Euler-Kronecker constants: from Ramanujan to Ihara

Pieter Moree (MPIM, Bonn)

Amsterdam, CWI
December 2, 2011
Workshop Herman te Riele
(Partly) joint work with

Florian Luca (Morelia, Mexico)

Kevin Ford (Urbana-Champaign, Illinois)

Values of the Euler phi-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, arXiv:1108.3805.
Definition

K, number field.

\[\zeta_K(s) = \sum_{\alpha} \frac{1}{(N\alpha)^s}, \quad \text{Re}(s) > 1.\]
Definition

\(K \), number field.

\[
\zeta_K(s) = \sum_{\alpha} \frac{1}{(Na)^s}, \quad \text{Re}(s) > 1.
\]

Laurent series:

\[
\zeta_K(s) = \frac{c_{-1}}{s - 1} + c_0 + O(s - 1).
\]

Euler-Kronecker constant of \(K \):

\[
\mathcal{E}K_K := \frac{c_0}{c_{-1}}.
\]
Definition

\(K \), number field.

\[
\zeta_K(s) = \sum_a \frac{1}{(Na)^s}, \quad \text{Re}(s) > 1.
\]

Laurent series:

\[
\zeta_K(s) = \frac{c_{-1}}{s - 1} + c_0 + O(s - 1).
\]

Euler-Kronecker constant of \(K \): \(\mathcal{E}_K : = \frac{c_0}{c_{-1}} \)

\[
\lim_{s \to 1} \left(\frac{\zeta_K'(s)}{\zeta_K(s)} + \frac{1}{s - 1} \right) = \mathcal{E}_K
\]

\(\mathcal{E}_K \) is constant in logarithmic derivative of \(\zeta_K(s) \) at \(s = 1 \).
Definition

\(K \), number field.

\[\zeta_K(s) = \sum_a \frac{1}{(N_a)^s}, \ \text{Re}(s) > 1. \]

Laurent series:

\[\zeta_K(s) = \frac{c_{-1}}{s - 1} + c_0 + O(s - 1). \]

Euler-Kronecker constant of \(K \): \(\mathcal{EK}_K := \frac{c_0}{c_{-1}} \)

\[\lim_{s \to 1} \left(\frac{\zeta'_K(s)}{\zeta_K(s)} + \frac{1}{s - 1} \right) = \mathcal{EK}_K, \]

\(\mathcal{EK}_K \) is constant in logarithmic derivative of \(\zeta_K(s) \) at \(s = 1 \).

Example. \(\zeta(s) = \sum n^{-s} = 1/(s - 1) + \gamma + O(s - 1). \)
Definition

K, number field.

$$\zeta_K(s) = \sum_{a} \frac{1}{(Na)^s}, \text{ Re}(s) > 1.$$

Laurent series:

$$\zeta_K(s) = \frac{c_{-1}}{s - 1} + c_0 + O(s - 1).$$

Euler-Kronecker constant of K: $\mathcal{EK}_K := \frac{c_0}{c_{-1}}$

$$\lim_{s \to 1} \left(\frac{\zeta_K'(s)}{\zeta_K(s)} + \frac{1}{s - 1} \right) = \mathcal{EK}_K,$$

\mathcal{EK}_K is constant in logarithmic derivative of $\zeta_K(s)$ at $s = 1$.

Example. $\zeta(s) = \sum n^{-s} = 1/(s - 1) + \gamma + O(s - 1)$.

$$\mathcal{EK}_\mathbb{Q} = \gamma/1 = \gamma = 0.577 \ldots$$

Euler-Mascheroni constant
Historical background

Sums of two squares

Landau (1908)

\[B(x) = \sum_{n \leq x, \; n = a^2 + b^2} 1 \sim K \frac{x}{\sqrt{\log x}}. \]

Ramanujan (1913)

\[B(x) = K \int_{x}^{\infty} \frac{dt}{\sqrt{\log t}} + O(x \log x), \]

where \(R \) is arbitrary.

\[K = 0.764223653... \]: Landau-Ramanujan constant.

Shanks (1964): Ramanujan's claim is false for every \(R > 3/2 \).
Historical background

Sums of two squares

Landau (1908)

\[
B(x) = \sum_{n \leq x, \ n = a^2 + b^2} 1 \sim K \frac{x}{\sqrt{\log x}}.
\]

Ramanujan (1913)

\[
B(x) = K \int_2^x \frac{dt}{\sqrt{\log t}} + O\left(\frac{x}{\log^r x}\right),
\]

where \(r > 0 \) is arbitrary.
Historical background

Sums of two squares

Landau (1908)

\[B(x) = \sum_{n \leq x, \; n=a^2+b^2} 1 \sim K \frac{x}{\sqrt{\log x}}. \]

Ramanujan (1913)

\[B(x) = K \int_2^x \frac{dt}{\sqrt{\log t}} + O\left(\frac{x}{\log^r x}\right), \]

where \(r > 0 \) is arbitrary.

\(K = 0.764223653\ldots \): Landau-Ramanujan constant.
Historical background

Sums of two squares

Landau (1908)

\[B(x) = \sum_{n \leq x, n = a^2 + b^2} 1 \sim K \frac{x}{\sqrt{\log x}}. \]

Ramanujan (1913)

\[B(x) = K \int_2^x \frac{dt}{\sqrt{\log t}} + O\left(\frac{x}{\log^r x}\right), \]

where \(r > 0 \) is arbitrary.

\[K = 0.764223653\ldots: \text{Landau-Ramanujan constant.} \]

Shanks (1964): Ramanujan’s claim is false for every \(r > 3/2 \).
Non-divisibility of Ramanujan’s τ

$$\Delta := q \prod_{m=1}^{\infty} (1 - q^m)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n.$$

After setting $q = e^{2\pi iz}$, the function $\Delta(z)$ is the unique normalized cusp form of weight 12 for the full modular group $SL_2(\mathbb{Z})$.

Fix a prime $q \in \{3, 5, 7, 23, 691\}$. For these primes $\tau(n)$ satisfies an easy congruence, e.g.,:

$$\tau(n) \equiv \sum_{d|n} d^{11} \pmod{691}.$$

Put $t_n = 1$ if $q \nmid \tau(n)$ and $t_n = 0$ otherwise.
Non-divisibility of Ramanujan’s τ

$$\Delta := q \prod_{m=1}^{\infty} (1 - q^m)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n.$$

After setting $q = e^{2\pi i z}$, the function $\Delta(z)$ is the unique normalized cusp form of weight 12 for the full modular group $\text{SL}_2(\mathbb{Z})$.

Fix a prime $q \in \{3, 5, 7, 23, 691\}$.
Non-divisibility of Ramanujan's τ

$$\Delta := q \prod_{m=1}^{\infty} (1 - q^m)^24 = \sum_{n=1}^{\infty} \tau(n)q^n.$$

After setting $q = e^{2\pi iz}$, the function $\Delta(z)$ is the unique normalized cusp form of weight 12 for the full modular group $SL_2(\mathbb{Z})$.

Fix a prime $q \in \{3, 5, 7, 23, 691\}$.

For these primes $\tau(n)$ satisfies an easy congruence, e.g., :

$$\tau(n) \equiv \sum_{d \mid n} d^{11} \pmod{691}.$$

Put $t_n = 1$ if $q \nmid \tau(n)$ and $t_n = 0$ otherwise.
A further claim of Ramanujan

Ramanujan in last letter to Hardy (1920):

\[\sum_{n} k \sim C q n \log \delta q n ; \tag{1} \]

and

\[\sum_{n} k \sim C q \int_{n^2} dx \log \delta q x + O (n \log r n) , \tag{2} \]

where \(r \) is any positive number.'
A further claim of Ramanujan

Ramanujan in last letter to Hardy (1920):

“It is easy to prove by quite elementary methods that
\[\sum_{k=1}^{n} t_k = o(n). \]
A further claim of Ramanujan

Ramanujan in last letter to Hardy (1920):

“It is easy to prove by quite elementary methods that
\[\sum_{k=1}^{n} t_k = o(n). \]

It can be shown by transcendental methods that

\[\sum_{k=1}^{n} t_k \sim \frac{C_q n}{\log^{\delta_q} n}; \tag{1} \]

and

\[\sum_{k=1}^{n} t_k = C_q \int_{2}^{n} \frac{dx}{\log^{\delta_q} x} + O\left(\frac{n}{\log^{r} n} \right), \tag{2} \]

where \(r \) is any positive number’.
A further claim of Ramanujan

Ramanujan in last letter to Hardy (1920):

“It is easy to prove by quite elementary methods that
\[\sum_{k=1}^{n} t_k = o(n). \]

It can be shown by transcendental methods that

\[\sum_{k=1}^{n} t_k \sim \frac{C_q n}{\log^{\delta_q} n}; \quad (1) \]

and

\[\sum_{k=1}^{n} t_k = C_q \int_{2}^{n} \frac{dx}{\log^{\delta_q} x} + O\left(\frac{n}{\log^r n}\right), \quad (2) \]

where \(r \) is any positive number’.

Rushforth, Rankin: Estimate (1) holds true.
A further claim of Ramanujan

Ramanujan in last letter to Hardy (1920):

“It is easy to prove by quite elementary methods that
\[\sum_{k=1}^{n} t_k = o(n). \]

It can be shown by transcendental methods that

\[\sum_{k=1}^{n} t_k \sim \frac{C_q n}{\log^{\delta_q} n}; \]

and

\[\sum_{k=1}^{n} t_k = C_q \int_{2}^{n} \frac{dx}{\log^{\delta_q} x} + O\left(\frac{n}{\log^{r} n}\right), \]

where \(r \) is any positive number’.

Rushforth, Rankin: Estimate (1) holds true.

M. (2004): All estimates (2) are false for \(r > 1 + \delta_q \).
Non-divisibility of Euler’s φ-function

(Spearman-Williams, 2006). Put

$$E_q(x) = \sum_{n \leq x, \ q \nmid \varphi(n)} 1.$$

Question

$$E_q(x) \sim c_q \frac{x}{\log^{1/(q-1)} x} \quad \text{or} \quad E_q(x) \sim c_q \int_{2}^{x} \frac{dt}{\log^{1/(q-1)} t}?$$

That is, is the Landau approximation or Ramanujan approximation better?
Non-divisibility of Euler’s φ-function

(Spearman-Williams, 2006). Put

$$\mathcal{E}_q(x) = \sum_{n \leq x, \; q \nmid \varphi(n)} 1.$$

Question

$$\mathcal{E}_q(x) \sim c_q \frac{x}{\log^{1/(q-1)} x} \quad \text{or} \quad \mathcal{E}_q(x) \sim c_q \int_2^x \frac{dt}{\log^{1/(q-1)} t} ?$$

That is, is the Landau approximation or Ramanujan approximation better?

Assume $(q, n) = 1$. We have $q \mid \varphi(n)$ iff n does not have a prime divisor p that splits completely in $\mathbb{Q}(\zeta_q)$.
Euler-Kronecker constants of multiplicative sets

We say that S is multiplicative if m and n are coprime integers then mn is in S iff both m and n are in S.
We say that \(S \) is **multiplicative** if \(m \) and \(n \) are coprime integers then \(mn \) is in \(S \) iff both \(m \) and \(n \) are in \(S \).

Common example is where \(S \) is a multiplicative semigroup generated by \(q_i, i = 1, 2, \ldots \), with every \(q_i \) a prime power and \((q_i, q_j) = 1\).
We say that S is **multiplicative** if m and n are coprime integers then mn is in S iff both m and n are in S.

Common example is where S is a multiplicative semigroup generated by q_i, $i = 1, 2, \ldots$, with every q_i a prime power and $(q_i, q_j) = 1$.

Example I. $n = X^2 + Y^2$.

Example II. If q is a prime and f a multiplicative function, then

$$\{n : q \nmid f(n)\}$$

is multiplicative.
Euler-Kronecker constants of multiplicative sets

We say that S is multiplicative if m and n are coprime integers then mn is in S iff both m and n are in S.

Common example is where S is a multiplicative semigroup generated by q_i, $i = 1, 2, \ldots$, with every q_i a prime power and $(q_i, q_j) = 1$.

Example I. $n = X^2 + Y^2$.

Example II. If q is a prime and f a multiplicative function, then

$$\{n : q \nmid f(n)\}$$

is multiplicative.

If $(m, n) = 1$, then

$$q \nmid f(mn) \iff q \nmid f(m)f(n) \iff q \nmid f(n) \text{ and } q \nmid f(m)$$
Euler-Kronecker constant of a multiplicative set

Assumption. There are some fixed $\delta, \rho > 0$ such that asymptotically

$$\pi_S(x) = \delta \pi(x) + O\left(\frac{x}{\log^{2+\rho} x}\right).$$
Euler-Kronecker constant of a multiplicative set

Assumption. There are some fixed \(\delta, \rho > 0 \) such that asymptotically

\[
\pi_S(x) = \delta \pi(x) + O\left(\frac{x}{\log^{2+\rho} x}\right).
\]

We put

\[
L_S(s) := \sum_{n=1, n \in S} \infty \sum n^{-s}.
\]

Can show that, **Euler-Kronecker constant**

\[
\gamma_S := \lim_{s \to 1+0} \left(\frac{L'_S(s)}{L_S(s)} + \frac{\delta}{s-1} \right)
\]

exists.
The second order term and γ_S

We have

$$S(x) = C_0(S) x \log^{\delta-1} x \left(1 + (1 + o(1)) \frac{C_1(S)}{\log x} \right), \quad \text{as} \quad x \to \infty,$$

where $C_1(S) = (1 - \delta)(1 - \gamma_S)$.

Theorem. Suppose that $\delta < 1$. If $\gamma_S < 1/2$, the Ramanujan approximation is asymptotically better than the Landau one. If $\gamma_S > 1/2$, it is the other way around.

Follows on noting that by partial integration we have

$$\int x^2 \log^{\delta-1} \log x \, dt = x \log^{\delta-1} x \left(1 + (1 + o(1)) \frac{C_1(S)}{\log x} \right).$$

A Ramanujan type claim, if true, implies $\gamma_S = 0$.

The second order term and γ_S

We have

$$S(x) = C_0(S)x \log^{\delta-1} x \left(1 + (1 + o(1)) \frac{C_1(S)}{\log x}\right), \quad \text{as} \quad x \to \infty,$$

where $C_1(S) = (1 - \delta)(1 - \gamma_S)$.

Theorem. Suppose that $\delta < 1$. If $\gamma_S < 1/2$, the Ramanujan approximation is asymptotically better than the Landau one. If $\gamma_S > 1/2$ it is the other way around.
The second order term and γ_S

We have

$$S(x) = C_0(S)x \log^{\delta-1} x \left(1 + (1 + o(1)) \frac{C_1(S)}{\log x} \right), \quad \text{as} \quad x \to \infty,$$

where $C_1(S) = (1 - \delta)(1 - \gamma_S)$.

Theorem. Suppose that $\delta < 1$. If $\gamma_S < 1/2$, the Ramanujan approximation is asymptotically better than the Landau one. If $\gamma_S > 1/2$ it is the other way around.

Follows on noting that by partial integration we have

$$\int_2^x \log^{\delta-1} dt = x \log^{\delta-1} x \left(1 + \frac{1 - \delta}{\log x} + O\left(\frac{1}{\log^2 x}\right)\right).$$

A Ramanujan type claim, if true, implies $\gamma_S = 0$.
Landau versus Ramanujan for $q \nmid \varphi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi; q} < 1/2$ and Ramanujan’s approximation is better.
Landau versus Ramanujan for $q \nmid \varphi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi;q} < 1/2$ and Ramanujan’s approximation is better. For $q > 67$ we have $\gamma_{\varphi;q} > 1/2$.
Landau versus Ramanujan for $q \nmid \varphi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi;q} < 1/2$ and Ramanujan’s approximation is better. For $q > 67$ we have $\gamma_{\varphi;q} > 1/2$.

Further, we have $\lim_{q \to \infty} \gamma_{\varphi;q} = \gamma$.
Landau versus Ramanujan for $q \nmid \phi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\phi; q} < 1/2$ and Ramanujan’s approximation is better. For $q > 67$ we have $\gamma_{\phi; q} > 1/2$.

Further, we have $\lim_{q \to \infty} \gamma_{\phi; q} = \gamma$.

Theorem. (Ford-Luca-M., 2011). Unconditionally true!
Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi; q} < 1/2$ and Ramanujan’s approximation is better. For $q > 67$ we have $\gamma_{\varphi; q} > 1/2$.

Further, we have $\lim_{q \to \infty} \gamma_{\varphi; q} = \gamma$.

Theorem. (Ford-Luca-M., 2011). Unconditionally true!

Theorem. We have

\[\gamma_{\varphi; q} = \gamma + O\left(\frac{\log^2 q}{\sqrt{q}} \right), \] effective constant.
Landau versus Ramanujan for $q \nmid \varphi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi;q} < 1/2$ and Ramanujan’s approximation is better. For $q > 67$ we have $\gamma_{\varphi;q} > 1/2$.

Further, we have $\lim_{q \to \infty} \gamma_{\varphi;q} = \gamma$.

Theorem. (Ford-Luca-M., 2011). Unconditionally true!

Theorem. We have

- $\gamma_{\varphi;q} = \gamma + O\left(\frac{\log^2 q}{\sqrt{q}}\right)$, effective constant.
- $\gamma_{\varphi;q} = \gamma + O_\varepsilon(q^{\varepsilon^{-1}})$, ineffective constant.
Landau versus Ramanujan for $q \nmid \varphi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi};q < 1/2$ and Ramanujan's approximation is better. For $q > 67$ we have $\gamma_{\varphi};q > 1/2$.

Further, we have $\lim_{q \to \infty} \gamma_{\varphi};q = \gamma$.

Theorem. (Ford-Luca-M., 2011). Unconditionally true!

Theorem. We have

- $\gamma_{\varphi};q = \gamma + O\left(\frac{\log^2 q}{\sqrt{q}}\right)$, effective constant.
- $\gamma_{\varphi};q = \gamma + O_{\epsilon}(q^{\epsilon-1})$, ineffective constant.
- $\gamma_{\varphi};q = \gamma + O\left(\frac{\log^2 q}{q}\right)$, no Siegel zero.
Landau versus Ramanujan for $q \nmid \varphi$

Theorem. (M., 2006, unpublished). Assume ERH. For $q \leq 67$ we have $\gamma_{\varphi;q} < 1/2$ and Ramanujan’s approximation is better. For $q > 67$ we have $\gamma_{\varphi;q} > 1/2$.

Further, we have \(\lim_{q \to \infty} \gamma_{\varphi;q} = \gamma \).

Theorem. (Ford-Luca-M., 2011). Unconditionally true!

Theorem. We have

- $\gamma_{\varphi;q} = \gamma + O\left(\frac{\log^2 q}{\sqrt{q}}\right)$, effective constant.
- $\gamma_{\varphi;q} = \gamma + O_\varepsilon (q^{\varepsilon - 1})$, ineffective constant.
- $\gamma_{\varphi;q} = \gamma + O\left(\frac{\log^2 q}{q}\right)$, no Siegel zero.
- $\gamma_{\varphi;q} = \gamma + O\left(\frac{\log q (\log \log q)}{q}\right)$, on ERH for L-functions mod q.
Table: Overview of Euler-Kronecker constants discussed

<table>
<thead>
<tr>
<th>set</th>
<th>γ_{set}</th>
<th>winner</th>
<th>author</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}_{\geq 1}$</td>
<td>+0.5772...</td>
<td></td>
<td>Euler</td>
</tr>
<tr>
<td>$n = a^2 + b^2$</td>
<td>-0.1638...</td>
<td>Ramanujan</td>
<td>Shanks</td>
</tr>
<tr>
<td>$3 \nmid \tau$</td>
<td>+0.5349...</td>
<td>Landau</td>
<td>M.</td>
</tr>
<tr>
<td>$5 \nmid \tau$</td>
<td>+0.3995...</td>
<td>Ramanujan</td>
<td>M.</td>
</tr>
<tr>
<td>$7 \nmid \tau$</td>
<td>+0.2316...</td>
<td>Ramanujan</td>
<td>M.</td>
</tr>
<tr>
<td>$23 \nmid \tau$</td>
<td>+0.2166...</td>
<td>Ramanujan</td>
<td>M.</td>
</tr>
<tr>
<td>$691 \nmid \tau$</td>
<td>+0.5717...</td>
<td>Landau</td>
<td>M.</td>
</tr>
<tr>
<td>$q \nmid \varphi, q \leq 67$</td>
<td>< 0.4977</td>
<td>Ramanujan</td>
<td>FLM</td>
</tr>
<tr>
<td>$q \nmid \varphi, q \geq 71$</td>
<td>> 0.5023</td>
<td>Landau</td>
<td>FLM</td>
</tr>
</tbody>
</table>
Connection with $E\mathcal{K}_\mathbb{Q}(\zeta_q)$

Put $f_p = |\langle p \pmod{q} \rangle|$.

$$S(q) := \sum_{p \neq q, f_p \geq 2} \frac{\log p}{p^{f_p} - 1},$$

We have

$$\gamma_{\varphi; q} = \gamma - \frac{(3 - q) \log q}{(q - 1)^2(q + 1)} - S(q) - \frac{E\mathcal{K}_\mathbb{Q}(\zeta_q)}{q - 1}$$

We have $S(q) \leq (\log q + 1)/2q$ (fairly easy).
Connection with $\mathcal{EK}_\mathbb{Q}(\zeta_q)$

Put $f_p = |\langle p \pmod{q} \rangle|$.

$$S(q) := \sum_{p \neq q, f_p \geq 2} \frac{\log p}{p^{f_p} - 1},$$

We have

$$\gamma_{\varphi; q} = \gamma - \frac{(3 - q) \log q}{(q - 1)^2(q + 1)} - S(q) - \frac{\mathcal{EK}_\mathbb{Q}(\zeta_q)}{q - 1}$$

We have $S(q) \leq (\log q + 1)/2q$ (fairly easy).

Given $\epsilon > 0$ we have $S(q) < \epsilon/q$ for a subset of primes of natural density 1.

Proof uses linear forms in logarithms in 3 variables (Matveev’s estimate).
\[\mathcal{E} K_K = \lim_{x \to \infty} \left(\log x - \sum_{N_p \leq x} \frac{\log N_p}{N_p - 1} \right) \]

\[\tilde{\zeta}_K(s) = \tilde{\zeta}_K(1 - s) \]

\[\tilde{\zeta}_K(s) = \tilde{\zeta}_K(0)e^{\beta_K s} \prod_{\rho} \left(1 - \frac{s}{\rho}\right)e^{s/\rho} \]

\[-\beta_K = \sum_{\rho} \frac{1}{\rho} \]

\[-\beta_K = \mathcal{E} K_K - (r_1 + r_2) \log 2 + \frac{\log |D_K|}{2} - \frac{[K : \mathbb{Q}]}{2} (\gamma + \log \pi) + 1 \]

Theorem. (Ihara, 2006). *Under GRH we have*

\[-c_1 \log |D_K| \leq \mathcal{E} K_K \leq c_2 \log \log |D_K| \]
\[\mathcal{E}K_{\mathbb{Q}(\zeta_q)} \]
$\mathcal{EK}_Q(\zeta_q)$

Since $\zeta_Q(\zeta_q)(s) = \zeta(s)\prod_{\chi \neq \chi_0} L(s,\chi)$, we have

$\gamma_q = \gamma_q + \sum_{\chi \neq \chi_0} L'(1,\chi) L(1,\chi)$

Ihara's result implies, on GRH,

$-c_1 q \log q \leq \gamma_q \leq c_2 \log (q \log q)$

Badzyan (2010). On GRH, we have

$|\gamma_q| = O\left(\log q \log \log q\right)$

Ihara (2009).

(i) $\gamma_q > 0$ ('very likely')

(ii) Conjectures that

$1/2 - \epsilon \leq \gamma_q \log q \leq 3/2 + \epsilon$

for q sufficiently large
Since \(\zeta_{\mathbb{Q}(\zeta q)}(s) = \zeta(s) \prod_{\chi \neq \chi_0} L(s, \chi) \), we have

\[
\gamma_q = \gamma + \sum_{\chi \neq \chi_0} \frac{L'(1, \chi)}{L(1, \chi)}
\]

Ihara’s result implies, on GRH, \(-c_1 q \log q \leq \gamma_q \leq c_2 \log(q \log q)\)

Badzyan (2010). On GRH, we have \(|\gamma_q| = O(\log q \log \log q) \)

Ihara (2009).

(i) \(\gamma_q > 0 \) (‘very likely’)

(ii) Conjectures that

\[
\frac{1}{2} - \epsilon \leq \frac{\gamma_q}{\log q} \leq \frac{3}{2} + \epsilon
\]

for \(q \) sufficiently large
\[\frac{\gamma_q}{\log q} \text{ for } q \leq 50000 \]
Our results on γ_q

We have $\gamma_{964477901} = -0.1823\ldots$
Our results on γ_q

We have $\gamma_{964477901} = -0.1823 \ldots$

Theorem. On a quantitative version of the prime k-tuple conjecture we have

$$\lim_{q \to \infty} \inf \frac{\gamma_q}{\log q} = -\infty$$

Conjecture. For density 1 sequence of primes we have

$$1 - \epsilon < \frac{\gamma_q}{\log q} < 1 + \epsilon$$

(That is, γ_q has normal order $\log q$)
Our results on \(\gamma_q \)

We have \(\gamma_{964477901} = -0.1823 \ldots \)

Theorem. On a quantitative version of the prime \(k \)-tuple conjecture we have

\[
\lim_{q \to \infty} \inf \frac{\gamma_q}{\log q} = -\infty
\]

Conjecture. For density 1 sequence of primes we have

\[
1 - \epsilon < \frac{\gamma_q}{\log q} < 1 + \epsilon
\]

(That is, \(\gamma_q \) has normal order \(\log q \))

We have

\[
\lim_{q \to \infty} \sup \frac{\gamma_q}{\log q} = 1
\]
Sketch of proof of theorem

On ERH we have (Ihara)

\[\gamma_q = 2 \log q - q \sum_{\substack{p \leq q^2 \\ p \equiv 1 \pmod{q}}} \frac{\log p}{p - 1} + O(\log \log q) \]

Construct infinite sequence \(b_i, i = 1, 2, \ldots \) such that \(n, 1 + 2b_1 n, 1 + 2b_2 n, \ldots \) satisfies conditions of prime \(k \)-tuple conjecture AND

\[\sum_{i=1}^{s} \frac{1}{b_i} \rightarrow \infty \]

Take \(s \) so large that sum is > 4.

By prime \(k \)-tuplet conjecture \(q, 1 + 2b_1 q, 1 + 2b_2 q, \ldots, 1 + 2b_s q \) are infinitely often ALL prime with \(1 + 2b_s q \leq q^2 \). Then
Sketch of proof of theorem

On ERH we have (Ihara)

\[\gamma_q = 2 \log q - q \sum_{\substack{p \leq q^2 \\ p \equiv 1 (\text{mod } q)}} \frac{\log p}{p - 1} + O(\log \log q) \]

Construct infinite sequence \(b_i, i = 1, 2, \ldots \) such that \(n, 1 + 2b_1 n, 1 + 2b_2 n, \ldots \) satisfies conditions of prime \(k \)-tuple conjecture AND

\[\sum_{i=1}^{s} \frac{1}{b_i} \to \infty \]

Take \(s \) so large that sum is \(> 4 \).

By prime \(k \)-tuplet conjecture \(q, 1 + 2b_1 q, 1 + 2b_2 q, \ldots, 1 + 2b_s q \) are infinitely often ALL prime with \(1 + 2b_s q \leq q^2 \). Then

\[q \sum_{\substack{p \leq q^2 \\ p \equiv 1 (\text{mod } q)}} \frac{\log p}{p - 1} > q \log q \sum_{i=1}^{s} \frac{1}{2b_i q} > (2 + \epsilon_0) \log q \]
Analogy with Kummer’s Conjecture

Kummer conjectured that

\[h_1(p) = \frac{h(p)}{h_2(p)} \sim G(p) := 2p \left(\frac{p}{4\pi^2} \right)^{\frac{p-1}{4}} \]

(Ratio of the class number of \(\mathbb{Q}(\zeta_p) \), respectively \(\mathbb{Q}(\zeta_p + \zeta_p^{-1}) \))
Analogy with Kummer’s Conjecture

Kummer conjectured that

\[h_1(p) = \frac{h(p)}{h_2(p)} \sim G(p) := 2p \left(\frac{p}{4\pi^2} \right)^{p-1} \]

(Ratio of the class number of \(\mathbb{Q}(\zeta_p) \), respectively \(\mathbb{Q}(\zeta_p + \zeta_p^{-1}) \))

Granville: The quantities \(h_1(p)/G(p) \) and \(\gamma_q/\log q \) are (analytically) very similar.

Some of our lemmas can be already found in Granville, Inventiones, 1990.

In particular, he proved there that \(\sum_i \frac{1}{b_i} \) diverges.
Analogy with Kummer’s Conjecture

Kummer conjectured that

\[h_1(p) = \frac{h(p)}{h_2(p)} \sim G(p) := 2p\left(\frac{p}{4\pi^2}\right)^{\frac{p-1}{4}} \]

(Ratio of the class number of \(\mathbb{Q}(\zeta_p)\), respectively \(\mathbb{Q}(\zeta_p + \zeta_p^{-1})\))

Granville: The quantities \(h_1(p)/G(p)\) and \(\gamma_q/\log q\) are (analytically) very similar.

Some of our lemmas can be already found in Granville, Inventiones, 1990.

In particular, he proved there that \(\sum_i \frac{1}{b_i}\) diverges.

This solved a conjecture of Erdős from 1988.
..finally...

Wikepedia: This is a Germanic name; the family name is te Riele, not Riele.
..finally...

Wikepedia: This is a Germanic name; the family name is te Riele, not Riele.
..finally...

Wikipedia: This is a Germanic name; the family name is te Riele, not Riele.

HAPPY RETIREMENT, HERMAN!
THANK YOU!