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1. MOTIVATION

The analysis of biological data often requires
choices between methods that seem equally ap-
plicable and yet that can yield very different re-
sults. This occurs not only with the notorious
problems in frequentist statistics of condition-
ing on one of multiple ancillary statistics and
in Bayesian statistics of selecting one of many
appropriate priors, but also in choices between
frequentist and Bayesian methods, in whether to
use a potentially powerful parametric test to an-
alyze a small sample of unknown distribution, in
whether and how to adjust for multiple testing,
and in whether to use a frequentist model aver-
aging procedure. Today, statisticians simultane-
ously testing thousands of hypotheses must of-
ten decide whether to apply a multiple compar-
isons procedure using the assumption that the p-
value is uniform under the null hypothesis (the-
oretical null distribution) or a null distribution
estimated from the data (empirical null distribu-
tion). While the empirical null reduces estima-
tion bias in many situations [1], it also increases
variance [2] and can substantially increase bias
when the data distributions have heavy tails [3].
Without any strong indication of which method
can be expected to perform better for a particular
data set, combining their estimated false discov-
ery rates or adjusted p-values may be the safest
approach.

Emphasizing the reference class problem, [4]
pointed out the need for ways to assess the ev-
idence in the diversity of statistical inferences
that can be drawn from the same data. Previ-

ous applications of p-value combination have in-
cluded combining inferences from different an-
cillary statistics [5], combining inferences from
more robust procedures with those from proce-
dures with stronger assumptions, and combin-
ing inferences from different alternative distri-
butions [6]. However, those combination proce-
dures are only justified by a heuristic Bayesian
argument and have not been widely adopted. To
offer a viable alternative, the problem of com-
bining conflicting methods is framed herein in
terms of probability combination.

Most existing methods of automatically com-
bining probability distributions have been designed
for the integration of expert opinions. For exam-
ple, [7], [8], and [9] proposed combining distri-
butions to minimize a weighted sum of Kullback-
Leibler divergences from the distributions being
combined, with the weights determined subjec-
tively, e.g., by the elicitation of the opinions of
the experts who provided the distributions or by
the extent to which each expert is considered
credible. Under broad conditions, that approach
leads to the linear combination of the distribu-
tions that is defined by those weights [7, 9].

Such linear opinion pools also result from
this marginalization property: any linearly com-
bined marginal distribution is the same whether
marginalization or combination is carried out first
[10]. The marginalization property forbids cer-
tain counterintuitive combinations of distributions,
including any combination of distributions that
differs in a probability assignment from the unan-
imous assignment of all distributions combined
[11, p. 173]. Combinations violating the marginal-



ization property can be expected to perform poorly
as estimators regardless of their appeal as distri-
butions of belief. On the other hand, invariance
to reversing the order of Bayesian updating and
distribution combination instead requires a log-
arithmic opinion pool, which uses a geometric
mean in place the arithmetic mean of the lin-
ear opinion pool; see, e.g., [12, §4.11.1] or [13].
While that property is preferable to the marginal-
ization property from the point of view of a Bayesian
agent making decisions on the basis of indepen-
dent reports of other Bayesian agents, it is less
suitable for combining distributions that are highly
dependent or that are distribution estimates rather
than actual distributions of belief.

2. GAME-THEORETIC FRAMEWORK

Like the opinion pools of Section 1, the strat-
egy introduced in [14] is intended for combin-
ing distributions based on the same data or in-
formation as opposed to combining distributions
based on independent data sets. However, to
relax the requirement that the distributions be
provided by experts, the weights are optimized
rather than specified. While the new strategy
leads to a linear combination of distributions,
the combination hedges by including only the
most extreme distributions rather than all of the
distributions. In addition, the game leading to
the hedging takes into account any known con-
straints on the true distribution. (This game is
distinct from those of [15, 16], which apply [17]
to blending frequentist and Bayesian statistical
methods.)

The game that generates the hedging strat-
egy is played between three players: the mech-
anism that generates the true distribution (“Na-
ture”), a statistician who never combines distri-
butions (“Chooser”), and a statistician who is
willing to combine distributions (“Combiner”).
Nature must select a distribution that complies
with constraints known to the statisticians, who
want to choose distributions as close as possi-
ble to the distribution chosen by Nature. Other
things being equal, each statistician would also
like to select a distribution that is as much bet-
ter than that of the other statistician as possi-
ble. Thus, each statistician seeks primarily to

come close to the truth and secondarily to im-
prove upon the distribution selected by the other
statistician. Combiner has the advantage over
Chooser that the former may select any distri-
bution, whereas the latter must select one from
a given set of the distributions that estimate the
true distribution or that encode expert opinion.
On the other hand, Combiner is disadvantaged
in that the game rules specify that Nature seeks
to maximize the gain of Chooser albeit with-
out concern for the gain of Combiner. Since
Nature favors Chooser without opposing Com-
biner, the optimal strategy of Combiner is one
of hedging but is less cautious than the mini-
max strategies that are often optimal for typi-
cal two-player zero-sum games against Nature.
The distribution chosen according to the strat-
egy of Combiner will be considered the combi-
nation of the distributions available to Chooser.
The combination distribution is a function not
only of the combining distributions but also of
the constraints on the true distribution.

[14] encodes the game and strategy described
above in terms of Kullback-Leibler loss and presents
its optimal solution as a general method of com-
bining distributions. The special case of com-
bining discrete distributions is summarized in the
next section. A framework for using the pro-
posed combination method to resolve method con-
flicts in point and interval estimation, hypoth-
esis testing, and other aspects of statistical data
analysis appear in [14] with an application to the
combination of three false discovery rate meth-
ods for the analysis of microarray data.

3. SPECIAL CASE: COMBINING
DISCRETE DISTRIBUTIONS

Let P denote the set of probability distributions
on
(
Ξ, 2Ξ

)
, where Ξ is a finite set. It is written

as Ξ = {0, 1, ..., |Ξ| − 1} without loss of gener-
ality. Then the information divergence of P ∈ P
with respect to Q ∈ P reduces to

D (P ||Q) =
∑
i∈Ξ

P ({i}) log
P ({i})
Q ({i})

.

For any P ∈ P and the random variable ξ of
distribution P , the |Ξ|-tuple

T (P ) = (P (ξ = 0) , P (ξ = 1) , . . . , P (ξ = |Ξ| − 1))



will be called the tuple representing P .
Consider P? = {Pφ : φ ∈ Φ}, a nonempty

subset of P . Every φ ∈ Φ corresponds to a
different random variable and thus to a different
|Ξ|-tuple.

Lemma. Let P? denote a nonempty, finite sub-
set of P , and let extP? denote the set of dis-
tributions that are represented by the extreme
points of the convex hull of the set of tuples rep-
resenting the members of P?. If there are a Q ∈
P and a C > 0 such that D (P ?||Q) = C for all
P ? ∈ extP?, then Q is the centroid of P?.
Proof. As an immediate consequence of what
[18] labels “Theorem (Csiszár)” and “Theorem
1,”

min
P ′′∈P

max
P ′∈P?

D (P ′||P ′′) = C.

By definition, the centroid is the solution of that
minimax redundancy problem.

The Theorem in [14] that connects the lemma
to the following corollary is based on the redundancy-
capacity theorem, the celebrated relationship be-
tween capacity and minimax redundancy. The
redundancy-capacity theorem was presented by
R. G. Gallager in 1974 [19, Editor’s Note] and
published as [20] and [21]; cf. [22]. [23, The-
orem 13.1.1], [24, §5.2.1], and [25, Problem 8.1]
provide useful introductions. The extension from
discrete distributions to general probability mea-
sures ([26]; [27]) is exploited in [14].

The combination of a set of probabilities of
the same hypothesis or event is simply the linear
combination or mixture of the highest and low-
est of the plausible probabilities in the set such
that the mixing proportion is optimal:

Corollary. Let P+ denote the combination of
the distributions in P̈ ⊆ P with truth constrained
by Ṗ ⊆ P . Suppose c distributions on

(
{0, 1} , 2{0,1}

)
are to be combined

(
P̈ =

{
P̈1, ..., P̈c

})
, and let

Ṗ0 =
{
Ṗ ({0}) : Ṗ ∈ Ṗ

}
and P̈ , P̈ ∈ P such

that P̈ ({0}) = min P̈i ({0}) and P̈ ({0}) =
max P̈i ({0}) . If there is at least one i ∈ {1, ..., c}
for which P̈i ({0}) ∈ Ṗ0 holds, then P+ = w+P̈+

(1− w+) P̈ , where w+ =

arg sup
w∈[0,1]

(
w∆

(
P̈ ||w

)
+ (1− w) ∆

(
P̈ ||w

))
;

∆ (•||w) = D
(
•||wP̈ + (1− w) P̈

)
.
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