Comparison of Block-Lanczos and Block-Wiedemann for Solving Linear Systems in Large Factorizations

A. Kruppa

Centrum Wiskunde & Informatica
Amsterdam

Workshop on Computational Number Theory 2011
Outline

1. Motivation
 - Linear Algebra in Integer Factoring
 - Algorithms for Finding Kernel Vectors

2. Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm

3. Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

4. Timings
Motivation

Linear Algebra in Integer Factoring

Algorithms for Finding Kernel Vectors

Lanczos and Wiedemann Algorithms

The Lanczos Algorithm

The Wiedemann Algorithm

Implementation of Block-Lanczos

The CWI Implementation of Block-Lanczos

The Huygens Supercomputer

Timings

A. Kruppa

Comparison of Block-Lanczos and Block-Wiedemann
Sieving-based factoring algorithms (QS, NFS) construct congruent squares: $X^2 \equiv Y^2 \pmod{N}$

If $X \not\equiv \pm Y \pmod{N}$, then $\gcd(X - Y, N)$ is a proper factor

So how do we find congruent squares?

1. **Sieving step**: Find a lot of relations, i.e., pairs of congruent values that both factor over a small set of primes
2. **Linear Algebra step**: Find a subset of them such that in the product both sides are squares
Constructing Congruent Squares: Example

Example: Factor 77

<table>
<thead>
<tr>
<th>Number</th>
<th>Prime Factors</th>
<th>Exponents</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>$2^4 \times 5^1$</td>
<td>3^1</td>
<td>3</td>
</tr>
<tr>
<td>125</td>
<td>5^3</td>
<td>$2^4 \times 3^1$</td>
<td>48</td>
</tr>
<tr>
<td>160</td>
<td>$2^5 \times 5^1$</td>
<td>$2^1 \times 3^1$</td>
<td>6</td>
</tr>
<tr>
<td>162</td>
<td>$2^1 \times 3^4$</td>
<td>2^3</td>
<td>8</td>
</tr>
</tbody>
</table>

- Want square product: all primes in even exponent. Look at exponent vectors
Constructing Congruent Squares: Example

Example: Factor 77

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Exponent Vectors</th>
<th>Equivalent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>4 1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>125</td>
<td>3 4 1</td>
<td>4 1</td>
<td>48</td>
</tr>
<tr>
<td>160</td>
<td>5 1 1</td>
<td>1 1</td>
<td>6</td>
</tr>
<tr>
<td>162</td>
<td>1 4 3</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

- Interested only in even or odd: look at exponent vectors over \mathbb{F}_2
Constructing Congruent Squares: Example

Example: Factor 77

<table>
<thead>
<tr>
<th>Number</th>
<th>Exponent Vector</th>
<th>Equivalent Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1</td>
<td>$1 = 3$</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>$1 = 48$</td>
</tr>
<tr>
<td>160</td>
<td>1</td>
<td>$1 = 6$</td>
</tr>
<tr>
<td>162</td>
<td>1</td>
<td>$1 = 8$</td>
</tr>
</tbody>
</table>

Find linear combination of exponent vectors over \mathbb{F}_2 that adds to zero vector: write exponent vectors as columns of a matrix, find a kernel vector.
Constructing Congruent Squares: Example

Example: Factor 77

<table>
<thead>
<tr>
<th>Number</th>
<th>Equivalent</th>
<th>Equivalent</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>160</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>162</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

One solution: use relations $80 \equiv 3$, $160 \equiv 6$, and $162 \equiv 8$ (mod 77)
Constructing Congruent Squares: Example

Example: Factor 77

\[
\begin{align*}
80 & = 1 \equiv 1 \equiv 3 \\
125 & = 1 \equiv 1 \equiv 48 \\
160 & = 1 \equiv 1 \equiv 6 \\
162 & = 1 \equiv 1 \equiv 8
\end{align*}
\]

- One solution: use relations \(80 \equiv 3\), \(160 \equiv 6\), and \(162 \equiv 8\) (mod 77)
- Product: \(1440^2 \equiv 12^2\) (mod 77). \(\gcd(1440 - 12, 77) = 7\)
Constructing Congruent Squares: Example

Example: Factor 77

<table>
<thead>
<tr>
<th>Number</th>
<th>Equivalent</th>
<th>Equivalent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>125</td>
<td>48</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>160</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>162</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

- One solution: use relations $80 \equiv 3$, $160 \equiv 6$, and $162 \equiv 8 \pmod{77}$
- Product: $1440^2 \equiv 12^2 \pmod{77}$. $\gcd(1440 - 12, 77) = 7$
- Construct congruent squares from relations by finding kernel vectors of a binary matrix
Shape of the Matrices

- Sparse overall (few prime factors in each relation=column), rows corresponding to small primes are heavy

RSA768
- Input number of 232 digits
- Matrix size $192,795,550 \times 192,796,550$, weight 27,797,115,920, average column weight 144.2.

RSA190
- Input number of 190 digits
- Matrix size $33,218,122 \times 33,643,088$, total weight 2,115,794,780, average column weight 62.9.
Outline

1. Motivation
 - Linear Algebra in Integer Factoring
 - Algorithms for Finding Kernel Vectors

2. Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm

3. Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

4. Timings

Comparison of Block-Lanczos and Block-Wiedemann
Algorithms for Finding Kernel Vectors

- Gaussian Elimination, bad: $O(n^3)$, matrix fill in
- Iterative methods instead: Lanczos, Wiedemann: all $O(wn^2)$ (w average column weight)
- Both Block-Lanczos (BL) and Block-Wiedemann (BW) used in practice for factoring
The RSA768 Matrix

- Was solved by BW
- Total CPU time: about 160 core years, 119 days elapsed
- Intended race BW vs. BL
- BW finished too fast, BL code was not ready
- Current project: get BL ready for RSA768 matrix, compare speed
Outline

1 Motivation
 - Linear Algebra in Integer Factoring
 - Algorithms for Finding Kernel Vectors

2 Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm

3 Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

4 Timings
 - Comparison of Block-Lanczos and Block-Wiedemann
The Lanczos Algorithm

- Solve $Ax = y$, symmetric A in $K^{n,n}$, $x \in K^n$, $y \neq 0 \in K^n$
- Our matrix B is not symmetric, set $A = B^T B$, compute $Av = B^T (Bv)$
- Create orthogonal base for RHS with known preimage $\{Av_1, \ldots, Av_m\}$, $m = \dim \mathcal{K}(A, v_1)$
- Express y in that base: $y = \sum \frac{\langle y, Av_i \rangle}{|Av_i|^2} Av_i$
- Then $x = \sum \frac{\langle b, Av_i \rangle}{|Av_i|^2} v_i$ is a solution
- Homogeneous system: find distinct x_1, x_2 for random y, $x_1 - x_2$ is kernel vector
The Lanczos Algorithm

- The Lanczos iteration:
 \[v_{i+1} = Av_i - \frac{\langle Av_i, Av_i \rangle}{\langle v_i, Av_i \rangle} v_i - \frac{\langle Av_i, Av_{i-1} \rangle}{\langle v_{i-1}, Av_{i-1} \rangle} v_{i-1} \]

 - \(A(\text{Av}_i) \) automatically orthogonal to \(\text{Av}_1, \ldots, \text{Av}_{i-2} \)
 - Lanczos iteration orthogonalizes \(\text{Av}_{i+1} \) w.r.t. \(\text{Av}_i, \text{Av}_{i-1} \)
 - Needs \(m \approx n \) iterations, 2 matrix mul \((B^T(Bv_i))\), fixed
 number of scalar ops in each
 - Problem in \(\mathbb{F}_2 \): self-orthogonal vectors \(\langle v_i, Av_i \rangle = 0 \)
 \(\rightarrow \) zero denominator

The Lanczos and Wiedemann Algorithms
Implementation of Block-Lanczos
Timings
The Block Lanczos Algorithm

- Block Algorithm: each column vector element is itself a length-\(b\) row vector (\(b\) blocking factor, e.g., \(b = 128\))
- Block vector \(V_i\) is basis for vector space of dim \(= 128\)
- Orthogonalize these subspaces instead of individual vectors
- Cover (almost) 128 dimensions of RHS in each iteration, need only (about) \(n/128\) iterations
- Word-wide bit operations (\(+:\text{XOR}, \times: \text{AND}\)) treat whole block element in a single instruction
The Block Lanczos Algorithm

- Block-Lanczos uses modified iteration:

\[V_{i+1} = AV_i + V_i D_{i+1} + V_{i-1} E_{i+1} + V_{i-2} F_{i+1} \]

where \(D_i, E_i, F_i \) are 128 \(\times \) 128 matrices

- Scalar products are now \(F_n^{n \times b} \) by \(F_b^{b \times b} \) matrix products: complexity \(O(nb^2) \), limits blocking factor

- Six such operations per iteration: 3 above, \(\langle AV_i, V_i \rangle \), \(\langle AV_i, AV_i \rangle \), update solution vector \(X \)

- Cost of \(AV_i \) is in \(O(nwb) \)

- \(O(n/b) \) iterations, total cost \(O(n^2w + n^2b) \)
Outline

1 Motivation
 - Linear Algebra in Integer Factoring
 - Algorithms for Finding Kernel Vectors

2 Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm

3 Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

4 Timings
 - Comparison of Block-Lanczos and Block-Wiedemann
The Wiedemann Algorithm

1. Generate Krylov sequence $u^T v, u^T Av, u^T A^2 v \ldots, u^T A^{2n} v$
2. Compute minimal polynomial $f(x)$ s.t. $f(A) = 0$ (Berlekamp-Massey)
3. Evaluate $x = (f(A)/A)v = \sum f_i A^{i-1} v$. (Can patch if $f_0 \neq 0$)

- In principle, no auxiliary operation during (1), (3)
- Can compute several independent Krylov sequences, makes BM harder but still acceptable
- Evaluation can be split into independent pieces by remembering some $A^i v$ from Krylov sequence
Comparison: BL and BW in Theory

Block-Lanczos

1. About $2n/128$ matrix-vector multiplies (half by transpose)
2. Total of 6 auxiliary operations of $O(b^2)$: $\langle AV_i, V_i \rangle$, $\langle AV_i, AV_i \rangle$, $V_i D$, $V_{i-1} E$, $V_{i-2} F$, update solution vector
3. Iterations strictly sequential

Block-Wiedemann

1. $3n/128$ matrix-vector products (Krylov: $2n/128$, evaluation: $n/128$). No transposes
2. No auxiliary operations (in theory)
3. Inherent parallelism: split Krylov sequence, evaluation
Motivation

Lanczos and Wiedemann Algorithms

Implementation of Block-Lanczos

Timings

Outline

1 Motivation
 - Linear Algebra in Integer Factoring
 - Algorithms for Finding Kernel Vectors

2 Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm

3 Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

4 Timings
Previous Work

- Starting point: complete implementation of Block-Lanczos by P. L. Montgomery
- Support for distributed computing with MPI
- No support for multi-threading
- Support for SSE instructions, but not AltiVec (128-bit SIMD instructions)
MPI/Multi-Threading

- Originally parallelization only via MPI
- Not efficient for shared-memory multi-core machines, overhead
- Added Multi-threading for Av, inner products, scalar products
- On NUMA systems, worthwhile to run separate MPI tasks on each NUMA domain, ensure local accesses
- Tried lots of variants of assigning tasks to threads (e.g., splitting vectors into pieces of half width for Coppersmith multiplication to make tables fit cache) – largely unsuccessful
Cache files

- Problem: matrix start-up very slow (reading, parsing, distributing matrix data)
- For RSA768: more than 10 hours
- Makes test/timing runs cumbersome
- Solution: dump processed matrix data to “cache files”, read back on program start
- Can create cache files single-threaded, in little memory (≈ 5h)
- Cache files depend on topology
- Starting from cache files: 5 minutes
Homogeneous Systems

- Lanczos constructs orthogonal base \(\{Av_1, \ldots, Av_m\}\) for RHS \((m = \dim \ker(A, v_1))\)
- It orthogonalizes each new vector w.r.t. all previous ones
- If we already have complete base for subspace, new vector \(Av_{m+1}\) becomes zero
- But not necessarily \(v_{m+1} = 0\), this is a useful kernel vector
- Idea works for Block-Lanczos, produces block of kernel vectors
- Eliminates storage for solution vector, 1 scalar multiply per iteration
Small rank F

- Block-Lanczos iteration:
 $$V_{i+1} = AV_i + V_iD_{i+1} + V_{i-1}E_{i+1} + V_{i-2}F_{i+1}$$
- Matrix F chooses columns that were not used for computing V_i
- Number of omitted column is small, avg 0.76
- Thus $\text{rank } F$ is small, usually < 3
- No need for $O(b^2)$ block-vector/block-matrix mult
- Find base for F, mul by base vectors, $O(b)$
- Eliminates another $O(b^2)$ operation, now only 4 left
Outline

1. Motivation
 - Linear Algebra in Integer Factoring
 - Algorithms for Finding Kernel Vectors

2. Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm

3. Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

4. Timings
History, Architecture

- IBM pSeries 575, total of 108 nodes, 16 dual-core IBM Power6 each (3456 cores total)
- Most nodes have 128GB memory, some have 256GB. Total 15.75 TB.
- Nodes are organized as 4 MCM with 4 CPUs each. Shared memory, faster within MCM.
- Each node connected with 4 Infiniband links, 160 Gbit/s.
- Each Power6 core has 64KB + 64KB L1, 4MB L2, shared 32MB L3 cache. 4.7 GHz clock.
- TOP500: ranked as 28th in November 2008, 303rd currently.
RSA768 on Huygens

- Block-Wiedemann on Intel: CPU time: about 160 core years, 119 days elapsed
- Block-Lanczos ($b = 512$, homogeneous, 1 MPI job/MCM, 16 threads/MCM)

<table>
<thead>
<tr>
<th>Nr. nodes</th>
<th>CPU</th>
<th>Elapsed</th>
<th>Elap. × cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.3y</td>
<td>612d</td>
<td>53.7y</td>
</tr>
<tr>
<td>4</td>
<td>98.1y</td>
<td>210d</td>
<td>73.5y</td>
</tr>
<tr>
<td>9</td>
<td>99.4y</td>
<td>123d</td>
<td>97.2y</td>
</tr>
<tr>
<td>16</td>
<td>105y</td>
<td>86.8d</td>
<td>122y</td>
</tr>
</tbody>
</table>
Compute workstation "barbecue" at CARAMEL lab, LORIA
Quad-Hexcore (Xeon E7540), 2GHz, 512GB memory
Hyper-Threading, 2 threads per core
Running 4 MPI jobs (bound to node), 12 threads

<table>
<thead>
<tr>
<th>b</th>
<th>CPU</th>
<th>Elapsed</th>
<th>Elap. \times cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>110y</td>
<td>916d</td>
<td>60.2y</td>
</tr>
<tr>
<td>512</td>
<td>98.0y</td>
<td>807d</td>
<td>53.1y</td>
</tr>
<tr>
<td>512</td>
<td>118y</td>
<td>965d</td>
<td>63.5y (non-homogeneous)</td>
</tr>
</tbody>
</table>
- Size $33.2M \times 33.6M$, weight $2.1G$

On Huygens

<table>
<thead>
<tr>
<th>Nr. nodes</th>
<th>CPU</th>
<th>Elapsed</th>
<th>Elap. × cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.33y</td>
<td>9.39d</td>
<td>300d</td>
</tr>
</tbody>
</table>

On BBQ

<table>
<thead>
<tr>
<th>b</th>
<th>CPU</th>
<th>Elapsed</th>
<th>Elap. × cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>344d</td>
<td>9.0d</td>
<td>216d</td>
</tr>
<tr>
<td>512</td>
<td>403d</td>
<td>10.1d</td>
<td>242d</td>
</tr>
<tr>
<td>512</td>
<td>423d</td>
<td>10.5d</td>
<td>252d</td>
</tr>
</tbody>
</table>

(non-homogeneous)
Conclusion

- Block-Lanczos is competitive with Block-Wiedemann if computation happens on one high-end system.
- Large factorizations in a research context often use whatever resources are available - often scattered.
- Example: RSA768 matrix jobs ran in Lausanne, several GRID5000 sites in France, and in Tokyo.
- Block-Wiedemann can make use of such scattered resources, Block-Lanczos can not.