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Abstract

• Linear structural equation models (linear SEMs) 
can be used to model data generating processes 
of variables.

• We review a new approach to learn or estimateWe review a new approach to learn or estimate 
linear structural equation models.

• The new estimation approach utilizes 
non-Gaussianity of data for model identification 
and uniquely estimates much wider variety of 
models.
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Outline 

• Part I. Overview (70 min.) : Shohei

• Break (10 min.)

• Part II. Recent advances (40 min): Yoshi
– Time series 

– Latent confounders

4

Motivation (1/2)
• Suppose that data X was randomly generated  

from either of the following two data generating 
processes:

Model 1: Model 2:

where     and     are latent variables (disturbances, errors).

• We want to estimate or identify which model 
generated the data X based on the data X only.
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Motivation (2/2)
• We want to identify which model generated the 

data X based on the data X only.

• If x1 and x2 are Gaussian, it is well known that 
we cannot identify the data generating process.

M d l 1 d 2 ll fit d t

1e 2e

– Models 1 and 2 equally fit data.

• If x1 and x2 are non-Gaussian, an interesting 
result is obtained: We can identify which of 
Models 1 and 2 generated the data.

• This tutorial reviews how such non-Gaussian 
methods work.

1e 2e

Problem formulation
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Basic problem setup (1/3)
• Assume that the data generating process of 

continuous observed variables     is graphically 
represented by a directed acyclic graph (DAG).
– Acyclicity means that there are no directed cycles.
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Example of a directed 
acyclic graph (DAG):

Example of a directed 
cyclic graph:
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Basic problem setup (2/3)
• Further assume linear relations of variables     .

• Then we obtain a linear acyclic SEM (Wright, 1921; Bollen, 

1989):

eBxx ijiji exbx   or

ix

where

– The      are continuous latent variables that are not 
determined inside the model, which we call external  
influences (disturbances, errors).

– The      are of non-zero variance and are independent.

– The ‘path-coefficient’ matrix B = [     ] corresponds to a DAG.
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• A three-variable linear acyclic SEM:

Example of linear acyclic SEMs
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• B corresponds to the data-generating DAG:
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Assumption of acyclicity
• Acyclicity ensures existence of an ordering of 

variables      that makes B lower-triangular with 
zeros on the diagonal.

0

0

0 0

0

ix

































2

1

2

1

2

1

003.1

5.100

e

e

x

x

x

x 00

















 





 222 03.10 exx

  

x3

x1

e3

e1

x2

1.5

-1.3

0

permB

e2























 3

2

3

2

3

2

000 exx
  

B

.versavicenotbut 

,,ofancestor an  bemay 

.

:isorderingThe

213

213

xxx

xxx 

11

Assumption of independence 
between external influences

• It implies that there are no latent confounders 
(Spirtes et al. 2000)

– A latent confounder is a latent variable that is a parent of more 
than or equal to two observed variables:

f

• Such a latent confounder     makes external influences 
dependent (Part II):
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• Assume that data X is randomly sampled 
from a linear acyclic SEM (with no latent 
confounders):
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Basic problem setup (3/3):
Learning linear acyclic SEMs

• Goal: Estimate the path-coefficient matrix B by 
observing data X only!
– B corresponds to the data-generating DAG.
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Problems: 
Identifiability problems of 

con entional methodsconventional methods

1414

Under what conditions B is 
identifiable?

• `B is identifiable’     `B is uniquely determined or 
estimated from p(x)’.



• Linear acylic SEM:

– B and p(e) induce p(x). 

– If p(x) are different for different B, then B is uniquely 
determined.
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Conventional estimation principle: 
Causal Markov condition

• If the data-generating model is a linear 
acyclic SEM, causal Markov condition 
holds : 

E h b d i bl i i i d d t f it– Each observed variable xi is independent of its 
non-descendants in the DAG conditional on its 
parents (Pearl & Verma, 1991) :
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Conventional methods based on 
causal Markov condition

• Methods based on conditional independencies 
(Spirtes & Glymour, 1991)

– Many linear acyclic SEMs give a same set of 
conditional independences and equally fit data.

• Scoring methods based on Gaussianity
(Chickering, 2002)

– Many linear acyclic SEMs give a same Gaussian 
distribution and equally fit data.

• In many cases, path-coefficient matrix B is not 
uniquely determined.

1717

• Two models with Gaussian e1 and      :

Example
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• Both introduce no conditional independence: 

• Both induce the same Gaussian distribution: 
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Non-Gaussian approachpp
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A new direction: 
Non-Gaussian approach

• Non-Gaussian data in many applications:
– Neuroinformatics (Hyvarinen et al., JMLR, 2001); 

Bioinformatics (Sogawa et al., ICANN2010); Social sciences 
(Micceri, 1989); Economics (Moneta, Entner, et al., 2010)

• Utilize non-Gaussianity for model identification.
– Bentler (Psychometrika, 1983)

• The path-coefficient matrix B is uniquely 
estimated if ei are non-Gaussian. 
– Shimizu, Hoyer, Hyvarinen & Kerminen (JMLR, 2006)

ie

2020Illustrative example: 
Gaussian vs non-Gaussian

Gaussian Non-Gaussian
(uniform)

Model 1:

x1 e1 x1

x2

x1

x2

11

80

ex




Model 2:

x1

x2

x2 e2

x1

x2

e1

e2

x1

x2

212 8.0 exx 

22

121 8.0

ex

exx




    1varvar 21  xx

    ,021  eEeE

2121

• Non-Gaussian version of linear acyclic SEM:

Linear Non-Gaussian 
Acyclic Model: LiNGAM
(Shimizu, Hyvarinen, Hoyer & Kerminen, JMLR, 2006)

eBxx exbx   or

where

– The external influence variables     (disturbances, 
errors) are 

• of non-zero variance.

• non-Gaussian and mutually independent.

ie
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Identifiability of LiNGAM model

• LiNGAM model can be shown to be
identifiable.
– B is uniquely estimated.

• To see the identifiability, helpful to review 
independent component analysis (ICA) 
(Hyvarinen et al., 2001).

2323

Independent Component Analysis 
(ICA) (Jutten & Herault, 1991; Comon, 1994)

• Observed random vector x is modeled by 

h

Asx 
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
p

j
jiji sax
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or

where
– The mixing matrix A = [    ] is square and is of full 

column rank.
– The latent variables      (independent components) 

are non-Gaussian and mutually independent.

• Then, A is identifiable up to permutation P and 
scaling D of the columns:

is

APDA ica

ija
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Estimation of ICA
• Most of estimation methods estimate           

(Hyvarinen et al., 2001)

• Most of the methods minimize mutual information (or its 
approximation) of estimated independent components: 

:1 AW

sWAsx 1

• W is estimated up to permutation P and scaling D of the rows:

• Consistent and computationally efficient algorithms:
– Fixed point (FastICA) (Hyvarinen,99); Gradient-based (Amari, 98)

– Semiparametric: no specific distributional assumption

xWs icaˆ

 1 PDAPDWWica
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Back to LiNGAM model
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Identifiability of LiNGAM (1/3):
ICA achieves half of identification

• LiNGAM model is ICA.
– Observed variables     are linear combinations of          

non-Gaussian independent external influences      :

eBIxeBxx  1)(

ix
ie

• ICA gives                                          .
– P: unknown permutation matrix

– D: unknown scaling (diagonal) matrix

• Need to determine P and D to identify B.

eWAe 1

)( BIPDPDWW ica
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Identifiability of LiNGAM (2/3):
No permutation indeterminacy  (1/6)

• ICA gives                                            .
– P : permutation matrix;  D: scaling (diagonal) matrix

• We want to find such a permutation matrix      that cancels the 
permutation i e :

)( BIPDPDWW ica

IPP 
P

Ppermutation , i.e.,            :

• We can show (Shimizu et al., UAI05) (illustrated in the next slides):
– If             , i.e., no permutation is made on the rows of        ,  

has no zero in the diagonal (obvious by definition).

– If              , i.e., any nonidentical permutation is made on the rows 
of         ,             has a zero in the diagonal.
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DW
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Identifiability of LiNGAM (2/3):
No permutation indeterminacy  (2/6)

• By definition          has all unities in the diagonal.
– The diagonal elements of B are all zeros.

• Acyclicity ensures existence of an ordering of variables 
that makes lower triangular and then is

BIW 

BIWBthat makes     lower triangular, and then                  is 
also lower triangular.

• So, WLG, can be assumed to be lower triangular:
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Identifiability of LiNGAM (2/3):

No permutation indeterminacy  (3/6)

• Premultiplying by a scaling (diagonal) matrix D does 
NOT change the zero/non-zero pattern of      :
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Identifiability of LiNGAM (2/3):
No permutation indeterminacy  (4/6)

• Any other permutation of the rows of       
changes the zero/non-zero pattern of        and 
brings zero in the diagonal:
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• Any other permutation of the rows of        
changes the zero/non-zero pattern of        and 
brings zero in the diagonal:
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Identifiability of LiNGAM (2/3):
No permutation indeterminacy  (5/6)
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Identifiability of LiNGAM (2/3):
No permutation indeterminacy  (6/6)

• We can find correct     by finding     that gives no 
zero on the diagonal of           (Shimizu et al., UAI05).icaWP

P P

• Thus, we can solve the permutation 
indeterminacy and obtain: 

 BIDDWPDWPWP ica

I
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Identifiability of LiNGAM (3/3): 
No scaling indeterminacy

• Now we have: 

• Then,

B)D(IWP ica

 icaWPD diag

• Divide each row of            by its corresponding 
diagonal element to get          , i.e.,     :

icaWP

  BIB)D(IDWPWP   11
diag icaica

BI  B
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Estimation of LiNGAM model

1. ICA-LiNGAM algorithm

2. DirectLiNGAM algorithm
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Two estimation algorithms
• ICA-LiNGAM algorithm 

(Shimizu, Hoyer, Hyvarinen & Kerminen, JMLR, 2006)

• DirectLiNGAM algorithm 
(Shimizu, Hyvarinen, Kawahara & Washio, UAI09)

• Both estimate an ordering of variables that makes g
the path-coefficient matrix B to be lower-triangular.
– Acyclicity ensures existence of such an ordering.
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Once such an ordering is 
found…

• Many existing methods can do:
– Pruning the redundant path-coefficients

• Sparse methods like weighted lasso (Zou, 2006）

– Finding significant path-coefficients 
• Testing, bootstrapping (Shimizu et al., 2006; Hyvarinen et al. 2010)
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1. Outline of ICA-LiNGAM algorithm
(Shimizu, Hoyer, Hyvarinen, & Kerminen, JMLR, 2006)

1. Estimate B by ICA       
+ permutation

2. Pruning

Redundant edges
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x3x3 23b13b
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1. Perform ICA (here, FastICA) to obtain an estimate of

ICA-LiNGAM algorithm (1/2): 
Step 1. Estimation of B

B)PD(IPDWW ica

2. Find a permutation     that makes the diagonal 
elements of           as large as possible in absolute 
value:                       

3. Normalize each row of            , then we get an 
estimate of I-B and     .

 iiicaWP
P

P ˆ
1

minˆ 

icaWP ˆ

Hungarian alg.
(Kuhn, 1955)

P

icaWP ˆˆ

B̂
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ICA-LiNGAM algorithm (2/2): 

Step 2. Pruning
• Find such an ordering of variables that makes 

estimated B be as close to be lower-triangular as 
possible.
– Find a permutation matrix Q that minimizes the sum of the 

elements in its upper triangular part:elements in its upper triangular part:

– Approximate algorithm for large variables (Hoyer et al., ICA06)

 



ji

ij
T 2ˆminˆ QBQQ

Q

x3

x2x1

x3x3
0.1

0.1 3

0.1

0.1 3

55

-0.01

x1 x2

4040

Basic properties 
of ICA-LiNGAM algorithm

• ICA-LiNGAM algorithm = ICA + permutations
– Computationally efficient with the help of well-developed 

ICA techniques.

• Potential problems 
– ICA is an iterative search method:

• May get stuck in a local optimum if the initial guess or step 
size is badly chosen.

– The permutation algorithms are not scale-invariant:
• May provide different estimates for different scales of 

variables.

Estimation of LiNGAM model

41

1. ICA-LiNGAM algorithm

2. DirectLiNGAM algorithm

4242

2. DirectLiNGAM algorithm
(Shimizu, Hyvarinen, Kawahara & Washio, UAI2009)

• Alternative estimation method without ICA
– Estimates an ordering of variables that makes path-

coefficient matrix B to be lower triangular.


A full DAG

• Many existing methods can do further pruning or 
finding significant path coefficients (Zou, 2006; 
Shimizu et al., 2006; Hyvarinen et al. 2010) 
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Basic idea (1/2) :

An exogenous variable can be at the 
top of a right ordering 

• An exogenous variable is a variable with no 
parents (Bollen, 1989), here .

The corresponding row of B has all zeros

jx

3x

– The corresponding row of B has all zeros.

• So, an exogenous variable can be at the top of
such an ordering that makes B lower triangular.
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44Basic idea (2/2): 
Regress exogenous out

• Compute the residuals                  regressing the 
other variables                 on exogenous :
– The residuals form a LiNGAM model.    

– The ordering of the residuals is equivalent to that of 
corresponding original variables
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• Iteratively find exogenous variables until all the 
variables are ordered:
1. Find an exogenous variable      .

– Put       at the top of the ordering.                      

– Regress       out. 

2 Fi d id l h

Outline of DirectLiNGAM

3x

)3(r

3x
3x

2. Find an exogenous residual, here     .
– Put      at the second top of the ordering.

– Regress      out.
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Identification of an exogenous 
variable (two variable cases)
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46-2
Need to use Darmoir-Skitovitch’ 

theorem (Darmois, 1953)
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where are independent 
random variables. 

If there exists a non-Gaussian 
for which               , 

and     are dependent.
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• Lemma 1: and its residual 

are independent for all is exogenous

Identification of an exogenous 
variable (More than 2 variable cases)
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ji  jxare independent for all is exogenous

• In practice, we can identify an exogenous variable     
by finding a variable that is most independent of 
its residuals. 

ji  jx
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• Evaluate independence between a variable and a 
residual by a nonlinear correlation:

• Taking the sum over all the residuals we get:

48

Independence measures

    tanh,corr )( grgx j
ij

• Taking the sum over all the residuals, we get:

• Can use more sophisticated measures as well 
(Bach & Jordan, 2002; Gretton et al., 2005; Kraskov et al., 2004).

– Kernel-based independence measure (Bach & Jordan, 2002)

often gives more accurate estimates (Sogawa et al., IJCNN10).
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49

Important properties of 
DirectLiNGAM

• DirectLiNGAM repeats:
– Least squares simple linear regression

– Evaluation of pairwise independence between each 
variable and its residualsvariable and its residuals

• No algorithmic parameters like stepsize, initial 
guesses, convergence criteria

• Guaranteed convergence in a fixed number of 
steps (the number of variables)

50

Estimation of LiNGAM model: 
Summary (1)

• Two estimation algorithms:
– ICA-LiNGAM: Estimation using ICA

• Pros. Fast
• Cons Possible local optimum; Not scale invariant• Cons. Possible local optimum; Not scale-invariant

– DirectLiNGAM: Alternative estimation without ICA
• Pros. Guaranteed convergence; Scale-invariant
• Cons. Less fast

– Cf. Neither needs faithfulness (Shimizu et al., JMLR, 
2006; Hoyer, personal comm., July, 2010).

51

• Experimental comparison of the two algorithms: 
(Sogawa et al., IJCNN2010) 

• Scalability: Both can analyze 100 variables. The 
performances depend on the sample size etc., of course!
S l i B th d t l t 1000 l i f

Estimation of LiNGAM model: 
Summary (2)

• Sample size: Both need at least 1000 sample size for 
more than 10 variables.

• Scale invariance: ICA-LiNGAM is less robust for changing 
scales of variables.

• Local optima?: 
– For less than 10 variables, ICA-LiNGAM often a bit 

better.
– For more than 10 variables, DirectLiNGAM often better 

perhaps because the problem of local optima becomes 
more serious?

52

Testing and 
Reliability evaluationy

53

Testing testable assumptions

• Non-Gaussianity:
– Gaussianity tests

• Could detect violations of some assumptions:
– Local test

• Independence of external influences
• Conditional independencies between observed 

variables      (causal Markov condition)
• Linearity

– Overall fit of the model assumptions
• Chi-square test using 3rd and/or 4th-order moments 

(Shimizu & Kano, 2008) 
• Still under development

ie

ix
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54

Reliability evaluation

• Need to evaluate statistical reliability of LiNGAM 
results:
– Sample fluctuations
– Smaller non-Gaussianity makes the model closer to 

be NOT identifiable.

• Reliability evaluation by bootstrapping:
(Komatsu et al., ICANN2010)

– If either the sample size is too small or the magnitude 
of non-Gaussianity is too small, LiNGAM would give 
very different results for bootstrap samples.

55

Extensions

56

Extensions (a partial list)

• Relaxing the assumptions of LiNGAM model:
– Acyclic  Cyclic (Lacerda et al., UAI2008)

– Single homogenous population 
 heterogeneous population (Shimizu et al., 2007)

– i.i.d. sampling  time structures (Part II.) (Hyvarinen et al, 

– No latent confounders  Allow latents (Part II.) (Hoyer et al., 

– Linear  non-linear (Hoyer et al., NIPS08; Zhang & Hyvarinen, UAI09;      
Tilmann & Spirtes, NIPS09)

JMLR,2010, Kawahara, S et al., 2010)

IJAR, 08; Kawahara, Bollen et al., 2010)

57

Application areas so far

58

Non-Gaussian SEMs have 
been applied to…

• Neuroinformatics
– Brain connectivity analysis 

(Hyvarinen et al., JMLR, 2010; Zhang & Hyvarinen, UAI 2010.)

• Bioinformatics
Gene network estimation (Sogawa et al ICANN2010)– Gene network estimation (Sogawa et al., ICANN2010)

• Economics (Wan & Tan, 2009; Moneta, Entner, Hoyer & Coad, 2010)

• Genetics (Ozaki & Ando, 2009)

• Environmental sciences (Niyogi et al., 2010)

• Physics (Kawahara, Shimizu & Washio, 2010)

• Sociology (Kawahara, Bollen, Shimizu & Washio, 2010)

59

Final summary of Part I

• Use of non-Gaussianity in linear SEMs is 
useful for model identification.

• Non-Gaussian data is encountered in many 
applicationsapplications.

• The non-Gaussian approach can be a good 
option.

• Links to codes and papers: 
http://homepage.mac.com/shoheishimizu/lingampapers.html 
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60

FAQs

61

Q. My data is Gaussian. 
LiNGAM will not be useful.

• A. You’re right. Try Gaussian methods.

• Comment: Hoyer et al. (UAI2008) showed: 
`To hat e tent one can identif the model for aTo what extent one can identify the model for a 
mixture of Gaussian and non-Gaussian external 
influence variables’.

62

Q. I applied LiNGAM, but the result is not 
reasonable to background knowledge.

• A. You might first want to check:  
– Some model assumptions might be violated. 
 Try other extensions of LiNGAM

or non-parametric methods PC or FCI etcor non parametric methods PC or FCI etc. 
(Spirtes et al., 2000).

– Small sample size or small non-Gaussianity
 Try bootstrap to see if the result is reliable.

– Background knowledge might be wrong.

63

Q. Relation to causal Markov 
condition?

• A. The following 3 estimation principles are 
equivalent (Zhang & Hyvarinen, ECML09; Hyvarinen et al., JMLR, 2010):
1. Maximize independence between external influences    .

2 Minimize the sum of entropies of external influences
ie

e2. Minimize the sum of entropies of external influences    . 

3. Causal Markov condition (Each variable is independent of 
its non-descendants in the DAG conditional on its 
parents)  AND maximization of independence between 
the parents of each variable and its corresponding 
external influences     .

ie

ie

64

Q. I am a psychometrician and am 
more interested in latent factors.

• A. Shimizu, Hoyer, and Hyvarinen. (2009) 
proposes LiNGAM for latent factors: 

dBff  -- LiNGAM for latent factors

eGfx  -- Measurement model

65

• Q. Prior knowledge?
– It is possible to incorporate prior knowledge. The accuracy of 

DirectLiNGAM is often greatly improved even if the amount of prior 
knowledge is not so large (Inazumi et al., LVA/ICA2010).

• Q. Sparse LiNGAM?
– Zhang et al. (ICA09) and Hyvarinen et al. (JMLR, 2010).
– ICA + adaptive Lasso (Zou 2006)

Others

ICA + adaptive Lasso (Zou, 2006).

• Q. Bayesian approach?
– Hoyer and Hyttinen (NIPS08); Henao et al. (NIPS09).

• Q. The idea can be applied to discrete variables?
– One proposal by Peters et al. (AISTATS2010).
– Comment: if your discrete variables are close to be continuous, e.g., 

ordinal scales with many points, LiNGAM might work.
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66

• A. Several nonlinear SEMs have been proposed: 
– DAG; No latent confounders.

Q. Nonlinear extensions?

  i
j

iiji ex jfx  ofparent -- Imoto et al. (2002)1.

• For two variable cases, unique identification possible 
except several combinations of nonlinearities and 
distributions (Hoyer et al., NIPS08; Zhang & Hyvarinen, UAI09).

 
  iiiii

iiii

j

exffx

exfx




 ofparents

ofparents

1,
1
2,

-- Hoyer et al. (NIPS08)

-- Zhang et al. (UAI09)

2.

3.

67

• Proposals to aim at computational efficiency (Mooij et al., 
ICML09; Tilmann & Spirtes, NIPS09; Zhang & Hyvarinen, ECML09;UAI09).

• Pros: 
– Nonlinear models are more general than linear models.

Nonlinear extensions 
(continued)

g

• Cons:
– Computationally demanding.

• Current: at most 7 or 8 variables.
• Perhaps, assumption of Gaussian external influences might help.

– Imoto et al. (2002) analyzes 100 variables.

– More difficult to allow other possible violations of LiNGAM
assumptions, latent confounders etc.

68

• A. Try non-parametric methods, e.g.,
– DAG: PC (Spirtes & Glymour, 1991)

– DAG with latent confounders: FCI (Spirtes et al 1995)

Q. My data follows neither such linear 
SEMs nor such nonlinear SEMs as you 

have talked.

– DAG with latent confounders: FCI (Spirtes et al., 1995).

• Probably you get an (probably large) 
equivalence class rather than a single model, 
but that would be the best you currently can.

 iiii exfx ,ofparents

69

Q. Deterministic relations?

• A. LiNGAM is not applicable. 

• See Daniusis et al. (UAI2010) for a method to 
analyze deterministic relationsanalyze deterministic relations.


