| − 1) transition probabilities for
each class to specify the model. Then the number of pa-
rameters for the model is |L|(|A| − 1).



2.1. Partition Markov model selection

Let xn
1 be a sample of the process

(
Xt

)
, s ∈ S, a ∈ A

and n > M. We denote by Nn(s, a) the number of occur-
rences of the string s followed by a in the sample xn

1 ,

Nn(s, a) =
∣∣{t : M < t ≤ n, xt−1

t−M = s, xt = a}
∣∣, (1)

the number of occurrences of s in the sample xn
1 is de-

noted by Nn(s) and

Nn(s) =
∣∣{t : M < t ≤ n, xt−1

t−M = s}
∣∣. (2)

To simplify the notation we will omit the n on Nn.

2.2. A distance in S

Definition 2.3. We define the distance d in S,

d(s, r) =
1

ln(n)

∑
a∈A

{
N(s, a) ln

(
N(s, a)

N(s)

)
+ N(r, a) ln

(
N(r, a)

N(r)

)
− (N(s, a) +N(r, a)) ln

(
N(s, a) +N(r, a)

N(s) +N(r)

))
for any s, r ∈ S.

Proposition 2.1. For any s, r ∈ S,

i. d(s, r) ≥ 0 with equality if and only if N(s,a)
N(s) =

N(r,a)
N(r) ∀a ∈ A,

ii. d(s, r) = d(r, s),

Remark 2.4. d can be generalized to subsets (see (4)).

Theorem 2.1. (Consistence in the case of a Markov source)
Let (Xt) be a discrete time, order M Markov chain on a
finite alphabet A. Let xn

1 be a sample of the process, then
for n large enough, for each s, r ∈ S, d(r, s) < (|A|−1)

2
iff s and r belong to the same class.

Algorithm 2.1. (Partition selection algorithm)
Input: d(s, r)∀s, r ∈ S; Output: L̂n.
B = S
L̂n = ∅
while B 6= ∅

select s ∈ B

define Ls = {s}

B = B \ {s}

for each r ∈ B, r 6= s

if d(s, r) < (|A|−1)
2

Ls = Ls ∪ {r}
B = B \ {r}

L̂n = L̂n ∪ {Ls}

Return: L̂n = {L1, L2, . . . , LK}

If the source is Markovian, for n large enough, the
algorithm returns the partition for the source.

Corollary 2.1. Under the assumptions of Theorem 2.1,
L̂n, given by the algorithm 2.1 converges almost surely
eventually to L∗, where L∗ is the partition of S defined by
the equivalence relationship.

3. GENERALIZED PARTITION MARKOV
MODELS FOR MULTIPLE INDEPENDENT

FINITE MEMORY SOURCES

In this section we extend the family of models for multi-
ple independent sources of data. We also extend our al-
gorithm. As in (4), the procedure is consistent and tight,
for Markovian sources, eventually, as the data grow, the
source’s Markov model will be retrieved exactly and de-
scribed with the minimal number of parameters.

We will consider a dataset which consist of K se-
quences of size nk, for k = 1, ...,K.

3.1. Model family

Let (Xk
t ) for k = 1, ...,K be the K independent finite

memory stochastic processes, all of them stationary and
ergodic. For each process (Xk

t ) let Sk and dk be the state
space and order of the respective Markov model.

Definition 3.1. S = {(s, k) : s ∈ Sk, k = 1, 2, ...,K.}

For each a ∈ A and (s, k) ∈ S,

Pk(a|s) = Prob(Xk
t = a|Xk,t−1

t−M = s);

The models in our family are indexed by the partition
defined in the following equivalence relation.

Definition 3.2. We will say that (s, i), (r, j) ∈ S are
equivalent (denoted by (s, i) ∼P,K (r, j))
if Pi(a|s) = Pj(a|r) ∀a ∈ A. For any (s, i) ∈ S , the
equivalence class of (s, i) is given by [(s, i)] = {(r, j) ∈
S|(r, j) ∼P,K (s, i)}.

We can define now the a set of Markov chain with par-
tition L.

Definition 3.3. let X be a set of K independent Markov
chains on A and let L = {L1, L2, . . . , LK} be a partition
of S. We will say that X is a set of Markov chains with
partition L if this partition is the one defined by the equiv-
alence relationship ∼P,K introduced by definition 3.2.

Remark 3.1. The parameters for a set of independent
Markov chains over the alphabet A with partition L is,

{P (a|L) : a ∈ A, L ∈ L}.,

where P (a|L) = Pi(a|s) for any (i, s) ∈ L.
The number of parameters for the model is |L|(|A|−1).



3.2. A distance between sequences

Definition 3.4. For any (s, i), (r, j) ∈ S, we define the
distance dK ((s, i), (r, j)) in S as

dK ((s, i), (r, j)) =
1

ln(n)

∑
a∈A

{
Ni(s, a) ln

(
Ni(s, a)

Ni(s)

)
+ Nj(r, a) ln

(
Nj(r, a)

Nj(r)

)
− (Ni(s, a) +Nj(r, a))×

× ln

(
Ni(s, a) +Ni(r, a)

Ni(s) +Nj(r)

)}
,

where Ni(s) and Ni(s, a) are the number of times that the
sequences s and sa respectively appear in the sample i.

Proposition 3.1. dK(., .) have the following properties,

i. dK ((s, i), (r, j)) ≥ 0 with equality if and only if
Ni(s,a)
Ni(s)

=
Nj(r,a)
Nj(r)

∀a ∈ A,

ii. dK ((s, i), (r, j)) = dK ((r, j), (s, i))),

To simplify the notation and without loss of generality
we will suppose that all the sequences have the same size
n.

Theorem 3.1. (Consistence in the case of Markov sources)
Let X be a set of independent Markov chain of finite or-
der, (xi,n

1 )Ki=1 a size n sample of each process. For each
(s, i), (r, j) ∈ S for n large enough, dK ((s, i), (r, j)) <
|A|−1

2 iff (s, i) and (r, j) belong to the same class.

The same algorithm 2.1 can be used (with dK(., .)) to
estimate the partition for the set of chains.

4. MULTIVARIATE SOURCES

In this section we will consider the case in which we have
a multivariate source with dependent coordinates.

To simplify the notation, we will assume that the par-
tition Markov model is known. Our objective is to obtain
for each part a partition of the set of coordinates on in-
dependent sets. The same procedure can be used to find
subsets of the coordinates that are conditionally indepen-
dent.

Let (Xt) be a Markov chain on A = Bl with par-
tition L. For U = {u1, ...uk} ⊂ {1, 2, ..., l} and a =
(a1, ..., al) ∈ A, define:

i) au = (au1
, ..., auk

),

ii) for any L ∈ L,

P (aU |L) = Prob(XU
t = aU |Xt−1

t−M = s) ∀s ∈ L,

iii) for s ∈ S

Nn(s, a
U ) =

∣∣{t : M < t ≤ n, xt−1
t−M = s, xU

t = aU}
∣∣,

iv) for L ∈ L

NLn (L, aU ) =
∑
s∈L

Nn(s, a
U ).

Example
Consider B = {0, 1, 2} with dimension l = 2, the alpha-
bet will be A = B2 = {0, 1, 2}2. For L ∈ L, we need to
specify P (a|L), this means (|A| − 1) = 8 parameters for
each L. If for a fixed L the first coordinate is independent
from the second then P (a|L) = P (a1|L)P (a2|L) ∀a ∈
A and the number of parameter will be (|B|−1)+(|B|−
1) = 4 for this L.

In general, for A = Bl, fix L ∈ L and a partition IL
of {1, 2, ..., l} in independent coordinates, we have that

P (a|L) =
∏

C∈IL

P (aC |L) ∀a ∈ A

and the number of parameters needed for the part L will
be ∑

C∈I
(|B||C| − 1)

4.1. Conditional dependence structure

Definition 4.1. For each L ∈ L, define IL as de maximal
partition of {1, 2, ...l} such that

P (a|L) =
∏

C∈IL

P (aC |L) ∀a ∈ A.

We will say that IL = {IL}L∈L is the structure of condi-
tional dependence for the process.

4.2. Estimating the conditional dependence structure

Our procedure to estimate IL is based on the Bayesian
information criterion (BIC).

P (xn
1 ) = P (xM

1 )
∏

L∈L,a∈A

∏
C∈IL

P (aC |L)N
L
n (L,a).

The maxima for
∏

L∈L,a∈A
∏

C∈IL P (aC |L)NLn (L,a)

is

ML(L, IL, xn
1 ) =

∏
L∈L,a∈A

∏
C∈IL

(
NLn (L, aC)

NLn (L)

)NLn (L,a)

,

and the BIC criterion for ou class of models,

BIC(L, IL, xn
1 ) = ln (ML(L, IL, xn

1 ))

−
∑
L∈L

∑
C∈IL

(|A||C| − 1)
ln(n)

2
.

For a Markovian source the BIC model selection method-
ology is consistent.

4.3. Consistence

Theorem 4.1. Let (Xt) be a Markov chain of order M
over a finite alphabet A, with partition L∗ and structure
of conditional dependence IL∗ . Define,

ILn = argmax
I∈D
{BIC(Ln, I, xn

1 )},

Where D is the set of all possible structures of depen-
dences for A and Ln, then, eventually almost surely as
n→∞,

IL∗ = ILn



The next Theorem shows that is not necessary to search
for the maxima on D.

Consider any collection of partitions of {1, 2, ...l},

D = {DL}L∈L.

Fix L0 ∈ L and U, V ∈ DL0 , U 6= V. Define DL0,U,V as
the collection of partitions containing the same partitions
than D except DL0

is substituted by

DL0
\ {{U}, {V }} ∪ {U ∪ V }.

Theorem 4.2. Let (Xt) be a Markov chain over A = Bl

with partition L, then,

P (aU∪V |L0) = P (aU |L0)P (aV |L0) ∀a ∈ A

if, and only if, eventually almost surely as n→∞,

BIC(L,DL0,U,V , xn
1 ) < BIC(L,D, xn

1 ).

5. CONCLUSION

In this paper we study two generalizations of previous re-
sults about minimal Markov models to the multivariate
case. First, we consider the case in which we have mul-
tiple independent sources. We model all the sources si-
multaneously and the model selection algorithm returns
not only the set of equivalent states for each source, it
also identify all the states in all sources which can be
considered equivalents between them. In this way, even
strings activating the same random mechanism on differ-
ent sources are identified and classified. The second gen-
eralization correspond to a stationary source with a mul-
tivariate alphabet. In this case we first choose a partition
Markov model and then, for the transition probabilities of
each part, we identify the maximal partition of the set of
coordinates such that the different parts are independent.
A similar procedure and algorithm can be used to find sub-
sets of coordinates which are conditionally independent.
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