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ABSTRACT
The relaxed Hilberg conjecture is a proposition about
natural language which states that mutual information
between two adjacent blocks of text grows according to
a power law in function of the block length. In the paper
two mathematical results connected to this conjecture are
reviewed. First, we exhibit an example of a stochastic
process, called the Santa Fe process, which is motivated
linguistically and for which the mutual information grows
according to a power law. Second, we demonstrate
that a power law growth of mutual information implies
a power law growth of vocabulary. The latter statement is
observed for texts in natural language and called Herdan’s
law.

1. INTRODUCTION

It is often assumed that texts in natural language may be
modeled by a stationary process and the entropy a random
text can be determined [1]. More specifically, in 1990,
German telecommunications engineer Wolfgang Hilberg
conjectured that the entropy of a random text in natural
language satisfies

H(Xn
1 ) ∝ nβ , (1)

where Xi are characters of the random text, Xm
n =

(Xn, Xn+1, ..., Xm) are blocks of consecutive characters,
H(X) = E [− logP (X)] is the entropy of a discrete
variable X , and β ∈ (0, 1) [2]. Hilberg’s conjecture
was based on an extrapolation of Shannon’s seminal
experimental data [3], which contained the estimates of
conditional entropy for blocks of n ≤ 100 characters.

Statement (1) implies that the entropy rate h =
limn→∞H(Xn

1 )/n equals 0. This in turn implies asymp-
totic determinism of utterances, which does not sound
plausible. A more plausible modification of statement (1)
is

I(Xn
1 ;X2n

n+1) ∝ nβ , (2)

where I(X;Y ) = H(X) +H(Y )−H(X,Y ) is the mu-
tual information between variables X and Y . We notice
that relationship (2) arises for entropy

H(Xn
1 ) = Anβ + hn (3)

where h can be positive. Relationship (2) will be called
the relaxed Hilberg conjecture.

In this paper, we will review some previous results of
ours that concern two issues:

1. We exhibit an example of a stochastic process,
called Santa Fe process, which is motivated lin-
guistically and which satisfies relationship (2)
asymptotically [4].

2. We demonstrate that relationship (2) implies that
the text of length n contains at least nβ/ log n dif-
ferent words, under a certain plausible definition of
a word [5]. Indeed, the power-law growth of the vo-
cabulary is empirically observed for texts in natural
language and called Herdan’s law [6].

In our opinion, these results shed some light on probabilis-
tic modeling of natural language.

2. THE SANTA FE PROCESS

Processes that satisfy the relaxed Hilberg conjecture arise
in a very simple setting that resembles what may actually
happen in natural language. Suppose that each statement
Xi of a text in natural language can be represented as
a pair Xi = (k, z) which states that the k-th proposition
in some abstract enumeration assumes Boolean value
z. Moreover, suppose that there is a stochastic process
(Ki)i∈Z and a random field (Zik)i∈Z,k∈N such that if
Xi = (k, z) then Ki = k and Zik = z. The process
(Ki)i∈Z will be called the selection process and the field
(Zik)i∈Z,k∈N will be called the object described by text
(Xi)i∈Z. Note that variable Zik has two indices—the
first one refers to the while i at which the statement Xi

is made whereas the second one refers to the proposition
Ki = k, which is either asserted or negated. Observe that
statements that are made in texts fall under two types:

1. Statements about objects Zik = Zk, which do not
change in time (like mathematical or physical con-
stants).

2. Statements about objects Zik 6= Zi+1,k, which
evolve with a varied speed (like culture, language,
or geography).

We will obtain a power-law growth of mutual information
for an appropriate choice of the selection process and the
described object, namely, when the bits of the described
object do not evolve too fast in comparison to their selec-
tion by the selection process.



In particular, the Santa Fe process (Xi)i∈Z will be de-
fined as a sequence of random statements

Xi = (Ki, Zi,Ki
), (4)

where processes (Ki)i∈Z and (Zik)i∈Z with k ∈ N are
independent and distributed as follows. First, variables
Ki are distributed according to the power law

P (Ki = k) = k−1/β/ζ(β−1), (Ki)i∈Z ∼ IID, (5)

where β ∈ (0, 1) and ζ(x) =
∑∞
k=1 k

−x is the zeta func-
tion. Second, each process (Zik)i∈Z is a Markov chain
with the marginal distribution

P (Zik = 0) = P (Zik = 1) = 1/2 (6)

and the cross-over probabilities

P (Zik = 0|Zi−1,k = 1) = P (Zik = 1|Zi−1,k = 0) = pk.
(7)

The name “Santa Fe process” has been chosen since the
author discovered this process during a stay at the Santa
Fe Institute.

Observe that the description given by the Santa Fe pro-
cess is strictly repetitive for pk = 0: if two statements
Xi = (k, z) and Xj = (k′, z′) describe bits of the same
address (k = k′) then they always assert the same bit value
(z = z′). In this case the Santa Fe process is nonergodic.
For strictly positive pk the description is no longer strictly
repetitive and the Santa Fe process is mixing [4].

By the following result, the Santa Fe process satisfies
relationship (2) asymptotically:

Theorem 1 ([4]) Suppose limk→∞ pk/P (Ki = k) = 0.
Then the mutual information for the Santa Fe process
obeys

lim
n→∞

I(Xn
1 ;X2n

n+1)

nβ
=

(2− 2β)Γ(1− β)

[ζ(β−1)]β
. (8)

Some processes over a finite alphabet which also sat-
isfy relationship (2) asymptotically can be constructed by
stationary coding of the Santa Fe process [4].

3. VOCABULARY GROWTH

In the second turn, we will show that the relaxed Hilberg
conjecture can be related to the number of distinct words
appearing in texts. It has been observed that words in nat-
ural language texts correspond in a good approximation to
nonterminal symbols in the shortest grammar-based en-
coding of those texts [7, 8, 9]. Complementing this ob-
servation, we will demonstrate that relationship (2) con-
strains the number of distinct nonterminal symbols in the
shortest grammar-based encoding of the random text.

A short introduction to grammar-based coding is in
need. Briefly speaking, grammar-based codes compress
strings by transforming them first into special grammars,
called admissible grammars [10], and then encoding the
grammars back into strings according to a fixed simple

method. An admissible grammar is a context-free gram-
mar that generates a singleton language {w} for some
string w ∈ X∗ [10]. In an admissible grammar, there is
exactly one rule per nonterminal symbol and the nonter-
minals can be ordered so that the symbols are rewritten
onto strings of strictly succeeding symbols [10]. Hence,
such a grammar is given by its set of production rules

A1 → α1,
A2 → α2,
...,
An → αn

 , (9)

where A1 is the start symbol, other Ai are secondary non-
terminals, and the right-hand sides of rules satisfy αi ∈
({Ai+1, Ai+2, ..., An} ∪ X)∗.

An example of an admissible grammar is
A1 7→ A2A2A4A5dear_childrenA5A3all.
A2 7→ A3youA5

A3 7→ A4_to_
A4 7→ Good_morning
A5 7→ ,_

 ,

with the start symbol A1, which produces the song

Good morning to you,
Good morning to you,
Good morning, dear children,
Good morning to all.

For the shortest grammar-based encoding of a longer text
in natural language, secondary nonterminals Ai often
match the word boundaries, especially if it is required
that these nonterminals are defined using only terminal
symbols [9].

In the following, V(w) will denote the number of dis-
tinct nonterminal symbols in the shortest grammar-based
encoding of a text w. (The exact definition of the short-
est grammar-based encoding, called admissibly minimal,
is given in [5].) To connect the mutual information with
V(w), we introduce another quantity, namely the length
of the longest nonoverlapping repeat in a text w:

L(w) := max {|s| : w = x1sy1 = x2sy2 ∧ x1 6= x2} ,
(10)

where s, xi, yi ∈ X∗. Using this concept, for processes
over a finite alphabet we obtain this proposition.

Theorem 2 ([5]) Let (Xi)i∈Z be a stationary process
over a finite alphabet. Assume that inequality

lim inf
n→∞

I(Xn
1 ;X2n

n+1)

nβ
> 0 (11)

holds for some β ∈ (0, 1) and

sup
n≥2

E
(
L(Xn

1 )

f(n)

)q
<∞, ∀q > 0, (12)

holds for some function f(n). Then we have

lim sup
n→∞

E

(
V(Xn

1 )

nβf(n)
−1

)p
> 0, ∀p > 1. (13)



An example of a process that satisfies the hypothesis
of Theorem 2 with f(n) = log n can be constructed by
stationary coding of the Santa Fe process [11, 4]. How-
ever, for texts in natural language we have checked that
there holds an empirical law L(Xn

1 ) ≈ logα n, where
α ≈ 2 ÷ 3 [12]. It is an interesting open question how to
construct processes which satisfy both (11) and L(Xn

1 ) ≈
logα n.

4. CONCLUSION

We have discussed some constructions and theorems for
discrete-valued processes with long memory. Our results
have very natural linguistic interpretations. We believe
that the Santa Fe process deserves further investigation.
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[11] Łukasz Dębowski, “Variable-length coding of two-
sided asymptotically mean stationary measures,” J.
Theor. Probab., vol. 23, pp. 237–256, 2010.
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