Matroids and Polymatroids in Congestion Games

Tobias Harks
Augsburg University
WINE Tutorial, 8.12.2015
Part I: Congestion Games
 - Existence of Equilibria
 - Computation of Equilibria
 - Matroids

Part II: Integral Splittable Congestion Games
 - Existence and Computation of Equilibria
 - Integral Polymatroids

Part III: Nonatomic Congestion Games
 - Efficiency of Equilibria
 - The Braess Paradox
 - Matroids are Immune to Braess Paradox
Strategic Games

- Strategic game $G = (N, X, \pi)$
- $N = \{1, \ldots, n\}$ set of players
- $X = \times_{i \in N} X_i$ set of pure strategies
- $x = (x_1, \ldots, x_N)$ strategy profile
- $\pi_i(x) : X \to \mathbb{R}, i \in N$ private cost/utility
Strategic Games

- **Strategic game** $G = (N, X, \pi)$
- $N = \{1, \ldots, n\}$ set of players
- $X = \times_{i \in N} X_i$ set of pure strategies
- $x = (x_1, \ldots, x_N)$ strategy profile
- $\pi_i(x) : X \rightarrow \mathbb{R}, i \in N$ private cost/utility
- **Mixed strategy**: for each player a probability distribution over pure strategies
Solution Concept

Definition

Pure Nash equilibrium (PNE): no player has an incentive to unilaterally deviate.

Definition

Mixed Nash equilibrium (MNE): no player has an incentive to unilaterally change her mixed strategy.

"Minimax Theorem" John von Neumann (1928), Nash (1950)
Motivation: Party Affiliation Games

- each strategy set $X_i = \{1, -1\}$
- Weight $w_{i,j}$ measures relationship between i and j
- payoff $u_i(x) = \sum_{j \in N} x_i x_j w_{i,j} \rightarrow \max$

\[
\begin{align*}
\text{u}_1(x) &= 1 \\
\text{u}_2(x) &= 0 \\
\text{u}_3(x) &= 0 \\
\text{u}_4(x) &= 0 \\
\text{u}_5(x) &= 5
\end{align*}
\]
Definition

Pure Nash equilibrium (PNE): no player has an incentive to unilaterally change his pure strategy.

Definition

Mixed Nash equilibrium (MNE): no player has an incentive to unilaterally change his mixed strategy.
Motivation: Party Affiliation Games

- each strategy set \(X_i = \{1, -1\} \)
- Weight \(w_{i,j} \) measures relationship between \(i \) and \(j \)
- payoff \(u_i(x) = \sum_{j \in N} x_i x_j w_{i,j} \rightarrow \max \)
Nash (1951)

Theorem

Every finite game possesses a mixed Nash equilibrium.

Pure Nash Equilibrium need not exist!

Example: Assymmetric Party Affiliation Game

In the mixed Nash equilibrium, each player chooses each party with probability $1/2$.
Part I

Congestion Games
Congestion Games

<table>
<thead>
<tr>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = {1, \ldots, n}) set of players</td>
</tr>
<tr>
<td>(R = {r_1, \ldots, r_m}) set of resources</td>
</tr>
<tr>
<td>(X = \times_{i \in N} X_i) set of strategy profiles with (X_i \subseteq 2^R)</td>
</tr>
<tr>
<td>Strategy profile (x = (x_1, \ldots, x_n) \in X)</td>
</tr>
<tr>
<td>Load of a resource (x_r =</td>
</tr>
<tr>
<td>Cost functions (c_r : \mathbb{N} \to \mathbb{R}) nondecreasing (convex)</td>
</tr>
<tr>
<td>private cost: (\pi_i(x) = \sum_{r \in x_i} c_r(x_r))</td>
</tr>
</tbody>
</table>
Example

\[
\begin{align*}
d_1 &= 1 \\
d_2 &= 1 \\
d_3 &= 1
\end{align*}
\]
1. When do pure Nash equilibria exist?
2. How do players find them?
3. How difficult is it to compute them?
Potential Functions

Definition (Exact potential function)

\[P : X_1 \times \cdots \times X_n \rightarrow \mathbb{R} \]

If a player changes his action, the change in the potential function value is equal to the change in her payoff.

\[u_i(x_i, x_{-i}) - u_i(y_i, x_{-i}) = P(x_i, x_{-i}) - P(y_i, x_{-i}) \]
Definition (Exact potential function)

\[P : X_1 \times \cdots \times X_n \rightarrow \mathbb{R} \]

If a player changes his action, the change in the potential function value is equal to the change in her payoff.

\[u_i(x_i, x_{-i}) - u_i(y_i, x_{-i}) = P(x_i, x_{-i}) - P(y_i, x_{-i}) \]

b–Potential

\[u_i(x_i, x_{-i}) - u_i(y_i, x_{-i}) = b_i \left(P(x_i, x_{-i}) - P(y_i, x_{-i}) \right) \]

Monderer and Shapley (1996)
Theorem

Every finite exact potential game (with potential P)

- possesses a PNE
- every sequence of improving moves is finite (FIP)
- every local minimum of P is a PNE

Monderer and Shapley (1996)
Proof

- path \(\gamma = (x^0, x^1, \ldots,) \) sequence of unilateral moves
- improvement path \(\gamma = (x^0, x^1, \ldots,) \) sequence of unilateral improving moves

\[\gamma = x_0, x_1, \ldots \text{ improvement path} \]

\[\Rightarrow P(x_0) > P(x_1) > \cdots \text{ must be finite.} \]
Theorem (Rosenthal ’73)

Every congestion game

- admits an exact potential function
- possesses a PNE
- possesses the Finite Improvement Property, that is, every sequence of improving moves is finite.
Rosenthal's exact potential function $P : X_1 \times \cdots \times X_n \rightarrow \mathbb{R}$ is defined as

$$P(x) := \sum_{r \in R} \sum_{k=1}^{x_r} c_r(k).$$

(1)

Let $x \in X$ and $y_i \neq x_i$ be a unilateral deviation of i.

$$u_i(x_{-i}, y_i) - u_i(x) = \sum_{r \in y_i \atop r \notin x_i} c_r(x_r + 1) - \sum_{r \in x_i \atop r \notin y_i} c_r(x_r).$$

The potential of (x_{-i}, y_i) is given by:

$$P(x_{-i}, y_i) = \sum_{r \in R} \sum_{k=1}^{x_r} c_r(k) + \underbrace{\sum_{r \in y_i \atop r \notin x_i} c_r(x_r + 1) - \sum_{r \in x_i \atop r \notin y_i} c_r(x_r)}_{=u_i(x_{-i}, y_i) - u_i(x)} = P(x) + u_i(x_{-i}, y_i) - u_i(x).$$
Complexity of Computing PNE

<table>
<thead>
<tr>
<th>Theorem (Fabrikant et al. ’04, Ackermann et al. ’08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is PLS-complete to compute a PNE even for symmetric congestion games with affine costs.</td>
</tr>
</tbody>
</table>
Theorem (Fabrikant et al. ’04, Ackermann et al. ’08)

It is PLS-complete to compute a PNE even for symmetric congestion games with affine costs.

Theorem (Fabrikant et al. ’04)

For symmetric network congestion games, there is a polynomial time algorithm to compute a PNE.

Subdivide each arc e into n parallel arcs with capacity 1 each and assign costs $c_{ei} = c_e(i)$ for $i \in \{1, \ldots, n\}$.

Remark (Ackermann et al. ’08)

There are instances on which every best response dynamic needs exponential convergence time.
Theorem (Fabrikant et al. ’04, Ackermann et al. ’08)

It is PLS-complete to compute a PNE even for symmetric congestion games with affine costs.

Theorem (Fabrikant et al. ’04)

For symmetric network congestion games, there is a polynomial time algorithm to compute a PNE.

Subdivide each arc e into n parallel arcs with capacity 1 each and assign costs $c_{e_i} = c_e(i)$ for $i \in \{1, \ldots, n\}$.

Remark (Ackermann et al. ’08)

There are instances on which every best response dynamic needs exponential convergence time.
Complexity of Computing PNE

Theorem (Fabrikant et al. ’04, Ackermann et al. ’08)

It is PLS-complete to compute a PNE even for symmetric congestion games with affine costs.

Theorem (Fabrikant et al. ’04)

For symmetric network congestion games, there is a polynomial time algorithm to compute a PNE.

Subdivide each arc e into n parallel arcs with capacity 1 each and assign costs $c_{e_i} = c_e(i)$ for $i \in \{1, \ldots, n\}$.

Remark (Ackermann et al. ’08)

There are instances on which every best response dynamic needs exponential convergence time.

Are there other set systems X_i with efficiently comp. PNE?
A matroid is a pair \(\mathcal{M} = (R, \mathcal{I}) \) where \(R \) is a set of resources, and \(\mathcal{I} \) is a family of subsets of \(S \) such that:

1. \(\emptyset \in \mathcal{I} \).
2. If \(I \subset J \) and \(J \in \mathcal{I} \), then \(I \in \mathcal{I} \).
3. Let \(I, J \in \mathcal{I} \) and \(|I| < |J| \), then there exists an \(x \in J \setminus I \) such that \(I + x \in \mathcal{I} \).

A set system \(R, \mathcal{I} \) that only satisfies (1) and (2) is called an independence system.
Introduction Matroids

Definition (Matroid)

A matroid is a pair $\mathcal{M} = (R, \mathcal{I})$ where R is a set of resources, and \mathcal{I} is a family of subsets of S such that:

1. $\emptyset \in \mathcal{I}$.
2. If $I \subset J$ and $J \in \mathcal{I}$, then $I \in \mathcal{I}$.
3. Let $I, J \in \mathcal{I}$ and $|I| < |J|$, then there exists an $x \in J \setminus I$ such that $I + x \in \mathcal{I}$.

A set system R, \mathcal{I} that only satisfies (1) and (2) is called an independence system.

Bases are sets in \mathcal{I} of maximal cardinality, denoted by \mathcal{B}.
The independent sets of a k-uniform matroid are the sets that contain at most k elements.

Example

4 resources: $\{1, 2, 3, 4\}$
The independent sets of a k-uniform matroid are the sets that contain at most k elements.

Example

4 resources: \{1, 2, 3, 4\}
Independent sets of the 3-uniform matroid:

$I = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\},
\{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$
The independent sets of a k-uniform matroid are the sets that contain at most k elements.

Example

4 resources: $\{1, 2, 3, 4\}$

Independent sets of the 3-uniform matroid:

$$I = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$$

Bases: $B = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$
Figure: K_4 with two bases B_1 (red), B_2 (blue).
Theorem

Let \((R, \mathcal{I})\) be an independence system. The, the following is equivalent:

\[\begin{align*}
\text{M1} & \quad M = (R, \mathcal{I}) \text{ is a matroid.} \\
\text{M2} & \quad \text{If } I, J \in \mathcal{I} \text{ with } |I| = |J| + 1 \Rightarrow \text{there is } x \in I \setminus J \text{ with } J + x \in \mathcal{I}. \\
\text{M3} & \quad \text{For every } I \subseteq R, \text{ every basis of } I \text{ has the same cardinality (a basis of } I \subseteq E \text{ is an inclusion-wise maximal set in } I).}
\end{align*}\]

Proof.

\((M1) \iff (M2)\) is trivial. \((M1) \Rightarrow (M3)\) is trivial. \((M3) \Rightarrow (M1)\):

Let \(I, J \in \mathcal{I}\) with \(|I| > |J|\). With \((M3)\) we have that \(J\) is no base of \(I \cup J\). Hence, there is \(x \in (I \cup J) \setminus J = I \setminus J \in \mathcal{I}\) with \(J + x \in \mathcal{I}\). \(\square\)
Theorem (Basis exchange theorem)

Let \((R, \mathcal{I})\) be a matroid with basis system \(\mathcal{B}\). Then,

1. \(\mathcal{B} \neq \emptyset\)

2. For every \(B_1, B_2 \in \mathcal{B}\) and \(x \in B_1 \setminus B_2\) there is \(y \in B_2 \setminus B_1\) such that \(B_1 - x + y \in \mathcal{B}\).

Proof.

The bases set of \((R, \mathcal{I})\) satisfies (1) since \(\emptyset \in \mathcal{I}\). For condition (2) let \(B_1, B_2 \in \mathcal{B}\) and \(x \in B_1 \setminus B_2\). Since \(B_1 - x \in \mathcal{I}\) we can use (\(M2\)): \(|B_1 - x| + 1 = |B_2|\) hence there is \(y \in B_2 \setminus (B_1 - x)\) with \(B_1 - x + y \in \mathcal{I}\). As all bases have the same cardinality (see (\(M3\))) we get \(B_1 - x + y \in \mathcal{B}\). \(\square\)
Figure: Two bases B (red) and B' (blue) of a graphic matroid
Figure: Two bases B (red) and B' (blue) of a graphic matroid

$B \setminus B' \quad B' \setminus B$

Figure: Bipartite graph $G(B \triangle B') = (B \triangle B', R)$.

$$(x, y) \in R \iff B - x + y \in \mathcal{B}.$$
Figure: Two bases B (red) and B' (blue) of a graphic matroid

Figure: Bipartite graph $G(B \triangle B') = (B \triangle B', R)$.

$(x, y) \in R \iff B - x + y \in \mathcal{B}$.
Figure: Two bases B (red) and B' (blue) of a graphic matroid

Figure: Bipartite graph $G(B \triangle B') = (B \triangle B', R)$.

$$(x, y) \in R \iff B - x + y \in \mathcal{B}.$$
Figure: Two bases B (red) and B' (blue) of a graphic matroid

$B \setminus B'$ $B' \setminus B$

Figure: Bipartite graph $G(B \Delta B') = (B \Delta B', R)$.

$$(x, y) \in R \iff B - x + y \in \mathcal{B}.$$
Theorem (Matching Property)

Let $\mathcal{M} = (R, I)$ be a matroid. Then, for every pair (B, B') of bases of \mathcal{M} there exists a perfect matching $W(B, B')$ in $G(B \triangle B')$.
Matroid Congestion Games

- \(N = \{1, \ldots, n\} \) set of players
- \(R = \{r_1, \ldots, r_m\} \) set of resources
- \(X_i \subseteq 2^R \) with \(X_i = \mathcal{B}_i \) for \(M_i = (R, \mathcal{I}_i) \)
- Private cost for \(B = (B_1, \ldots, B_n) \in \mathcal{B} : \)

\[
\pi_i(B) = \sum_{r \in B_i} c_r(x_r)
\]
Theorem (Ackermann, Röglin, Vöcking ’08)

For matroid congestion games, the best-response dynamic converges after at most \(n^2 \cdot m \cdot \max_{i \in \mathbb{N}} r_k_i \leq n^2 m^2 \) steps.
Theorem (Ackermann, Röglin, Vöcking ’08)

For matroid congestion games, the best-response dynamic converges after at most \(n^2 \cdot m \cdot \max_{i \in N} rk_i \leq n^2 m^2 \) steps.

Let \(L \) be a list of all cost values \(c_r(i), r \in R = \{r_1, \ldots, r_m\}, i \in N = \{1, \ldots, n\} \) sorted in non-decreasing order. Define alternative cost function

\[
c'_r : \mathbb{N} \rightarrow \{1, \ldots, n \cdot m\},
\]

where \(i \in [0, n] \) is mapped to list position of \(c_r(i) \) in \(L \) (same costs are mapped to same position).
Lemma

Let B^*_i be a best-response w.r.t. $B \in \mathcal{B}$ with $B^*_i \neq B_i$. Then B^*_i decreases also the private costs w.r.t. c'.
Lemma

Let B_i^* be a best-response w.r.t. $B \in \mathcal{B}$ with $B_i^* \neq B_i$. Then B_i^* decreases also the private costs w.r.t. c'.

Consider $G(B_i^* \Delta B_i)$ with perfect matching N. Let $(u, v) \in N$, i.e.,

$$v \in B_i^* \setminus B_i, \ u \in B_i \setminus B_i^* \text{ and } B_i^* - v + u \in \mathcal{B}_i.$$

For $B^* = (B_i^*, B_{-i})$ with load vector x^* we have

$$c_v(x_v^*) \leq c_u(x_u^* + 1) \quad \text{for all } (u, v) \in N,$$

as else $B_i' := B_i^* - v + u$ would give less costs than B_i^*. There must be $(v, u) \in N$ with

$$c_v(x_v^*) < c_u(x_u^* + 1),$$

since B_i^* strictly decreases the private cost for i. Thus, also the private costs under c' must decrease.
Consider P' w.r.t. c'. We get

$$c'_r(i) \leq n \cdot m \text{ for all } r \in R \text{ and all } 1 \leq i \leq n.$$
Proof

Consider P' w.r.t. c'. We get

$$c'_r(i) \leq n \cdot m \text{ for all } r \in R \text{ and all } 1 \leq i \leq n.$$

Hence,

$$P'(B) = \sum_{r \in R} \sum_{i=1}^{x_r} c'_r(i) \leq \sum_{r \in R} \sum_{i=1}^{x_r} n \cdot m \leq n^2 \cdot m \cdot \max_{i \in N} rk_i.$$
Proof

Consider P' w.r.t. c'. We get

\[c'_r(i) \leq n \cdot m \text{ for all } r \in R \text{ and all } 1 \leq i \leq n. \]

Hence,

\[P'(B) = \sum_{r \in R} \sum_{i=1}^{x_r} c'_r(i) \leq \sum_{r \in R} \sum_{i=1}^{x_r} n \cdot m \leq n^2 \cdot m \cdot \max_{i \in N} rk_i. \]

Remark (Ackermann, Röglin, Vöcking '08)

For every non-matroid set system X_i, $i \in N$, there are isomorphic instances with exponentially long best-response sequences.
Part II

Integral Splittable Congestion Games
Integral Splittable Congestion Games

Integral Congestion Games

- $N = \{1, \ldots, n\}$ set of players
- $R = \{r_1, \ldots, r_m\}$ set of resources
- $X_i \subseteq 2^R$ set of allowable subsets
- Demands $d_i \in \mathbb{N}$
- Strategy corresponds to integral distribution of d_i among the sets in X_i
- cost of a resource $c_r(x) = c_r(\sum_{i \in N} x_{i,r})$
- private cost $\pi_i(x) = \sum_{r \in R} c_r(x) x_{i,r}$
Rosenthal (1973b)

- One player from A to C with demand 2 ("two taxicaps")
- One player from A to B with demand 1

Fig. 3
Positive Results

Theorem (Tran-Thanh et al. (2011))

- If X_i consists of *singletons*, then there is a PNE.
What are maximal structures of X_i such that the existence of PNE is guaranteed?
What are maximal structures of X_i such that the existence of PNE is guaranteed?

Theorem (H, Klimm, Peis (2014))

Polymatroids are the maximal structure.
Submodular Functions

Definition (integral, submodular, monotone, normalized)

- $f : 2^\mathbb{R} \rightarrow \mathbb{N}$ is submodular if

 $$f(U) + f(V) \geq f(U \cup V) + f(U \cap V)$$

 for all $U, V \in 2^\mathbb{R}$.

- f is monotone, if $U \subseteq V \Rightarrow f(U) \leq f(V)$

- f is normalized, if $f(\emptyset) = 0$. The rank function $rk : 2^\mathbb{R} \rightarrow \mathbb{N}$ of a matroid $M = (I, R)$ for $F \subseteq R$:

 $$rk(F) := \max\{|B|, B \text{ basis of } F\}$$
Submodular Functions

Definition (integral, submodular, monotone, normalized)

- **f : 2^R \rightarrow \mathbb{N}** is submodular if
 \[f(U) + f(V) \geq f(U \cup V) + f(U \cap V) \] for all \(U, V \in 2^R \).
- **f is monotone**, if \(U \subseteq V \Rightarrow f(U) \leq f(V) \)
- **f is normalized**, if \(f(\emptyset) = 0 \).

Example
- rank function \(rk : 2^R \rightarrow \mathbb{N} \) of a matroid \(M = (\mathcal{I}, R) \)
- for \(F \subseteq R : rk(F) := \max\{|B|, B \text{ basis of } F\} \)
Integral polymatroid

\[P_f := \left\{ x \in \mathbb{N}^R \mid \sum_{r \in U} x_r \leq f(U) \text{ for all } U \subseteq R \right\}. \]
integral polymatroid

\[\mathcal{P}_f := \left\{ x \in \mathbb{N}^R \mid \sum_{r \in U} x_r \leq f(U) \text{ for all } U \subseteq R \right\}. \]

“truncated” integral polymatroid

\[\mathcal{P}_f(d) := \left\{ x \in \mathbb{N}^R \mid \sum_{r \in U} x_r \leq f(U) \text{ for all } U \subseteq R, \sum_{r \in R} x_r \leq d \right\}. \]
Integral Polymatroids

integral polymatroid

$$\mathbb{P}_f := \left\{ x \in \mathbb{N}^R \mid \sum_{r \in U} x_r \leq f(U) \text{ for all } U \subseteq R \right\}.$$

“truncated” integral polymatroid

$$\mathbb{P}_f(d) := \left\{ x \in \mathbb{N}^R \mid \sum_{r \in U} x_r \leq f(U) \text{ for all } U \subseteq R, \sum_{r \in R} x_r \leq d \right\}.$$

integral polymatroid base polytope

$$\mathcal{B}_f(d) := \left\{ x \in \mathbb{N}^R \mid \sum_{r \in U} x_r \leq f(U) \text{ for all } U \subseteq R, \sum_{r \in R} x_r = d \right\}.$$
Congestion Games on Polymatroids

Strategic Game

- \(G = (N, X, \pi) \)
- \(X_i = B_{f(i)}(d_i) \)
- \(\pi_i(x) = \sum_{r \in R} c_{i,r}(x)x_{i,r} \)

\[
B_{f(i)}(d_i) = \left\{ x_i \in \mathbb{N}^R \mid \sum_{r \in U} x_{i,r} \leq f^{(i)}(U) \text{ for all } U \subseteq R, \sum_{r \in R} x_{i,r} = d_i \right\}
\]
Singletons

\[f^{(i)}(\{r\}) = d_i \text{ falls } r \in R_i \text{ und } f^{(i)}(\{r\}) = 0, \text{ sonst.} \]

Bases of Matroids

\(f^{(i)} \) is rank function of some matroid \(\mathcal{M}_i = (R_i, \mathcal{I}_i) \) and
\[d_i = \text{rk}_i(R_i). \]

Spanning Trees

- \(R \) edges of a graph
- \(R_i \subset R \) connected subgraph
- Bases of \(\mathcal{M}_i = (R_i, \mathcal{I}_i) \) are spanning trees of \(R_i \)
Existence Proof

- Induction over $d = \sum_{i \in N} d_i$
- $d = 1$ trivial
- $d \rightarrow d + 1$
 - let x be a PNE for a game with demand d
 - In step $d \rightarrow d + 1$ exactly for one player i: $d_i \rightarrow d_i + 1$.
Existence Proof (contd.)

Hamming Distance of $x, y \in \mathbb{N}^{\mid R\mid}$: $H(y, x) = \sum_{r \in R} |y_r - x_r|

Sensitivity Lemma - Increased Demand

Let x be given. There exists a best response $y_i \in \text{argmin} \left[\pi_i(y_i, x_{-i}) \text{ s.t. } y_i \in B_{f(i)}(d_i + 1) \right]$ with $H(x_i, y_i) = 1.$
Hamming Distance of $x, y \in \mathbb{N}^{|R|}$: $H(y, x) = \sum_{r \in R} |y_r - x_r|$

Sensitivity Lemma - Increased Demand

Let x be given. There exists a best response $y_i \in \arg\min \left[\pi_i(y_i, x_{-i}) \text{ s.t. } y_i \in B_{f(i)}(d_i + 1) \right]$ with $H(x_i, y_i) = 1$.
Existence Proof (contd.)

Sensitivity Lemma - Increased Load

Let $a_r = \sum_{i \neq j} x_{i,r}, r \in R$ be given and x_j be a best response to a. If $a_r \rightarrow a_r + 1$ for one $r \in R$, then there exists a best response $y_j \in \text{argmin} \left[\pi_j(y_j, a) \text{ s.t. } y_j \in B_{f(j)}(d_j) \right]$ with $H(x_j, y_j) \in \{0, 2\}$.
Existence Proof (contd.)

Sensitivity Lemma - Increased Load

Let $a_r = \sum_{i \neq j} x_{i,r}, r \in R$ be given and x_j be a best response to a. If $a_r \to a_r + 1$ for one $r \in R$, then there exists a best response $y_j \in \arg\min [\pi_j(y_j, a) \text{ s.t. } y_j \in B_{f(j)}(d_j)]$ with $H(x_j, y_j) \in \{0, 2\}$.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Existence Proof (contd.)

Sensitivity Lemma - Increased Load

Let \(a_r = \sum_{i \neq j} x_{i,r}, r \in R \) be given and \(x_j \) be a best response to \(a \). If \(a_r \rightarrow a_r + 1 \) for one \(r \in R \), then there exists a best response \(y_j \in \arg\min \left[\pi_j(y_j, a) \text{ s.t. } y_j \in \mathcal{B}_{f(j)}(d_j) \right] \) with \(H(x_j, y_j) \in \{0, 2\} \).
Invariant

There is a sequence of best-responses y^k with $H(y^0 = y, y^k) = \sum_{r \in R} |y_r - x_r| = 2$.
Invariant

There is a sequence of best-responses y^k with

$$H(y^0 = y, y^k) = \sum_{r \in R} |y_r - x_r| = 2.$$

Convergence

The sequence y^k is finite.

- Define “marginal costs” of every unit of every player
- Sorted vector of marginal costs decreases lexicographically

Remark

For “non-polymatroid” X_i, there are counterexamples.
Part III

Nonatomic Congestion Games - The Braess Paradox
Left equilibrium: \[C(x) = \left(\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 \right) \cdot 2 = \frac{3}{2} \]
Right equilibrium: \[C(x) = 1 \cdot 1 + 1 \cdot 1 = 2 \]
Left equilibrium: \(C(x) = (\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1) \cdot 2 = \frac{3}{2} \)

Right equilibrium: \(C(x) = 1 \cdot 1 + 1 \cdot 1 = 2 \)

\(G \) is immune to BP-free iff \(G \) is series-parallel [Milchtaich, ’06, Chen et al. ’15].
Left equilibrium: $C(x) = \left(\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1\right) \cdot 2 = \frac{3}{2}$
Right equilibrium: $C(x) = 1 \cdot 1 + 1 \cdot 1 = 2$

G is immune to BP-free iff G is series-parallel [Milchtaich, ’06, Chen et al. ’15].

What about other strategy spaces:

- tours in a graph
- scheduling jobs on machines
- spanning trees
- Steiner trees
Braess Paradox via Cost Reductions

Left equilibrium: \(C(x) = \left(\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 \right) \cdot 2 = 3/2 \)
Right equilibrium: \(C(x) = 1 \cdot 1 + 1 \cdot 1 = 2 \)

\(G \) is immune to BP-free iff \(G \) is series-parallel [Milchtaich, '06, Chen et al. '15].

What about other strategy spaces:

- tours in a graph
- scheduling jobs on machines
- spanning trees
- Steiner trees

Q: What is the maximal combinatorial structure of strategy spaces so that there is no Braess paradox?
Nonatomic Congestion Model

Model \mathcal{M}

- $N = \{1, \ldots, n\}$ populations, represented by $[0, d_i], i \in N$
- $R = \{r_1, \ldots, r_m\}$ resources
- Strategies $S_i \subseteq 2^R$ with $S = \bigcup_{i \in N} S_i$
- Strategy distribution $(x_S)_{S \in S_i}$ with $\sum_{S \in S_i} x_S = d_i$
- Load of overall distribution x: $x_r = \sum_{S \in S: r \in S} x_S$
- Cost function $c_r : \mathbb{R}_+ \to \mathbb{R}_+$ nondecreasing

Example

- S_i corresponds to paths from s_i to t_i in a graph
- tours in a graph
- machines ...
Nonatomic Congestion Model

<table>
<thead>
<tr>
<th>Model \mathcal{M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>- $N = {1, \ldots, n}$ populations, represented by $[0, d_i], i \in N$</td>
</tr>
<tr>
<td>- $R = {r_1, \ldots, r_m}$ resources</td>
</tr>
<tr>
<td>- Strategies $S_i \subseteq 2^R$ with $S = \bigcup_{i \in N} S_i$</td>
</tr>
<tr>
<td>- Strategy distribution $(x_S){S \in S_i}$ with $\sum{S \in S_i} x_S = d_i$</td>
</tr>
<tr>
<td>- Load of overall distribution x: $x_r = \sum_{S \in S: r \in S} x_S$</td>
</tr>
<tr>
<td>- Cost function $c_r : \mathbb{R}+ \rightarrow \mathbb{R}+$ nondecreasing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>- S_i corresponds to paths from s_i to t_i in a graph</td>
</tr>
<tr>
<td>- tours in a graph</td>
</tr>
<tr>
<td>- machines ...</td>
</tr>
</tbody>
</table>
If player from population i picks S she gets disutility:

$$
\pi_{i,S}(x) = \sum_{r \in S} c_r(x_r).
$$

Definition (Wardrop Equilibrium)

$$
\pi_i(x) := \sum_{r \in S_i} c_r(x_r) \leq \sum_{r \in S'_i} c_r(x_r)
$$

for any $S_i, S'_i \in S_i$ with $x_{S_i} > 0$, for all $i \in N$.
Braess Paradox via Cost Reductions

Figure: Example of the Braess paradox.
Braess Paradox via Demand Reductions

\[d_1 = 1, \quad d_2 = 2, \quad d_3 = M \quad \text{with cost} \quad C(x^*) = 1 \cdot 2 + 2 \cdot 2 + M \cdot 0 = 6 \]

Reducing \(d_2 \to 0 \): \(C(x^{\text{new}}) = M + 2 \)
Let x and \bar{x} be Wardrop equilibria before and after a cost/demand reduction, resp.

Definition

$(S_i)_{i \in N}$ admits the

1. weak BP, if there exists a resource $r \in R$ with $\bar{c}_r(\bar{x}_r) > c_r(x_r)$.
2. strong BP, if there exists a population $i \in N$ with $\pi_i(\bar{x}) > \pi_i(x)$.
Q: What is the maximal combinatorial structure of \((S_i)_{i \in \mathbb{N}}\) which is immune to the weak or strong Braess paradox?
Main Result

Q: What is the maximal combinatorial structure of \((S_i)_{i \in \mathbb{N}}\) which is immune to the weak or strong Braess paradox?

A: Bases of matroids (and only matroids!) (jointly with S. Fujishige, M. Goemans, B. Peis and R. Zenklusen)

Theorem

Let \((S_i)_{i \in \mathbb{N}}\) be a family of set systems. Then, the following statements are equivalent.

1. For all \(i \in \mathbb{N}\), the clutter \(\text{cl}(S_i)\) consists of the base sets of a matroid \(M_i = (R, I_i)\).
2. \((S_i)_{i \in \mathbb{N}}\) is immune to the weak (and strong) Braess paradox.

Proof via Sensitivity Theory for Polymatroids.
Q: What is the maximal combinatorial structure of $(S_i)_{i \in \mathbb{N}}$ which is immune to the weak or strong Braess paradox?

A: Bases of matroids (and only matroids!) (jointly with S. Fujishige, M. Goemans, B. Peis and R. Zenklusen)

Theorem

Let $(S_i)_{i \in \mathbb{N}}$ be a family of set systems. Then, the following statements are equivalent.

(I) For all $i \in \mathbb{N}$, the clutter $cl(S_i)$ consists of the base sets of a matroid $M_i = (R, \mathcal{I}_i)$.

(II) $(S_i)_{i \in \mathbb{N}}$ is immune to the weak (and strong) Braess paradox.
Q: What is the maximal combinatorial structure of \((S_i)_{i \in \mathbb{N}}\) which is immune to the weak or strong Braess paradox?

A: Bases of matroids (and only matroids!) (jointly with S. Fujishige, M. Goemans, B. Peis and R. Zenklusen)

Theorem

Let \((S_i)_{i \in \mathbb{N}}\) be a family of set systems. Then, the following statements are equivalent.

(I) For all \(i \in \mathbb{N}\), the clutter \(cl(S_i)\) consists of the base sets of a matroid \(M_i = (R, I_i)\).

(II) \((S_i)_{i \in \mathbb{N}}\) is immune to the weak (and strong) Braess paradox.

Proof via Sensitivity Theory for Polymatroids.
Compact Representations of Strategies

\[P(\mathcal{M}) := \left\{ x \in \mathbb{R}^S_{\geq 0} \mid \sum_{S \in S_i} x_S = d_i \text{ for all } i \in N \right\} . \]
Compact Representations of Strategies

\[P(\mathcal{M}) := \left\{ x \in \mathbb{R}^{S}_{\geq 0} \left| \sum_{S \in S_i} x_S = d_i \text{ for all } i \in N \right. \right\} . \]

Resource-based polytope \(\tilde{P}(\mathcal{M}) \subseteq \mathbb{R}^{R}_{\geq 0} \)

\[\tilde{P}(\mathcal{M}) := \left\{ \sum_{i \in N} \sum_{S \in S_i} x_S \cdot \chi_S \left| x \in P(\mathcal{M}) \right. \right\} , \]

\(\chi_S \in \{0, 1\}^{R} \) for \(S \subseteq R \) is the characteristic vector of \(S \).
Compact Representations of Strategies

\[P(M) := \left\{ x \in \mathbb{R}^S_{\geq 0} \mid \sum_{S \in S_i} x_S = d_i \text{ for all } i \in N \right\}. \]

Resource-based polytope \(\tilde{P}(M) \subseteq \mathbb{R}^R_{\geq 0} \)

\[\tilde{P}(M) := \left\{ \sum_{i \in N} \sum_{S \in S_i} x_S \cdot \chi_S \left| x \in P(M) \right. \right\}, \]

\(\chi_S \in \{0, 1\}^R \) for \(S \subseteq R \) is the characteristic vector of \(S \).

Theorem (Beckmann et al. ’56)

\(x \) is a Wardrop equilibrium if and only if it solves

\[
\min_{x \in \tilde{P}(M)} \left\{ \Phi(x) := \sum_{r \in R} \int_0^{x_r} c_r(t) \, dt \right\}. \tag{2}
\]

We call \(\Phi \) the Beckmann potential.
Definition (submodular, monotone, normalized)

- \(f : 2^R \to \mathbb{R} \) is submodular if
 \(f(U) + f(V) \geq f(U \cup V) + f(U \cap V) \) for all \(U, V \in 2^R \).
- \(f \) is monotone, if \(U \subseteq V \Rightarrow f(U) \leq f(V) \).
- \(f \) is normalized, if \(f(\emptyset) = 0 \).

\[
P_h := \left\{ x \in \mathbb{R}_+^R \mid x(U) \leq h(U) \ \forall U \subseteq R, \ x(R) = h(R) \right\},
\]

for \(U \subseteq R, \ x(U) := \sum_{r \in U} x_r \).
Polymatroids and Submodular Functions

Definition (submodular, monotone, normalized)

- $f : 2^R \rightarrow \mathbb{R}$ is submodular if
 $$f(U) + f(V) \geq f(U \cup V) + f(U \cap V)$$
 for all $U, V \in 2^R$.
- f is monotone, if $U \subseteq V \Rightarrow f(U) \leq f(V)$
- f is normalized, if $f(\emptyset) = 0$.

$P_h := \left\{ x \in \mathbb{R}^R_+ \mid x(U) \leq h(U) \ \forall U \subseteq R, \ x(R) = h(R) \right\}$,

for $U \subseteq R$, $x(U) := \sum_{r \in U} x_r$.

Matroid Base Polytope

$P_{d_i \cdot \text{rk}_i} = \left\{ x_i \in \mathbb{R}^R_+ \mid x_i(U) \leq d_i \cdot \text{rk}_i(U) \ \forall U \subseteq R, \ x_i(R) = d_i \cdot \text{rk}_i(R) \right\}$

$\tilde{P}(\mathcal{M}) := \sum_{i \in N} P_{d_i \cdot \text{rk}_i} = P\sum_{i \in N} d_i \cdot \text{rk}_i$
Sensitivity in Polymatroid Optimization

\[
\min_{x \in P_h} \left\{ \Phi(x) := \sum_{r \in R} \int_0^{x_r} c_r(t) \, dt \right\},
\]

where \(P_h \) is a polymatroid base polytope with rank function \(h \) and for all \(r \in R \), \(c_r : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \), are non-decreasing and continuous functions.
Sensitivity in Polymatroid Optimization

\[
\min_{x \in P_h} \left\{ \Phi(x) := \sum_{r \in R} \int_0^{x_r} c_r(t) \, dt \right\},
\tag{3}
\]

where \(P_h \) is a polymatroid base polytope with rank function \(h \) and for all \(r \in R \), \(c_r : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \), are non-decreasing and continuous functions.

Optimality Conditions

\(x \in P_h \) is optimal if and only if

\[
c_e(x_e) \leq c_f(x_f) \text{ for all } e, f \in R, x_e > 0 \text{ with } x' := x + \epsilon (\chi_f - \chi_e) \in P_h \text{ for some } \epsilon > 0.
\]
To show $\bar{c}_e(\bar{x}_e) \leq c_e(x_e)$ for all $e \in R$.

Assume $\bar{c}_e(\bar{x}_e) > c_e(x_e)$ for some $e \in R$.

Matroids are Immune to Braess Paradox

To show $\bar{c}_e(\bar{x}_e) \leq c_e(x_e)$ for all $e \in R$.

Assume $\bar{c}_e(\bar{x}_e) > c_e(x_e)$ for some $e \in R$. Then $\bar{x}_e > x_e$.
To show $\bar{c}_e(\bar{x}_e) \leq c_e(x_e)$ for all $e \in R$.

Assume $\bar{c}_e(\bar{x}_e) > c_e(x_e)$ for some $e \in R$. Then $\bar{x}_e > x_e$.

Strong exchange property of polymatroids: $\exists f \in R - e$ with $\bar{x}_f < x_f$ and $\epsilon > 0$ such that

$$x - \epsilon \chi_f + \epsilon \chi_e \in P_h \quad \text{and} \quad \bar{x} - \epsilon \chi_e + \epsilon \chi_f \in P_h.$$
Matroids are Immune to Braess Paradox

To show $\bar{c}_e(\bar{x}_e) \leq c_e(x_e)$ for all $e \in R$.

Assume $\bar{c}_e(\bar{x}_e) > c_e(x_e)$ for some $e \in R$. Then $\bar{x}_e > x_e$.

Strong exchange property of polymatroids: $\exists f \in R - e$ with $\bar{x}_f < x_f$ and $\epsilon > 0$ such that

$$x - \epsilon \chi_f + \epsilon \chi_e \in P_h \ \text{and} \ \bar{x} - \epsilon \chi_e + \epsilon \chi_f \in P_h.$$

Wardrop equilibrium condition:

1. $c_f(x_f) \leq c_e(x_e)$, as x WE for c.

Matroids are Immune to Braess Paradox

To show $\bar{c}_e(\bar{x}_e) \leq c_e(x_e)$ for all $e \in R$.

Assume $\bar{c}_e(\bar{x}_e) > c_e(x_e)$ for some $e \in R$. Then $\bar{x}_e > x_e$.

Strong exchange property of polymatroids: $\exists f \in R - e$ with $\bar{x}_f < x_f$ and $\epsilon > 0$ such that

$$x - \epsilon x_f + \epsilon x_e \in P_h \quad \text{and} \quad \bar{x} - \epsilon x_e + \epsilon x_f \in P_h.$$

Wardrop equilibrium condition:

1. $c_f(x_f) \leq c_e(x_e)$, as x WE for c,

2. $\bar{c}_e(\bar{x}_e) \leq \bar{c}_f(\bar{x}_f)$, as \bar{x} WE for \bar{c}.
Matroids are Immune to Braess Paradox

To show $\bar{c}_e(\bar{x}_e) \leq c_e(x_e)$ for all $e \in R$.

Assume $\bar{c}_e(\bar{x}_e) > c_e(x_e)$ for some $e \in R$. Then $\bar{x}_e > x_e$.

Strong exchange property of polymatroids: $\exists f \in R - e$ with $\bar{x}_f < x_f$ and $\epsilon > 0$ such that

$$x - \epsilon \chi_f + \epsilon \chi_e \in P_h$$ and $$\bar{x} - \epsilon \chi_e + \epsilon \chi_f \in P_h.$$

Wardrop equilibrium condition:

1. $c_f(x_f) \leq c_e(x_e)$, as x WE for c,
2. $\bar{c}_e(\bar{x}_e) \leq \bar{c}_f(\bar{x}_f)$, as \bar{x} WE for \bar{c}.

We get the following contradiction

$$c_f(x_f) \leq c_e(x_e) < \bar{c}_e(\bar{x}_e) \leq \bar{c}_f(\bar{x}_f) \leq c_f(x_f).$$
Summary

Part I matroids lead to fast convergence of best-response in congestion games

Part II polymatroids allow PNE in integral splittable congestion games

Part III matroids are immune to Braess Paradox
Part I matroids lead to fast convergence of best-response in congestion games

Part II polymatroids allow PNE in integral splittable congestion games

Part III matroids are immune to Braess Paradox
 ▶ all results are tight (in some sense)!