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Abstract

There is much interest in the Hierarchi-
cal Dirichlet Process Hidden Markov Model
(HDP-HMM) as a natural Bayesian nonpara-
metric extension of the traditional HMM.
However, in many settings the HDP-HMM’s
strict Markovian constraints are undesirable,
particularly if we wish to learn or encode
non-geometric state durations. We can ex-
tend the HDP-HMM to capture such struc-
ture by drawing upon explicit-duration semi-
Markovianity, which has been developed in
the parametric setting to allow construction
of highly interpretable models that admit
natural prior information on state durations.

In this paper we introduce the explicit-
duration HDP-HSMM and develop posterior
sampling algorithms for efficient inference in
both the direct-assignment and weak-limit
approximation settings. We demonstrate the
utility of the model and our inference meth-
ods on synthetic data as well as experiments
on a speaker diarization problem and an ex-
ample of learning the patterns in Morse code.

1 Introduction

Given a set of sequential data in an unsupervised set-
ting, we often aim to infer meaningful states, or “top-
ics,” present in the data along with characteristics that
describe and distinguish those states. For example,
in a speaker diarization (or who-spoke-when) prob-
lem, we are given a single audio recording of a meet-
ing and wish to infer the number of speakers present,
when they speak, and some characteristics governing
their speech patterns. In analyzing DNA sequences,
we may want to identify and segment region types us-
ing prior knowledge about region length distributions.

Such learning problems for sequential data are per-
vasive, and so we would like to build general models
that are both flexible enough to be applicable to many
domains and expressive enough to encode the appro-
priate information.

Hidden Markov Models (HMMs) have proven to be
excellent general models for approaching such learn-
ing problems in sequential data, but they have two
significant disadvantages: (1) state duration distribu-
tions are necessarily restricted to a geometric form that
is not appropriate for many real-world data, and (2)
the number of hidden states must be set a priori so
that model complexity is not inferred from data in a
Bayesian way.

Recent work in Bayesian nonparametrics has ad-
dressed the latter issue. In particular, the Hierarchi-
cal Dirichlet Process HMM (HDP-HMM) has provided
a powerful framework for inferring arbitrarily large
state complexity from data [9]. However, the HDP-
HMM does not address the issue of non-Markovianity
in real data. The Markovian disadvantage is even
compounded in the nonparametric setting, since non-
Markovian behavior in data can lead to the creation
of unnecessary extra states and unrealistically rapid
switching dynamics [3].

One approach to avoiding the rapid-switching prob-
lem is the Sticky HDP-HMM [2], which introduces a
learned self-transition bias to discourage rapid switch-
ing. The Sticky model has demonstrated significant
performance improvements over the HDP-HMM for
several applications [3]. However, it shares the HDP-
HMM’s restriction to geometric state durations, thus
limiting the model’s expressiveness regarding duration
structure. Moreover, its global self-transition bias is
shared amongst all states, and so it does not allow
for learning state-specific duration information. The
infinite Hierarchical HMM [5] induces non-Markovian
state durations at the coarser levels of its state hierar-
chy, but even the coarser levels are constrained to have
a sum-of-geometrics form, and hence it can be difficult



to incorporate prior information.

These potential improvements to the HDP-HMM
motivate an investigation of explicit-duration semi-
Markovianity, which has a history of success in the
parametric setting. In this paper, we combine semi-
Markovian ideas with the HDP-HMM to construct a
general class of models that allow for both Bayesian
nonparametric inference of state complexity as well
as incorporation of general duration distributions. In
addition, the sampling techniques we develop for the
Hierarchical Dirichlet Process Hidden semi-Markov
Model (HDP-HSMM) provide new approaches to in-
ference in HDP-HMMs that can avoid some of the dif-
ficulties which result in slow mixing rates.

In Section 2, we provide a brief introduction to both
the HDP-HMM and parametric Hidden semi-Markov
models. In Section 3 we introduce the HDP-HSMM,
and in Section 4 we develop efficient sampling inference
methods including a direct-assignment sampler and a
weak-limit approximate sampler. Section 5 demon-
strates the effectiveness of the HDP-HSMM model on
both synthetic and real data, including applications
to a speaker diarization problem and to learning the
structure of Morse code.

Code and supplementary materials can be found at
www.mit.edu/~mattjj/uai2010.

2 Background

2.1 HDP-HMM Background

The HDP-HMM [9] provides a natural Bayesian non-
parametric treatment of the classical Hidden Markov
Model approach to sequential statistical modeling.
The model employs an HDP prior over an infinite
state space, which enables both inference of state com-
plexity and Bayesian mixing over models of varying
complexity. Thus the HDP-HMM subsumes the usual
model selection problem, replacing other techniques
for choosing a fixed number of HMM states such as
cross-validation procedures, which can be computa-
tionally expensive and restrictive. Furthermore, the
HDP-HMM inherits many of the desirable properties
of the HDP prior, especially the ability to encourage
model parsimony while allowing complexity to grow
with the number of observations. We provide a brief
overview of the HDP-HMM model and relevant infer-
ence techniques, which we extend to develop the HDP-
HSMM.

The generative HDP-HMM model (Figure 1) can be
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Figure 1: Graphical model for the HDP-HMM.

summarized as:

β|γ ∼ GEM(γ)

πj |β, α ∼ DP(α, β) j = 1, 2, . . .

θj |H, λ ∼ H(λ) j = 1, 2, . . .

xt|{πj}
∞

j=1, xt−1 ∼ πxt−1
t = 1, . . . , T

yt|{θj}
∞

j=1, xt ∼ f(θxt
) t = 1, . . . , T

where GEM denotes a stick-breaking process [8].

The variable sequence (xt) represents the hidden state
sequence, and (yt) represents the observation sequence
drawn from the observation distribution f . The set
of state-specific observation distribution parameters is
represented by {θj}, which are draws from the prior
H parameterized by λ. The HDP plays the role of a
prior over infinite transition matrices: each πj is a DP
draw and is interpreted as the transition distribution
from state j, i.e. the jth row of the transition matrix.
The πj are linked by being DP draws parameterized by
the same discrete measure β, thus E[πj ] = β and the
transition distributions tend to have their mass con-
centrated around a typical set of states, providing the
desired bias towards re-entering and re-using a consis-
tent set of states.

Though several of the objects in the HDP-HMM are
infinite and thus cannot be fully instantiated, the con-
struction allows us to analytically marginalize over β,
{πj}, and {θj} (given H is conjugate to f) and deal
only with the (xt) variables. Using this technique we
can effectively represent the HDP by only instantiating
as much as we need: the xt become Markov exchange-
able, and we can exploit the exchangeability to pro-
duce samplers of the form of the Chinese Restaurant
Franchise (CRF) [9].

The CRF sampling methods provide us with effective
approximate inference for the full infinite-dimensional
HDP, but they have a particular weakness in the con-
text of the HDP-HMM: each state transition must be
re-sampled individually, and strong correlations within
the state sequence significantly reduce mixing rates for
such operations [3].

www.mit.edu/~mattjj/uai2010
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Figure 2: A graphical model for the HSMM with ex-
plicit counter and finish nodes.

As a result, finite approximations to the HDP have
been studied for the purpose of providing alternative
approximate inference schemes. Of particular note
is the popular weak limit approximation, used in [2],
which has been shown to reduce mixing times for HDP-
HMM inference while sacrificing little of the “tail” of
the infinite transition matrix.

2.2 HSMM Background

There are several modeling approaches to semi-
Markovianity [6], but here we focus on explicit dura-

tion semi-Markovianity; i.e., we are interested in the
setting where each state’s duration is given an explicit
distribution.

The basic idea underlying this HSMM formalism is to
augment the generative process of a standard HMM
with a random state duration time, drawn from some
state-specific distribution when the state is entered.
The state remains constant until the duration expires,
at which point there is a Markov transition to a new
state. It can be cumbersome to draw the process into
a proper graphical model, but one compelling repre-
sentation in [6] is to add explicit “timer” and “finish”
variables, as depicted in Figure 2. The (Ct) variables
serve to count the remaining duration times, and are
deterministically decremented to zero. The (Ft) vari-
ables indicate that there is a Markov transition at time
t + 1, and Ft = 1 causes Ct+1 to be sampled from the
duration distribution of xt+1.

An equivalent and somewhat more intuitive picture is
given in Figure 3 (also from [6]), though the number
of nodes in the model is itself random. In this picture,
we see there is a standard Markov chain on “super-
state” nodes, (zs)

S
s=1, and these super-states in turn

emit random-length segments of observations, of which
we observe the first T . The symbol Di is used to de-
note the random length of the observation segment of
super-state i for i = 1, . . . , S. The “super-state” pic-
ture separates the Markovian transitions from the seg-
ment durations, and is helpful in building an effective
CRF-style sampler for the HDP-HSMM.

It is often taken as convention that state self-

z1 z2 zS. . .

y1

. . . . . . . . .

yTy
D1

y
D1 + 1

y
D1 + D2

Figure 3: HSMM interpreted as a Markov chain on
a set of super-states, (zs)

S
s=1. The number of shaded

nodes associated with each zs is random, drawn from
a state-specific duration distribution.

transitions should be ruled out in an HSMM, because
if a state can self-transition then the duration distribu-
tion does not fully capture a state’s possible duration
length. We adopt this convention, which has a signif-
icant impact on the inference algorithms described in
Section 4. When defining an HSMM model, one must
also choose whether the observation sequence ends ex-
actly on a segment boundary or whether the observa-
tions are censored at the end, so that the final segment
may possibly be cut off in the observations. This cen-
soring convention allows for slightly simpler formulae
and computations, and thus is adopted in this paper.
We do, however, assume the observations begin on a
segment boundary. For more details and alternative
conventions, see [4].

It is possible to perform efficient message-passing in-
ference along an HSMM state chain (conditioned on
parameters and observations) in a way similar to the
standard alpha-beta dynamic programming algorithm
for standard HMMs. The “backwards” messages are
crucial in the development of efficient sampling infer-
ence in Section 4, and so we briefly describe the rel-
evant part of the existing HSMM message-passing al-
gorithm. As derived in [6], we can define and compute
the backwards message from t to t + 1 as:

βt(i) , p(yt+1:T |xt = i, Ft = 1) (1)

=
∑

j

β∗

t (j)p(xt+1 = j|xt = i)

β∗

t (i) , p(yt+1:T |xt+1 = i, Ft = 1)

=

T−t∑

d=1

βt+d(i)

duration prior term
︷ ︸︸ ︷

p(Dt+1 = d|xt+1 = i)

· p(yt+1:t+d|xt+1 = i, D = d)
︸ ︷︷ ︸

likelihood term

βT (i) , 1

where we have split the messages into β and β∗ com-
ponents for convenience and used yk1:k2

to denote
(yk1

, . . . , yk2
). Also note that we have used Dt+1 to

represent the duration of the segment beginning at



time t + 1. The conditioning on the parameters of
the distributions is suppressed from the notation.

The Ft = 1 condition indicates a new segment begins
at t + 1, and so to compute the message from t + 1 to
t we sum over all possible lengths d for the segment
beginning at t + 1, using the backwards message at
t + d to provide aggregate future information given
a boundary just after t + d. There is an additional
censoring term in the expression for β∗

t (i) which is not
shown for simplicity; it is described in [4].

The greater expressivity of the HSMM model neces-
sarily increases the computational cost of the message
passing algorithm: the above message passing requires
O(T 2N + TN2) basic operations for a chain of length
T and state cardinality N , while the correspond-
ing HMM message passing algorithm requires only
O(TN2). However, if we truncate possible segment
lengths included in the inference messages to some
maximum dmax, we can instead express the asymptotic
message passing cost as O(TdmaxN

2). Such trunca-
tions are often natural because both the duration prior
term and the segment likelihood term contribute to
the product rapidly vanishing with sufficiently large d.
Though the increased complexity of message-passing
over an HMM significantly increases the cost per iter-
ation of sampling inference, the cost is offset because
HSMM samplers often require far fewer total iterations
to converge (see Section 4).

3 Defining the HDP-HSMM

In this section we formally define the HDP-HSMM and
point out some particular details in the definition that
have significant implications for inference algorithms.
The generative process of the HDP-HSMM employs a
combination of the preceding ideas:

β|γ ∼ GEM(γ)

πj |β, α ∼ DP(α, β) j = 1, 2, . . .

θj |H, λ ∼ H(λ) j = 1, 2, . . .

ωj |Ω ∼ Ω j = 1, 2, . . .

τ := 0, s := 1, while τ < T do:

zs|{πj}
∞

j=1, zs−1 ∼ π̃zs−1

Ds|ω ∼ D(ωzs
)

ys = yτ+1:τ+Ds+1|{θj}
∞

j=1, zs, Ds
iid
∼ f(θzs

)

τ := τ + Ds

s := s + 1

where we have used (zs) as a super-state sequence in-
dexed by s and {ωj}

∞

j=1 to represent the parameters for
the duration distributions of each of the states, with
D representing the class of duration distributions. At

the end of the process, we censor the observations to
have length T exactly, cutting off any excess observa-
tions if necessary, so as to generate y1:T . It is also
convenient to refer to xt as the state index to which
an observation yt belongs, for t = 1, . . . , T .

Note that we draw zs|{πj}, zs−1 from π̃zs−1
, which

we use to denote the conditional measure constructed
from πzs−1

by removing the atom corresponding to
zs−1 and re-normalizing appropriately. This part of
the construction effectively rules out self-transitions.

If D, the duration distribution class, is geometric, we
effectively recover the HDP-HMM (just as we would
recover a standard HMM from an HSMM with geo-
metric duration distributions) but the resulting infer-
ence procedure remains distinct from the HDP-HMM.
Thus the HDP-HSMM sampling inference methods de-
scribed in the next section provide a novel alternative
to existing HDP-HMM samplers with some potentially
significant advantages.

4 Sampling Inference

In this section we briefly introduce both a new direct-
assignment sampler (of the style in [9]) and a new
weak-limit sampler (similar to that in [3]) for efficient
HDP-HSMM inference. For details, see the supple-
mentary material.

4.1 Finite HSMM Blocked State Sampling

It is important for the development of both samplers to
describe a message-backwards, sample-forwards tech-
nique to block sample from the posterior distribution
on a (finite-dimensional) semi-Markov state chain. A
similar idea [3] is employed to block-sample the entire
hidden state sequence in finite (or weak-limit HDP)
HMM models. However, in the case of HSMMs we
must also sample from the posterior of the duration
distribution.

If we compute the backwards messages β and β∗ of
(1), then we can easily draw a posterior sample for the
first state according to:

p(x1 = i|y1:T ) ∝ p(x1 = i)p(y1:T |x1 = i, F0 = 1)

= p(x1 = i)β∗

0(i)

where we have used the assumption that the observa-
tion sequence begins on a segment boundary (F0 = 1),
and again we have suppressed notation for condition-
ing on parameters. Conditioning on the initial state
draw, x̄1, we can then draw a sample of D1|y1:T , x1,



the posterior duration of the first state, via:

p(D1 = d|y1:T , x1 = x̄1, F0 = 1) = (2)

p(D1 = d)p(y1:d|D1 = d, x1 = x̄1, F0 = 1)βd(x̄1)

β∗

0(x̄1)

We can repeat the process by then considering xD1+1

to be our new initial state with initial distribution
given by p(xD1+1 = i|x1 = x̄1). This forward-
sampling algorithm with posterior draws from dura-
tion distributions has not previously been described
for the HSMM. It can be viewed as an extension of
the changepoint sampling technique developed in [1]
(in which segment parameters are assumed indepen-
dent) to the setting where segment parameters are re-
visited according to Markovian state dynamics.

4.2 Direct-Assignment Sampler

To create a direct-assignment sampler based on the
HDP-HMM direct-assignment sampler of [9], we can
leverage the viewpoint of an HSMM as an HMM on
super-state segments and split the sampling update
into two steps. First, conditioning on a segmenta-
tion (which defines super-state boundaries but not la-
bels), we can view blocks of observations as atomic
with a single predictive likelihood score for the en-
tire block. We can then run an HDP-HMM direct-
assignment sampler on the super-state chain with the
caveat that we have outlawed self-transitions. Sec-
ond, given a super-state sequence we can efficiently
re-sample the segmentation boundaries.

We can rule out self-transitions in the super-state se-
quence while maintaining a “complete” set of tran-
sitions by performing latent history sampling [7].
We sample super-state transitions without any con-
straints, and we reject any samples that result in self-
transitions while counting the number of such rejec-
tions for each state. These “dummy” self-transitions,
which are not reflected in the super-state sequence, al-
low us to sample posterior super-state transitions ac-
cording to the standard HDP direct-assignment sam-
pler.

To re-sample the segmentation given a super-state se-
quence, we first sample the posterior observation pa-
rameters (which are marginalized in first sampling
step) and duration parameters (which are independent
of the first step) for each unique state. Next, we index
the super-state sequence in order from 1 to S and con-
struct an S-state finite HSMM on states (xt)

T
1 with

a transition matrix that has 1s on its first superdiag-
onal and zeros elsewhere. We define the observation
distribution of state s ∈ {1, . . . , S} to be f(θzs

) and
the duration distribution of state s to be D(ωzs

). If
we set x1 = z1, this constructed HSMM always follows

the super-state sequence upon which we are condition-
ing, and so we can run the finite HSMM’s messages-
backwards, sample-forwards scheme to efficiently con-
struct a posterior sample of the segmentation.

It is interesting to consider how this sampling algo-
rithm differs from the HDP-HMM algorithm when ge-
ometric duration distributions are used. From a gener-
ative standpoint the model classes are identical, but in
the HDP-HSMM sampling algorithm entire state seg-
ments are resampled at once. Thus the HDP-HSMM
sampling method may be useful not only for the case
of non-geometric durations, but also as an HDP-HMM
sampler that avoids the usual mixing issues.

4.3 Weak-Limit Sampler

The weak-limit sampler for an HDP-HMM [2] con-
structs a finite approximation to the HDP transitions
prior with finite L-dimensional Dirichlet distributions,
motivated by the fact that the infinite limit of such a
construction converges in distribution to a true HDP:

β|γ ∼ Dir(γ/L, . . . , γ/L)

πj |α, β ∼ Dir(αβ1, . . . , αβL) j = 1, . . . , L

where we again interpret πj as the transition distri-
bution for state j and β as the distribution which
ties state distributions together and encourages shared
sparsity. Practically, the weak limit approximation en-
ables the instantiation of the transition matrix in a fi-
nite form, and thus allows block sampling of the hidden
state chain, resulting in greatly accelerated mixing.

The main challenge is that, as in the infinite case, the
hierarchical Dirichlet construction is not a conjugate
prior for the transitions present in the hidden state se-
quence because we do not observe any self-transitions.
However, we can sample geometric auxiliary variables
to complete the data, effectively marginalizing over
self-transitions and allowing conjugate inference. See
the supplementary material for details.

5 Results

In this section we apply the HDP-HSMM weak-limit
sampler to both synthetic and real data.

5.1 Synthetic Data

We evaluated the HDP-HSMM model and infer-
ence techniques by generating observations from both
HSMMs and HMMs and comparing performance to
the HDP-HMM. The models learn many parameters
including observation, duration, and transition param-
eters for each state. For the sake of brevity we present
the normalized Hamming error (as described in [2])
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(b) HDP-HSMM

Figure 4: HDP-HSMM and HDP-HMM applied to
data from a Poisson-HSMM.

of the sampled state sequences as a summary met-
ric, since it involves all learned parameters. To com-
pute the normalized Hamming error, we greedily iden-
tify inferred state labels with the ground truth labels
and measure the proportion of correctly labeled states.
Note that if any states are superfluous or missing in
the inferred sequence their corresponding labels are
counted purely as error. In these plots, the blue line
indicates the median error across all 25 chains, while
the red lines indicate 10th and 90th percentile errors.

Figure 4 summarizes the results of applying both an
HDP-HSMM and an HDP-HMM to data generated
from an HSMM with four states and Poisson dura-
tions. The observations for each state are mixtures
of 2-dimensional Gaussians with significant overlap,
with parameters for each state sampled i.i.d. from a
Normal Inverse-Wishart (NIW) prior. There were 25
chains run in the experiment, with 5 chains on each of
5 generated observation sequences. The HDP-HMM is
unable to capture the proper duration statistics and so
its state sampling error remains high, while the HDP-
HSMM is able to effectively capture the correct tempo-
ral model and thus effectively separate the states and
significantly reduce posterior uncertainty. The HDP-
HMM also fails to identify the true number of states.
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Figure 5: The HDP-HSMM and HDP-HMM applied
to data from an HMM.

By setting the class of duration distributions to be a
strict superclass of the geometric distribution, we can
allow an HDP-HSMM model to learn an HMM from
data when appropriate. One such distribution class is
the class of negative binomial distributions, denoted
NegBin(r, p), the discrete analog of the Gamma distri-
bution, which covers the class of geometric distribu-
tions when r = 1.

Figure 5 shows a negative binomial HDP-HSMM learn-
ing an HMM model from data generated from an HMM
with four states. The observation distribution for each
state is a 10-dimensional Gaussian, again with param-
eters sampled i.i.d. from a NIW prior. The prior over
r was set to be uniform on {1, 2, . . . , 6}. The sampler
chains quickly concentrated at r = 1 for all state dura-
tion distributions. There is only a slight loss in mixing
time for the negative binomial HDP-HSMM compared
to the HDP-HMM on this data.

5.2 Learning Morse Code

As an example of duration information disambiguat-
ing states, we also applied both an HDP-HSMM and
an HDP-HMM to spectrogram data from audio of the
Morse code alphabet (see Figure 6). The data can
clearly be partitioned into “tone” and “silence” clus-



Figure 6: A spectrogram segment of Morse code audio.

(a) HMM state labeling.

(b) HSMM state labeling.

Figure 7: Each model applied to Morse code data.

ters without inspecting temporal structure, but only
by incorporating duration information can we disam-
biguate the “short tone” and “long tone” states and
thus learn the correct state representation.

In the HDP-HSMM we employ a delayed-geometric
duration distribution, in which a state’s duration is
chosen by first waiting some w samples and then sam-
pling a geometric. Both the wait w and geometric pa-
rameter p are learned from data, with a uniform prior
over the set {0, 1, . . . , 20} for w and a Beta(1, 1) uni-
form prior over p. This duration distribution class is
also a superset of the class of geometric distributions,
since the wait parameter w can be learned to be 0.

We applied both the HDP-HSMM and HDP-HMM to
the data and found that both quickly concentrate at
single explanations: the HDP-HMM finds only two
states while the HDP-HSMM correctly disambiguates
three, shown in Figure 7. The two “tone” states
learned by the HDP-HSMM have w parameters that
closely capture the near-deterministic pulse widths,
with p learned to be near 1. The “silence” segments
are better explained as one state with more variation
in its duration statistics. Hence, the HDP-HSMM cor-
rectly uncovers the Morse Code alphabet as a natural
explanation for the statistics of the audio data.

5.3 Speaker Diarization

The NIST Rich Transcription Database is a standard
dataset for the speaker diarization problem. It consists
of audio recordings for each of 21 meetings with var-
ious numbers of participants. The Sticky HDP-HMM
of [2] achieved state-of-the-art diarization performance
on this dataset using a similar inference scheme. We
use this dataset to demonstrate the practical differ-
ences in the HDP-HSMM sampling algorithm.
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Figure 8: Relatively fast burn-in of an HDP-HSMM
sampler. Compare to Figure 3.19(b) of [3].

We used the first 19 Mel Frequency Cepstral Coeffi-
cients (MFCCs) computed over 30ms windows spaced
every 10ms as our feature vectors, and reduced the di-
mensionality from 19 to 4 by projecting onto the first
four principle components. We also smoothed and sub-
sampled the data so as to make each discrete state cor-
respond to 100ms of real time, resulting in observation
sequences of length approximately 8000–10000. We
modeled the features as mixtures of Gaussians. Our
observation setup mostly follows that of [2], but our
time binning is significantly finer. For duration dis-
tributions, we again employed the delayed-geometric
with the prior on each state’s wait parameter as uni-
form over {40, 41, . . . , 60}. In this way we not only im-
pose a minimum duration to avoid rapid state switch-
ing or learning in-speaker dynamics, but also force the
state sampler to make minimum “block” moves of non-
trivial size so as to speed mixing.

Figure 8 shows the progression of nine different HDP-
HSMM chains on the NIST 20051102-1323 meeting
over a small number of iterations. Within two hun-
dred iterations, most chains have achieved approxi-
mately 0.4 normalized Hamming error or less, while
it takes 5000 to 30000 iterations for the Sticky HDP-
HMM sampler to mix to the same performance on the
same meeting, as shown in Figure 3.19(b) of [3]. This
reduction in the number of iterations for the sampler
to “burn in” more than makes up for the greater com-
putation time per iteration.

We ran 9 chains on each of the 21 meetings to 750
iterations, and Figure 9 summarizes the normalized
Hamming distance performance for the final sample of
the median chain for each meeting. The performance
after the relatively small number of iterations is var-
ied; for some meetings an excellent segmentation with
normalized Hamming error around 0.2 is quickly iden-
tified, while for other meetings the chains are not able
to mix. See Figure 11 for prototypical low-error and
high-error meetings, which demonstrates rapid mixing



for the meetings on which the model performed well.
The low-performance meetings tended to be the same
as those with lower performance in [2]. Finally, Figure
10 summarizes the number of inferred speakers com-
pared to the true number of speakers, where we only
count speakers whose speech totals at least 5% of the
total meeting time.

6 Conclusion

The HDP-HSMM is a flexible model for capturing the
statistics of non-Markovian data while providing the
same Bayesian nonparametric advantages of the HDP-
HMM. Furthermore, the sampling algorithms devel-
oped here for the HDP-HSMM not only provide rela-
tively fast-mixing inference for the HDP-HSMM, but
also produce new algorithms for the original HDP-
HMM that warrant further study.
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Figure 10: Frequency of Inferred Number of Speakers.
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(a) Good-performance meeting.
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(b) Poor-performance meeting.

Figure 11: Prototypical sampler trajectories for good-
and poor-performance meetings.
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