A History of Factoring in the Real World

Paul Leyland Brnikat Ltd

Part I – Ancient History

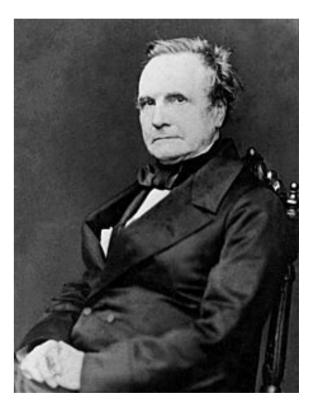
The beginnings

• ~450BCE, Pythagorean mystics classified integers:

- 1 monad (unity) generator of numbers
- 2 dyad (diversity, opinion) first female number
- 3 triad (harmony = unity + diversity) first male number
- 4 (justice, retribution) squaring of accounts
- 5 (marriage) = first female + first male
- ••••
- Discovery of incommensurable numbers:
 - Some numbers are irrational immeasurable by ratios
 - Some numbers are prime immeasurable except by unity

Almost completely uninteresting

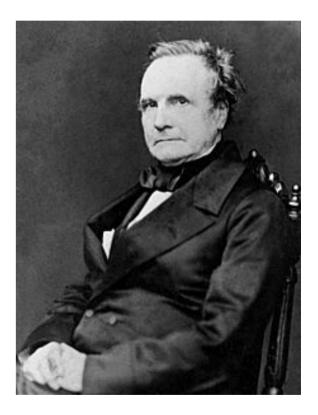
- Everyone else had little or no interest in primes and composites, or in integer classification at all
- No known records at all in Egyptian, Babylonian and Chinese mathematics
- A few unimportant results in Indian documents


Almost completely useless

- Only use for around 2000 years is reducing factors to lowest terms
 - ^o 2/3 + 4/5 13/60 =
 - 40/60 + 48/15 13/60 =
 - 75/60 =
 - (3*5*5)/(2*2*3*5) =
 - ^o 5/(2*2) =
 - 5/4

Part II – Mediæval History

Three cryptographers



Three cryptographers

Alberti

Vigenére

Babbage

Cryptography and Z_N

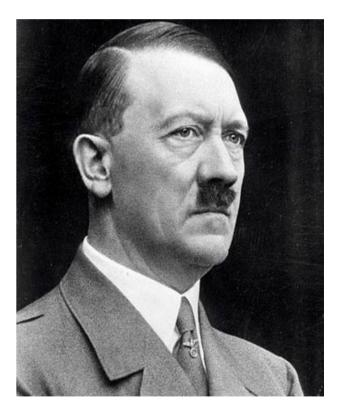
- Encode letters as small integers
- Generate key stream
- Ciphertext = plaintext + keystream in Z_N
- Alberti: keystream as repetition of key word
 "Vigenére cipher"
- Babbage: find patterns and factor separation
 "Kasiski analysis"

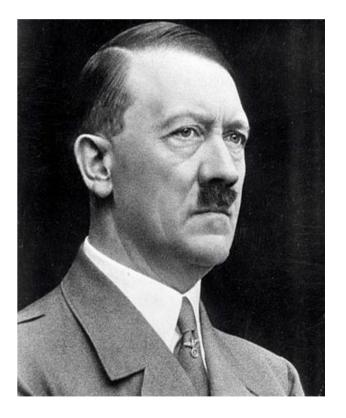
Example of Kasiski analysis

Location:	01234	56789	01234	56789	01234	56789
Keyword:	RELAT	IONSR	ELATI	ONSRE	LATIO	NSREL
Plaintext:	TOBEO	RNOTT	OBETH	ATIST	HEQUE	STION
Ciphertext:	KSME H	ZBBL <mark>K</mark>	SMEMP	OGAJX	SEJCS	FLZSY

Bigram	Locations	Separation	Factors
KS	0, 9	9	3, 9
SM	1, 10	9	3, 9
ME	2, 11	9	3, 9

Keyword is probably 3 or 9 letters long, so solve as 3 or 9 monalphabetic ciphers





Bill Tutte

Tommy Flowers

Adolf Hitler

Tutte & Tunny, Flowers & Colossus

- Tutte @ Bletchley Park given job of breaking teleprinter cipher codenamed *Tunny*
- First spotted patterns of separation 574 bits
- 574 = 2*7*41 suggests a 41-tooth rotor
- Similar approach to reverse-engineer rest of the German cipher machine
- Tommy Flowers designed and built *Colossus* to break *Tunny* traffic at high speed

Part III – Modern History

Slightly interesting and almost useful

- ~1850 ~1950 mechanical calculators made larger factorizations easier
- ~1950 ~1975 electronic computers made large factorizations possible

Interest in new algorithms: rho, P-1, P+1, CFRAC, ... "Useful" for stress-testing hardware "Useful" for marketing

And another three ...

And another three ...

Rivest

Shamir

Adleman

Interesting and useful, at last

- With RSA, factoring becomes useful
- In consequence, factoring becomes interesting
 - to computer scientists
 - to economists
 - to politicians
 - to industrialists
 - to lawyers
 - to hobbyists
 - perhaps, even, to mathematicians?

Predictions

- **Mersenne** (1644): "quemadmodum & agnoscere num dati numeri 15, aut 20 caracteribus constantes, sint primi necne, cum nequidem sæculum integrum huic examini, quocumque modo hactenus cognito, sufficiat"
- **Rivest** (1977, reported by Gardner): Factoring a 125 digit integer with the best available methods on a computer much faster than anything presently available would take 40 quadrillion years
- **Knuth** (1981): "It is inconceivable at this time that such an N [250 digits] could be factored"

Rivest's Law

• Rivest's Law: It is foolish to predict when an integer of any particular size may be factored

RSA ubiquitous and very important

- RSA certificates are everywhere:
 - Signed financial transactions
 - Signed software for authenticity detection
 - PGP, etc., keys
 - Smart cards
 - Networking infrastructure security

•••

- First are worth gigabucks **daily**
- Second are worth gigabucks to some suppliers

Factoring for profit

- Definitely legal: solving challenges
- Possibly legal: factoring clients' integers for a fee
- Definitely illegal: fraud, extortion, ...

Challenges

- Scientific American, 1977. RSA-129 factored in 1994 and \$100 prize donated to charity
- RSA Data Security Inc. pay multiple \$10k in period 1991 – 2005. Several world-record factorizations occurred in this effort.
- Simon Singh paid £10,000 in 2000 for the factors of a 512-bit integer in *The Code Book*

utel, cen getal

ilp van compu-len uitgevoerd. van dit crypto-

gemaakt. De etal van 129 taat elders op part kader veren de oorspron

> 'tsysteem ge-kers die geheime ndat vercijferen erschillende r eigenlijk geen n daarmee nog t er ook geen

Factoring as a social activity 1

- RSA-129 project: 600 people for 8 months in 1993-4, co-ordinated by email & Usenet
- Numerous ad hoc groups contribute to Cunningham project: Mullfac, NFSNET, etc
- CWI, the Cabal, EPFL, NTT, Le High, Sun, BSI, Bonn University, MS Research, INRIA, and many others, solved several RSA challenge factorizations 1995-2009

Factoring as a social activity 2

- Berkeley Open Infrastructure for Network Computing (BOINC)
 - yoyo@home general ECM factoring
 NFS@home
- ECMNET client/servers for various projects
- Mersenneforum.org
 - Chat
 - Co-ordinating projects
 - Reporting results

Factoring as a social activity 3

- Made possible by generous release of software
 - LIP, GMP, gwnum arithmetic libraries
 - Factor-by-email, Fafner, ECMNET, BOINC, cabald/cabalc, NFSNET client-server harnesses
 - CWI suite
 - GMP-ECM
 - GGNFS
 - Msieve
 - Yafu
 - and much more

Factoring and PPE

Factoring and PPE

• Oxford University created an undergraduate degree course in the 1920's called *Philosophy, Politics and Economics*, widely known as PPE

Philosophy

- Should we be entrusting so much to RSA?
- NIST recommended minimum key sizes
 1024 bits up to 2010 at latest
 2048 bits up to 2030 at latest
 3072 bits thereafter
- Mozilla will reject all <1024-bit certificates from 2014-01-01

Politics – 1

- "Cryptowars" of 1990's governments attempt to make secure communications illegal without access to keys
- 1998: Digital Millennium Copyright Act in US makes it illegal to circumvent cryptographic protection

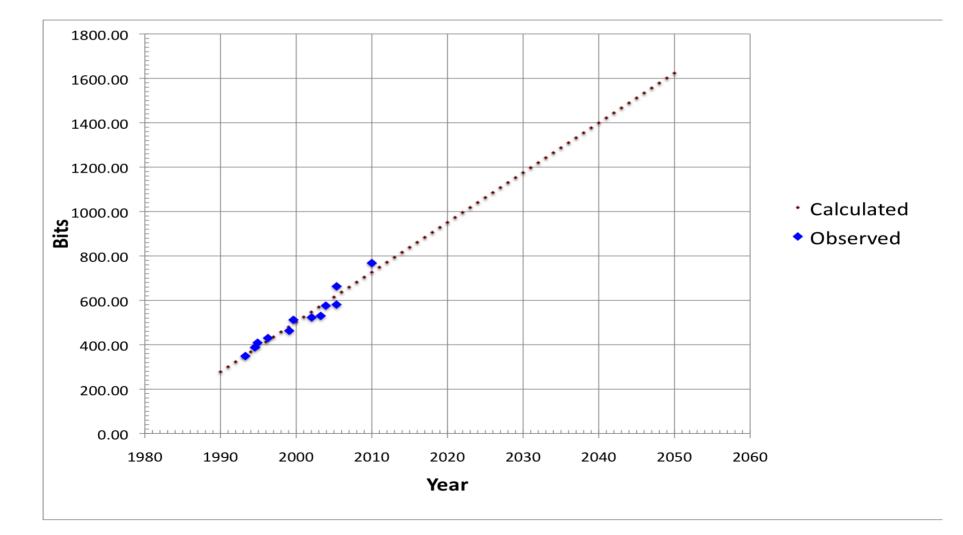
Politics – 2

- Blacknet, 1993: anonymous information trading by way of PGP-encrypted public messages
- "Blacknet" key created with 384-bit modulus
- Encrypted mail posted with that key
- 1995: Gillogly, Lenstra, Leyland & Muffett factor "Blacknet" key, and in secret
- Embarrassing visit from the Feds ...

Politics – 3

- Texas Instruments protect calculator operating systems with 512-bit RSA signatures
- 2009: Keys factored and signatures forged
- TI sends in the lawyers armed with DMCA

Economics


- CREST set up in mid 1990's with 512-bit keys
- 1995: Anderson & Leyland wrote to the Bank of England suggesting that this was unwise
- 1999: RSA-512 was factored
- January 2000: Leyland invited by BoE to give consultancy on RSA security

Part IV – Future History

Record GNFS factorizations

Number	Size in bits	Date factored
3,367- c105	349	1993-04-??
p(11887)	388	1994-07-18
p(13171)	409	1994-11-26
RSA-130	430	1996-04-10
RSA-140	463	1999-02-02
RSA-512	512	1999-08-22
2,953+ c158	523	2002-01-19
RSA-160	530	2003-04-01
RSA-576	576	2003-12-03
11 , 281+ c176	581	2005-05-02
RSA-200	663	2005-05-09
RSA-768	768	2009-12-12

Record GNFS factorizations

Prediction

The first 1024-bit hard factorization will occur in

Prediction

The first 1024-bit hard factorization will occur on

Prediction

The first 1024-bit hard factorization will occur at

12:32 p.m.

Questions?

