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Abstract

* Linear structural equation models (linear SEMs)
can be used to model data generating processes
of variables.

» We review a new approach to learn or estimate
linear structural equation models.

* The new estimation approach utilizes
non-Gaussianity of data for model identification
and uniquely estimates much wider variety of
models.

Outline

 Part I. Overview (70 min.) : Shohei
* Break (10 min.)
 Part Il. Recent advances (40 min): Yoshi

— Time series
— Latent confounders

Motivation (1/2)

» Suppose that data X was randomly generated
from either of the following two data generating
processes:

Model 1: Model 2:
X =€ el | o | X7 b, X, +€ el
X, =h, X +e, e2 X; =8 e2

where €, and €, are latent variables (disturbances, errors).

» We want to estimate or identify which model
generated the data X based on the data X only.

Motivation (2/2)

* We want to identify which model generated the
data X based on the data X only.

If &, and €, are Gaussian, it is well known that
we cannot identify the data generating process.
— Models 1 and 2 equally fit data.

 If € and €, are non-Gaussian, an interesting
result is obtained: We can identify which of
Models 1 and 2 generated the data.

» This tutorial reviews how such non-Gaussian
methods work.

Problem formulation




Basic problem setup (1/3)

» Assume that the data generating process of
continuous observed variables X; is graphically
represented by a directed acyclic graph (DAG).
— Acyclicity means that there are no directed cycles.

Example of a directed
cyclic graph:

Example of a directed
acyclic graph (DAG):

X3 is a parent of X; etc.

Basic problem setup (2/3)

» Further assume linear relations of variables  .X;
* Then we obtain a linear acyclic SEM (wright, 1921; Bollen,
1989):

X, = Zbijxj+ei or

j:parents of i

X=Bx+e

where

— The € are continuous latent variables that are not
determined inside the model, which we call external
influences (disturbances, errors).

— The ¢, are of non-zero variance and are independent.
— The ‘path-coefficient’ matrix B = [bij ] corresponds to a DAG.

Example of linear acyclic SEMs

« A three-variable linear acyclic SEM:

x =1.5x,+€, % 0 0 150x | I&
X, =—1.3x +¢e, or [X|=[-13 0 0 |x,|+|e,

Xq 0 0 0 |x €,
X3 =65

B

« B corresponds to the data-generating DAG:

e3 ) R
15 b; =0 < Nodirected edge from x; to x;
x1 el
13 T b; = 0 <> Adirected edge from x; to x;
e2 J

% 0 0 15[x] [e e 0 0 0fx] [e&]

x2=—1.300x2+e2|:>x1=1.5 0 0fx |+e&

| X5 0 0 0 x| [¢& X, 0 -13 0] x| |&]
Bperm
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Assumption of acyclicity

« Acyclicity ensures existence of an ordering of
variables X; that makes B lower-triangular with
zeros on the diagonal.

The ordering is:

X3 < X, < Xy

X, may be an ancestor of x;,X,,
but not vice versa.

Assumption of independence
between external influences

« |timplies that there are no latent confounders
(Spirtes et al. 2000)

— Alatent confounder f is a latent variable that is a parent of more
than or equal to two observed variables:

el x1
N
‘ f
e2

« Such a latent confounder T makes external influences

dependent (Part I1):
el )
e2
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Basic problem setup (3/3):
Learning linear acyclic SEMs

¢ Assume that data X is randomly sampled
from a linear acyclic SEM (with no latent
confounders):

[x1]e—e1
X=Bx+e b,

[x2 | «—e2

* Goal: Estimate the path-coefficient matrix B by
observing data X only!

— B corresponds to the data-generating DAG.




Problems:
Identifiability problems of
conventional methods

Under what conditions B is
identifiable?

» "B is identifiable’ = "B is uniquely determined or
estimated from p(x)'.

* Linear acylic SEM:

<— el
X=Bx+e b,
4— e2

— B and p(e) induce p(x).

— If p(x) are different for different B, then B is uniquely
determined.
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Conventional estimation principle:
Causal Markov condition

« If the data-generating model is a linear
acyclic SEM, causal Markov condition
holds :

— Each observed variable X; is independent of its

non-descendants in the DAG conditional on its
parents (Pearl & Verma, 1991) :

p

p(x)=] ] p(x | parentsof x,)

i=1
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Conventional methods based on
causal Markov condition

» Methods based on conditional independencies
(Spirtes & Glymour, 1991)

— Many linear acyclic SEMs give a same set of
conditional independences and equally fit data.

» Scoring methods based on Gaussianity
(Chickering, 2002)

— Many linear acyclic SEMs give a same Gaussian
distribution and equally fit data.

* In many cases, path-coefficient matrix B is not
uniquely determined.
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Example
» Two models with Gaussian €, and €, :
Model 1: Model 2:
X =€ er1| |X, =0.8x,+¢ el
X, =0.8X, +e, 2| X, =6, 2

E(e,)=E(e,)=0, var(x,) = var(x,)=1
¢ Both introduce no conditional independence:

cov(x, %,)=0.8%0

» Both induce the same Gaussian distribution:

] Lo )

A solution:
Non-Gaussian approach
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A new direction:
Non-Gaussian approach

« Non-Gaussian data in many applications:

— Neuroinformatics (Hyvarinen et al., JMLR, 2001);
Bioinformatics (Sogawa et al., ICANN2010); Social sciences
(Micceri, 1989); Economics (Moneta, Entner, et al., 2010)

« Utilize non-Gaussianity for model identification.
— Bentler (Psychometrika, 1983)

» The path-coefficient matrix B is uniquely
estimated if €; are non-Gaussian.
— Shimizu, Hoyer, Hyvarinen & Kerminen (JMLR, 2006)

20

lllustrative example:
Gaussian vs non-Gaussian

Gaussian Non-Gaussian

(uniform)
X2 X2
Model 1:
X =8 el X
x, =0.8x +¢, I
o
Model 2: 2
X, =0.8x, +¢ el )
x1
X; =€, e2
E(e)=E(e,)=0, ‘ s i

var(x,)=var(x,) =1
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Linear Non-Gaussian
Acyclic Model: LINGAM

(Shimizu, Hyvarinen, Hoyer & Kerminen, JMLR, 2006)

* Non-Gaussian version of linear acyclic SEM:

X=Bx+e

X, = Z bijxj +e, or
J:parents of i

where
— The external influence variables €; (disturbances,
errors) are
« of non-zero variance.
* non-Gaussian and mutually independent.
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Identifiability of LINGAM model

* LINGAM model can be shown to be
identifiable.
— B is uniquely estimated.

« To see the identifiability, helpful to review

independent component analysis (ICA)
(Hyvarinen et al., 2001).

3

R
Independent Component Analysis
(I CA) (Jutten & Herault, 1991; Comon, 1994)

» Observed random vector x is modeled by
P

X; :Zaijsj or X=AS
j=1

where
— The mixing matrix A = [8;] is square and is of full
column rank.

— The latent variables S; (independent components)
are non-Gaussian and mutually independent.

e Then, A is identifiable up to permutation P and
scaling D of the columns:

A, = APD
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Estimation of ICA

 Most of estimation methods estimate W =A™ :
(Hyvarinen et al., 2001)

x=As=WTs

* Most of the methods minimize mutual information (or its
approximation) of estimated independent components:

S=W,Xx
* W is estimated up to permutation P and scaling D of the rows:
W, =PDW (= PDA )

« Consistent and computationally efficient algorithms:
— Fixed point (FastICA) (Hyvarinen,99); Gradient-based (Amari, 98)
— Semiparametric: no specific distributional assumption




Back to LINGAM model
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Identifiability of LINGAM (1/3):
ICA achieves half of identification

¢ LINGAM model is ICA.

— Observed variables X; are linear combinations of
non-Gaussian independent external influences €; :

x=Bx+e< x=(1-B)"e
=Ae=WTe

*+ ICA gives W,, =PDW =PD(l -B) .

— P: unknown permutation matrix
— D: unknown scaling (diagonal) matrix

* Need to determine P and D to identify B.

Identifiability of LINGAM (2/3):
No permutation indeterminacy (1/6)

- ICAgives W, =PDW =PD(I-B).
— P : permutation matrix; D: scaling (diagonal) matrix

* We want to find such a permutation matrix P that cancels the
permutation P, i.e.,PP=1:

PW,, =PPDW =DW
=1
« We can show (shimizu et al., uaios) (illustrated in the next slides):

- If PP=1,i.e., no permutation is made on the rows of DW,
PW,, has no zero in the diagonal (obvious by definition).

— If PP #1,i.e., any nonidentical permutation is made on the rows
of DW, PW,_, has a zero in the diagonal.

Identifiability of LINGAM (2/3):
No permutation indeterminacy (2/6)

» By definition W =1 —B has all unities in the diagonal.
— The diagonal elements of B are all zeros.

« Acyclicity ensures existence of an ordering of variables
that makes B iower trianguiar, and thenW =1-B is
also lower triangular.

e So, WLG, W can be assumed to be lower triangular:

100

w=l* 1 0 No zeros

in the diagonal!
* * 1

Identifiability of LINGAM (2/3): ~
No permutation indeterminacy (3/6)

« Premultiplying W by a scaling (diagonal) matrix D does
NOT change the zero/non-zero pattern of W :

100 d, 0 O
W=|* 1 0| > DW=|* d, o

No zeros in the diagonal!

Identifiability of LINGAM (2/3):
No permutation indeterminacy (4/6)

» Any other permutation of the rows of DW
changes the zero/non-zero pattern of DW and
brings zero in the diagonal:

d, 0 O * d, O
DW=| * d 0 P*DW=|d, 0 O
22 :> il .
*ox dy, ds
Exchanging 15t

and 2" rows Zero in the diagonal!




Identifiability of LINGAM (2/3):
No permutation indeterminacy (5/6)

« Any other permutation of the rows of DW
changes the zero/non-zero pattern of DW and
brings zero in the diagonal:

* * d33
> PDW=* d, 0

d, 0 O
Exchanging 15t

and 3rd rows Zero in the diagonal!

Identifiability of LINGAM (2/3):
No permutation indeterminacy (6/6)

+ We can find correct P by finding P that gives no
zero on the diagonal of PW,, (shimizu et al., UAI0S).

» Thus, we can solve the permutation
indeterminacy and obtain:

PW,, = PPDW =DW =D(I-B)

Identifiability of LINGAM (3/3):
No scaling indeterminacy

+ Now we have: PW,, =D(l -B)
» Then, D= diag(ﬁWica)

« Divide each row of PW,, by its corresponding
diagonal elementto get 1 -B,i.e., B:

diag(ﬁvvica )_lﬁvvica =D" D(I - B) :
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Estimation of LINGAM model

1. ICA-LINGAM algorithm
2. DirectLINGAM algorithm
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Two estimation algorithms

¢ ICA-LINGAM algorithm
(Shimizu, Hoyer, Hyvarinen & Kerminen, JMLR, 2006)

¢ DirectLiINGAM algorithm
(Shimizu, Hyvarinen, Kawahara & Washio, UAIO9)

« Both estimate an ordering of variables that makes
the path-coefficient matrix B to be lower-triangular.
— Acyclicity ensures existence of such an ordering.

Afull DAG
_ )
X perm — |:Bi|x perm +€ perm
\_W_J

B

E—
perm redundant edges
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Once such an ordering is
found...

« Many existing methods can do:
— Pruning the redundant path-coefficients
« Sparse methods like weighted lasso (zou, 2006)
— Finding significant path-coefficients
« Testing, bootstrapping (Shimizu et al., 2006; Hyvarinen et al. 2010)

Afull DAG N
.ﬁ (e}
Xperm = |: :|Xperm + e perm |:>
— )
B perm
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1. Outline of ICA-LINGAM algorithm

(Shimizu, Hoyer, Hyvarinen, & Kerminen, JMLR, 2006)

ﬁEstimate B by ICA 2. Pruning \

+ permutation

\ Redundant edges/

ICA-LINGAM algorithm (1/2):
Step 1. Estimation of B
1. Perform ICA (here, FastICA) to obtain an estimate of

W,, = PDW = PD(I -B)

2. Finda permuia}ionﬁ that makes the diagonal
elements of PW,, as large as possible in absolute

value: R 1
P ‘ PW._ | (Kuhn, 1955)

3. Normalize each rowhof PW
estimate of I-B and B .

then we get an

ica ’

R K 39 40
ICA-LINGAM algorl_thm (2/2) Basic proper“es
Step 2. Pruning of ICA-LINGAM algorithm
» Find such an ordering of variables that makes
estimated B be as close to be lower-triangular as ¢ ICA-LINGAM algorithm = ICA + permutations
possible. — Computationally efficient with the help of well-developed
— Find a permutation matrix Q that minimizes the sum of the ICA techniques.
elements in its upper triangular part:
Q=min Z(QEQT),ZJ. « Potential problems
Qi — ICA is an iterative search method:
— Approximate algorithm for large variables (Hoyer et al., ICA06) « May get stuck in a local optimum if the initial guess or step
size is badly chosen.
— The permutation algorithms are not scale-invariant:
« May provide different estimates for different scales of
variables.
41 42
2. DirectLiNGAM algorithm
(Shimizu, Hyvarinen, Kawahara & Washio, UAI2009)
« Alternative estimation method without ICA
— Estimates an ordering of variables that makes path-
EStI m atl on Of |_| NGAM m Od e| coefficient matrix B to be lower triangular.
Afull DAG
(6]
X porm = B}x +e
. . perm perm perm 1 3
1. ICA-LINGAM algorithm [
T : . —
2. DirectLINGAM algorithm perm Redundant edges

* Many existing methods can do further pruning or

finding significant path coefficients (zou, 200s;
Shimizu et al., 2006; Hyvarinen et al. 2010)




Basic idea (1/2) : ®
An exogenous variable can be at the
top of aright ordering

» An exogenous variable X; is a variable with no
parents (Bollen, 1989), here X; .
— The corresponding row of B has all zeros.

« S0, an exogenous variable can be at the top of
such an ordering that makes B lower triangular.

X3 0 0 OfX| |&

X [=|15 0 0fx|+e

Basic idea (2/2): “
Regress exogenous X; out

» Compute the residuals r,(3) (i=12) regressing the
other variables X; (i=1,2) on exogenous X;:
— The residuals form a LINGAM model.
— The ordering of the residuals is equivalent to that of
corresponding original variables.

« Exogenous r,?) implies "X, can be at the second top’.

X, 0 -13 o X%, e,

X 0 0 OfX| |&
X |=|15 0 0fX|+|e |:> @l [ o 0} r® NE!
X, 0 -13 go|x| |& ] [-13 0] e,
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Outline of DirectLINGAM

« lteratively find exogenous variables until all the
variables are ordered:
1. Find an exogenous variable X; .
— Put X3 at the top of the ordering.
— Regress X; out.
2. Find an exogenous residual, here l’l(a.)
— Put X; at the second top of the ordering.
- Regress r®out.
3. Put X, at the third top of the ordering and terminate.
The estimated ordering is X; < X; < X,.

Step. 1 Step. 2 Step. 3
= =

Identification of an exogenous™’
variable (two variable cases)

i) X,(=8,) is exogenous ii) X is NOT exogenous

X =€ X =b, %+ € (b, #0)
X, =by X +e, (b21 # 0) X, =€,

Regressing X, on x,, Regressing x, on X,,

r® _y _ SOV, %) 10— x, - SOV %)

: 2 var(x) var(x,)
=X, =0, % _ {17 by, cov(x,, XD}X by, var(x,) 6,
=e var(x,) var(x,)
-2

x and r” are independent | x,and r’ are NOT independent

. . . 46-2
Need to use Darmoir-Skitovitch’
theorem (Darmois, 1953)
/ o \ i) X, is NOT exogenous
Darmoir-Skitovitch’ theorem:
X =b, X, +1-¢ (bl2 730)

Define two variables X; andx, as X, =6,

P P

% =D a8, X =8, i

1 1 Regressing x, 0n X,,
where €; are independent 9 =x, _MX
random variables. var(x,)
If there exists a non-Gaussian €; = {1— by, COVOX,, Xl)}xz B, var(x2)el
for which a,a, #0, var(x,) var(x,)
X, and X, are dependent.

K / x and r are NOT independent
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Identification of an exogenous
variable (More than 2 variable cases)

_ ) i) cov(X; X;)
Lemma 1: X;and its residual ;"' =X ——————X
var(x;)

j
are independent for all i = j < x; is exogenous

\ J

« In practice, we can identify an exogenous variable
by finding a variable that is most independent of
its residuals.
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Independence measures

+ Evaluate independence between a variable and a
residual by a nonlinear correlation:

‘corr{xj,g(ri“))}( (g =tanh)
« Taking the sum over all the residuals, we get:

T= Z‘corr{xj,g(ri“))}Mcorr{g(xj), ri“)}{
i#]

« Can use more sophisticated measures as well
(Bach & Jordan, 2002; Gretton et al., 2005; Kraskov et al., 2004).

— Kernel-based independence measure (Bach & Jordan, 2002)
often gives more accurate estimates (Sogawa et al., IJCNN10).
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Important properties of
DirectLINGAM

 DirectLINGAM repeats:
— Least squares simple linear regression

— Evaluation of pairwise independence between each
variable and its residuals

» No algorithmic parameters like stepsize, initial
guesses, convergence criteria

» Guaranteed convergence in a fixed number of
steps (the number of variables)

Estimation of LINGAM model: ~
Summary (1)

« Two estimation algorithms:

— ICA-LINGAM: Estimation using ICA
¢ Pros. Fast
» Cons. Possible local optimum; Not scale-invariant

— DirectLINGAM: Alternative estimation without ICA
« Pros. Guaranteed convergence; Scale-invariant
e Cons. Less fast

— Cf. Neither needs faithfulness (shimizu et al., JMLR,
2006; Hoyer, personal comm., July, 2010).

Estimation of LINGAM model: ~
Summary (2)

» Experimental comparison of the two algorithms:
(Sogawa et al., IJCNN2010)

* Scalability: Both can analyze 100 variables. The
performances depend on the sample size etc., of course!
» Sampie size: Both need at least 1000 sample size for
more than 10 variables.
« Scale invariance: ICA-LINGAM is less robust for changing
scales of variables.
« Local optima?:
— For less than 10 variables, ICA-LINGAM often a bit
better.
— For more than 10 variables, DirectLiNGAM often better
perhaps because the problem of local optima becomes
more serious?
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Testing and
Reliability evaluation

53

Testing testable assumptions

» Non-Gaussianity:
— Gaussianity tests

» Could detect violations of some assumptions:
— Local test
« Independence of external influences €;

« Conditional independencies between observed
variables X; (causal Markov condition)

« Linearity
— Overall fit of the model assumptions

 Chi-square test using 3" and/or 4th-order moments
(Shimizu & Kano, 2008)

« Still under development




Reliability evaluation

» Need to evaluate statistical reliability of LINGAM
results:
— Sample fluctuations

— Smaller non-Gaussianity makes the model closer to
be NOT identifiable.

 Reliability evaluation by bootstrapping:
(Komatsu et al., ICANN2010)
— If either the sample size is too small or the magnitude
of non-Gaussianity is too small, LINGAM would give
very different results for bootstrap samples.
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Extensions

Extensions (a partial list)

» Relaxing the assumptions of LINGAM model:
— Acyclic = Cyclic (Lacerda et al., UAI2008)

— Single homogenous population
- heterogeneous population (Shimizu et al., 2007)

— i.i.d. sampling = time structures (Part I.) (Hyvarinen et al,
JMLR,2010, Kawahara, S et al., 2010)
— No latent confounders > Allow latents (Part II.) (Hoyer et al.,

1JAR, 08; Kawahara, Bollen et al., 2010)

— Linear = non-linear (Hoyer et al., NIPS08; Zhang & Hyvarinen, UAIO9;
Tilmann & Spirtes, NIPS09)
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Application areas so far

Non-Gaussian SEMs have
been applied to...

* Neuroinformatics

— Brain connectivity analysis
(Hyvarinen et al., JMLR, 2010; Zhang & Hyvarinen, UAI 2010.)

» Bioinformatics
— Gene network estimation (Sogawa et al., ICANN2010)

« Economics (Wan & Tan, 2009; Moneta, Entner, Hoyer & Coad, 2010)
» Genetics (Ozaki & Ando, 2009)

» Environmental sciences (Niyogi et al., 2010)

» Physics (Kawahara, Shimizu & Washio, 2010)

* Sociology (kawahara, Bollen, Shimizu & Washio, 2010)

58

59

Final summary of Part |

Use of non-Gaussianity in linear SEMs is
useful for model identification.

Non-Gaussian data is encountered in many
applications.

The non-Gaussian approach can be a good
option.

Links to codes and papers:
http://homepage.mac.com/shoheishimizu/lingampapers.html
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FAQs

61

Q. My data is Gaussian.
LINGAM will not be useful.

¢ A. You're right. Try Gaussian methods.

« Comment: Hoyer et al. (UAI2008) showed:
"To what extent one can identify the model for a
mixture of Gaussian and non-Gaussian external
influence variables’.

62

Q. l applied LINGAM, but the result is not
reasonable to background knowledge.

< A. You might first want to check:

— Some model assumptions might be violated.
- Try other extensions of LINGAM
or non-parametric methods PC or FClI etc.
(Spirtes et al., 2000).

— Small sample size or small non-Gaussianity
- Try bootstrap to see if the result is reliable.

— Background knowledge might be wrong.
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Q. Relation to causal Markov
condition?

A. The following 3 estimation principles are
equivalent (zhang & Hyvarinen, ECML09; Hyvarinen et al., JMLR, 2010):
1. Maximize independence between external influences €;.

[ HP N A ciirn AF At A S Ak A

2. Minimize the sum of entropies of external influences €;.

3. Causal Markov condition (Each variable is independent of
its non-descendants in the DAG conditional on its
parents) AND maximization of independence between
the parents of each variable and its corresponding
external influences €, .
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Q. I am a psychometrician and am
more interested in latent factors.

¢ A. Shimizu, Hoyer, and Hyvarinen. (2009)
proposes LINGAM for latent factors:

f = Bf + d -- LINGAM for latent factors
X = Gf +e -- Measurement model
d d

07 708/ 04 08

1 T . n
X X X X X X X X X X X
@ e e 8 & [ @ e & e L
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Others

Q. Prior knowledge?

— Itis possible to incorporate prior knowledge. The accuracy of
DirectLINGAM is often greatly improved even if the amount of prior
knowledge is not so large (Inazumi et al., LVA/ICA2010).

Q. Sparse LINGAM?
— Zhang et al. (ICAQ09) and Hyvarinen et al. (JMLR, 2010).
— ICA + adaptive Lasso (zou, 2006).

Q. Bayesian approach?
— Hoyer and Hyttinen (NIPS08); Henao et al. (NIPS09).

Q. The idea can be applied to discrete variables?
— One proposal by Peters et al. (AISTATS2010).

— Comment: if your discrete variables are close to be continuous, e.g.,
ordinal scales with many points, LINGAM might work.

11



Q. Nonlinear extensions?

A. Several nonlinear SEMs have been proposed:
— DAG; No latent confounders.

1 %= Z fij (parentj of X )+ €; -- Imoto et al. (2002)
j

2. x, = f,(parents of x;)+e, - Hoyer et al. (NIPS08)

3. % = f,2(f,,(parents of x,)+&,) - znang etal. uaios)

66

¢ For two variable cases, unique identification possible

except several combinations of nonlinearities and
distributions (Hoyer et al., NIPS08; Zhang & Hyvarinen, UAIO9).

Nonlinear extensions
(continued)

* Proposals to aim at computational efficiency (Mooij et al.,
ICMLO09; Tilmann & Spirtes, NIPS09; Zhang & Hyvarinen, ECMLO09;UAI09).

¢ Pros:
— Nonlinear models are more general than linear models.

» Cons:
— Computationally demanding.
 Current: at most 7 or 8 variables.
« Perhaps, assumption of Gaussian external influences might help.
— Imoto et al. (2002) analyzes 100 variables.

— More difficult to allow other possible violations of LINGAM
assumptions, latent confounders etc.

67

Q. My data follows neither such linear

SEMs nor such nonlinear SEMs as you

have talked.

« A. Try non-parametric methods, e.g.,
— DAG: PC (spirtes & Glymour, 1991)
— DAG with latent confounders: FCI (Spirtes et al., 1995).

x, = f.(parents of x;,e,)

* Probably you get an (probably large)
equivalence class rather than a single model,
but that would be the best you currently can.
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Q. Deterministic relations?
« A. LINGAM is not applicable.

« See Daniusis et al. (UAI2010) for a method to
analyze deterministic relations.

69
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