ADVERSE SELECTION AND AUCTION DESIGN FOR INTERNET DISPLAY ADVERTISING

NICK ARNOSTI, MARISSA BECK AND PAUL MILGROM
DECEMBER 2015
“Half the money I spend on advertising is wasted; the trouble is, I don’t know which half.”
- John Wanamaker, Advertising pioneer
Old-Fashioned “Brand” Ads
New-Fashioned “Performance” Ads
Display Advertisement Types

- **Brand Ads**
 - **Goal:** reach & repetition
 - For awareness and image
 - **Common Characteristics**
 - Targeted to a large group
 - Large number of Impressions
 - Guaranteed delivery
 - **Sample Advertisers**
 - Ford (weekend auto sale)
 - Disney (movie openings)
 - Shopping Center (location)

- **Performance Ads**
 - **Goal:** measurable action now
 - Click, fill form, or buy.
 - **Common Characteristics**
 - Targeted to an individual
 - Smaller number of impressions
 - Sell individual impressions
 - **Sample Advertisers**
 - Amazon (re-targeting)
 - Hertz (car rental)
 - Quicken mortgage (refinance)
Danger of Adverse Selection

<table>
<thead>
<tr>
<th>Brand Advertisers</th>
<th>Performance Advertisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Mostly buy large numbers of impressions.</td>
<td>☐ Mostly select individual impressions using private cookies.</td>
</tr>
<tr>
<td>☐ Receive deferred, aggregated data about performance of the whole ad campaign</td>
<td>☐ Receive immediate, detailed data about the performance of individual ads</td>
</tr>
<tr>
<td>☐ Cannot easily distinguish low-performing ads and publishers</td>
<td>☐ Can quickly identify low-performing ads and publishers</td>
</tr>
</tbody>
</table>

If brand and performance advertisers’ values are “positively correlated,” then brand advertisers may suffer adverse selection.
Matching with Adverse Selection

Modeling the problem
There are $N + 1$ advertisers, with $N \geq 2$

The value of an impression to advertiser i is $X_i = CM_i$

C is the (random) common value factor and

M_i is the (random) match value factor for bidder i

Key Assumptions

1. Advertiser 0 (the “brand advertiser”) does not observe X_0

2. Performance advertisers $n = 1, \ldots, N$ observe their values X_n
 Define $X = (X_1, \ldots, X_n)$.

3. The common value factor C is statistically independent of the random vector $M \equiv (M_0, \ldots, M_N)$
A Market Design Approach

- Compare the “restricted-worst-case efficiency” (and later, revenues) of alternative mechanisms.

- The mechanisms considered are:
 1. “Bayes optimal” mechanism
 2. Our benchmark: “Omniscient” mechanism with C observed
 3. Second-price auction
 4. Our new “Modified second-bid auction” in which the highest performance bidder wins if the ratio of the highest to second-highest performance bid exceeds a threshold.
Bayesian Optimal Mechanism

OPT ...and its drawbacks
Optimal Mechanism Formulation

- $z_i(X)$ is probability that i wins, given X
- $p_i(X)$ is i’s expected payment, given X

Efficiency Objective

- Goal is to maximize $E \left[\sum_{i=0}^{n} X_i z_i(X) \right]$
 - subject to dominant-strategy incentive constraints and participation constraints
- Let OPT be the mechanism that does that.
Example

- Assume that M_1, \ldots, M_n are IID and that...

\[P\{C = 1\} = P\{C = 2\} = \frac{1}{2} \]

For $j = 1, 2, 3$, $P\{M_j = 1\} = P\{M_j = 2\} = P\{M_j = 4\} = \frac{1}{3}$

\[3 < E[M_0] < 4 \]

- So, it is efficient to assign this impression to a performance advertiser $j \neq 0$ only if and only if $M_j = 4$.
OPT in the Example

- The expected-efficiency-maximizing assignment with $N = 2$ is:

 - There are two easy conditions to analyze:
 - If $X(1) \in \{1, 2\}$, then $M(1) \leq 2 < E[M_0] \Rightarrow$ brand advertiser wins
 - If $X(1) = 8$, then $M(1) = 4 > E[M_0] \Rightarrow$ top performance advertiser wins

 - If $X(1) = 4$, assignment hinges on $X(2)$ and particularly whether $E[M(1) \mid X(1), X(2)] \geq E[M_0]$.
 - If $X(2) = 1$, then $M(1) = 4 \Rightarrow$ top performance advertiser wins
 - If $X(2) = 2$ or 4, then $E[M(1) \mid X(1), X(2)] = 3 < E[M_0] \Rightarrow$ brand advertiser wins
 - If $X(2) = 2$, then $Pr\{C = 1, M(1) = 4, M(2) = 2 \mid X(1), X(2)\} = Pr\{C = 2, M(1) = 2, M(2) = 1 \mid X(1), X(2)\} = \frac{1}{2}$.
 - If $X(2) = 4$, then $Pr\{C = 1, M(1) = M(2) = 4 \mid X(1), X(2)\} = Pr\{C = 2, M(1) = M(2) = 2 \mid X(1), X(2)\} = \frac{1}{2}$.

The example highlights some troublesome attributes of OPT.

1. **Sensitivity**: OPT is sensitive to detailed distributional assumptions.

2. **False-name bidding**: Performance advertiser n with value $X_n = 4$ can benefit by submitting an additional, false-name bid of $X_{\hat{n}} = 1$ (because that encourages the auctioneer to infer that $M_n = 4$ whenever X_n is the maximum performance value.)

3. **Adverse selection**: The brand advertiser wins $4/9$ of high-value impressions, but $7/9$ of low-value ones.

 - This possibility can be problematic, especially if the brand advertiser is uninformed about the other bidders and the model parameters, and so is challenged even to estimate these fractions.
OMN, in which the auctioneer observes both the bids and C
Extreme assumption: the auctioneer can gather perfect information about the common factor C and can allocate without facing incentive constraints.

Auctioneer could then achieve this value:

$$V(OMN) = E[\max(X_0, X_1, \ldots, X_n)],$$

where $X_0 = CE[M_0]$

Performance of last two mechanisms is measured relative to $V(OMN)$.
MSB Characterization

Modified Second Bid auction characterized by its properties
A mechanism is

- anonymous (among performance advertisers) if...
- strategy-proof if...
- fully strategy-proof if, in addition, it is both
 - bidder false-name proof: no bidder can benefit by submitting multiple bids, and
 - publisher false-name proof: the seller cannot benefit by submitting “low” bids (below all performance bids)
- adverse-selection free if for every joint distribution on \((C, M)\) such that \(C\) and \(M\) are independent, \(z_0(X)\) is statistically independent of \(C\).
Characterization Theorem

- **Definition.** A direct mechanism is a *modified second bid auction* if for some $\alpha \geq 1$,
 - If $\frac{X(1)}{X(2)} > \alpha$, then the highest performance advertiser wins & pays $\alpha X(2)$.
 - If $\frac{X(1)}{X(2)} \leq \alpha$, then the brand advertiser wins (and pays its contract price).

- **Theorem.** A deterministic mechanism (z, p) is anonymous, fully strategy-proof, and adverse selection free *if and only if* it is a modified second bid auction.
Proof Ideas

1. Deterministic & strategy-proof mechanism \Leftrightarrow threshold auction.
2. $\ldots +$ Anonymous \Leftrightarrow the same threshold function for all performance bidders.
3. $\ldots +$ False-name proof \Leftrightarrow the threshold depends only on the second highest bid.
4. $\ldots +$ Adverse-selection free \Leftrightarrow the allocation depends on ratio of two highest bids.
Comparing MSB_α and SP_r to OMN

MSB_α : modified second-bid auction

SP_r : second-price auction with reserve
Assumptions for Comparison

- Evaluate MSB_α and SP_r mechanisms in worst case over a limited family of environments, in which...
 - M_1, \ldots, M_N are IID from a distribution F.
 - C is drawn from distribution G.
 - $N \geq 2$ and $E[M_0] \geq 0$ are free to vary.
Theorem. (Comparing SP_r and MSB_α to OMN)

1. Assuming Nash equilibrium bidding by the brand advertiser, both MSB and SP have similar worst case performance:

$$\inf_{F, G, N \geq 2, E[M_0] \geq 0} \max_{r} \frac{V(MSB_\alpha)}{V(OMN)} = \frac{1}{2}$$

$$\inf_{F, G, N \geq 2, E[M_0] \geq 0} \max_{r} \frac{V(SP_r)}{V(OMN)} = \frac{1}{2}$$

2. Further restricting F and/or G to be drawn from power law distributions \mathcal{P},

$$\inf_{F \in \mathcal{P}, G \in \mathcal{P}, N \geq 2, E[M_0] \geq 0} \max_{r} \frac{V(SP_r)}{V(OMN)} = \frac{1}{2}$$

$$\inf_{F \in \mathcal{P}, G \in \mathcal{P}, N \geq 2, E[M_0] \geq 0} \max_{\alpha} \frac{V(MSB_\alpha)}{V(OMN)} \approx 0.948$$
Revenue Performance

- **Theorem.** Fix a number of bidders N and assume that the publisher shares in the rents from brand advertising in any fixed proportions, say $(\delta, 1 - \delta)$.

- If F is a power law distribution, then there is some α such that MSB_α achieves at least 94.8% of the expected revenue from the corresponding expected-revenue-maximizing strategy-proof auction $REVMAX$.
Conclusion

- Adverse selection can be neutralized, without encouraging false-name bidding, provided that $X_n = CM_n$ and C and M are independent.

- The cost of doing that is low, even without observing the common value factor C, provided that the tails of the distribution are fat (power law).

- For real applications, we need to evaluate...
 - Is adverse selection important?
 - Are match values independent?
 - Are match-value distributions fat-tailed?