
RAPID: A Reachable Anytime Planner for Imprecisely-sensed Domains

Emma Brunskill

Computer Science Department

University of California, Berkeley

Berkeley, CA

Stuart Russell

Computer Science Department

University of California, Berkeley

Berkeley, CA

Abstract

Despite the intractability of generic optimal par-

tially observable Markov decision process plan-

ning, there exist important problems that have

highly structured models. Previous researchers

have used this insight to construct more effi-

cient algorithms for factored domains, and for

domains with topological structure in the flat

state dynamics model. In our work, motivated

by findings from the education community rele-

vant to automated tutoring, we consider problems

that exhibit a form of topological structure in the

factored dynamics model. Our Reachable Any-

time Planner for Imprecisely-sensed Domains

(RAPID) leverages this structure to efficiently

compute a good initial envelope of reachable

states under the optimal MDP policy in time lin-

ear in the number of state variables. RAPID per-

forms partially-observable planning over the lim-

ited envelope of states, and slowly expands the

state space considered as time allows. RAPID

performs well on a large tutoring-inspired prob-

lem simulation with 122 state variables, corre-

sponding to a flat state space of over 1030 states.

1 INTRODUCTION

One of the key questions in artificial intelligence research

is how to make good decisions in large, stochastic, par-

tially observable environments. Though generic optimal

planning for finite-horizon partially observable Markov

decision processes (POMDPs) is known to be PSPACE-

complete (Papadimitriou & Tsitsiklis, 1987), fortunately,

some important POMDP domains have highly structured

models. This insight has been used by previous researchers

to design more efficient POMDP algorithms that leverage

different types of structure. Focussing on domains that ex-

hibit factored structure has led to POMDP planners that

solve some of the largest POMDP problems in the litera-

ture, including a hand washing assistance program (Boger

et al., 2005) and a RoboCup rescue task (Paquet et al.,

2005). Other recent work (Dai & Goldsmith, 2007; Diban-

goye et al., 2009) has focused on domains where the flat

state dynamics model limits the possible backtracking to

earlier states, and showed that planning can be performed

more efficiently when this topological structure is present.

In this paper we focus on problems exhibiting both fac-

tored structure and a form of topological structure, and

demonstrate that we can leverage these properties to scale

to very large domains. Such properties are common in

a number of important applications ranging from tutor-

ing to dialogue systems. For example, some prior ed-

ucation studies coarsely approximate a student’s knowl-

edge as a factored set of binary variables, one for each

skill, and infers a precondition graph structure among skills

(known as a “learning hierarchy”) from student data: see

for example Gagneé’s and Briggs (1974) and Close and

Murtagh (1986). Despite this structure, automated tutor

action selection remains challenging as the factored state

space may consist of hundreds of skills. In addition, the

student state is not directly observable, but can be probed

through the use of drill exercises and other student re-

sponses. Modelling a fairly small curriculum of 100 skills

using an atomic-state POMDP framework could require

planning over a state space of size 2100 ≈ 1030 which is

far outside the range of generic, flat POMDP solvers.

Specifically we consider constructing policies for POMDPs

that exhibit the following three properties: they are

1. factored,
2. have positive-only effects, and
3. have unique preconditions for each variable.

For compactness, in the rest of the paper we will refer to

Positive-Only effects, Factored, with Unique Preconditions

(POFUP) POMDPs as POFUPP processes. Factored repre-

sentations are those in which the world state is represented

by a vector of variables. Positive-only effects, commonly

leveraged in classical planning, imply that once a binary

variable becomes true, it will not later become false. Be-

fore we describe the third property, recall that in a factored



representation, a given state variable sk’s value on a sub-

sequent time step depends on the action chosen, and the

values of a set of the other state variables (which could in-

clude sk on the previous time slice): in a dynamic Bayes

net (DBN), these would be called the parents of sk. The

unique preconditions assumption implies that there is a sin-

gle set of values of sk’s precondition variables that allow sk

to become true. In all the education learning hierarchies we

examined, there was always a unique set of preconditions

for each variable. It is important to note that while there is

a unique set of preconditions for each state variable, there

are still numerous (potentially exponential in the number

of variables) paths to reach each state. We assume that the

planning objective is to reach a goal state.

Our Reachable Anytime Planner for Imprecisely-sensed

Domains (RAPID) leverages these three structural proper-

ties to construct an initial policy with a computational cost

that scales polynomially with the number of domain vari-

ables, instead of exponentially. RAPID first computes a

solution to the fully observable MDP starting at an initial

state sampled from the initial POMDP belief state. This

process is very fast, taking only time linear in the number of

state variables. RAPID then performs partially-observable

planning over the limited envelope of states reached under

this MDP policy, and then slowly expands the state space

considered as time allows. At most the state space enve-

lope will expand to become the reachable state space given

the initial potential starting states, which is typically much

smaller than the exponential potential state space.

We present promising experimental results on two large

tutoring-inspired simulations. The second problem consists

of 122 variables, or a potential flat state space of over 1030.

RAPID manages to achieve good performance quickly in

both problems, though several comparison planners, in-

cluding a factored approach, fail to find a good policy.

2 RELATEDWORK

There has been significant recent progress on planning

in partially observable, stochastic domains. Two of the

fastest generic POMDP planners are HSVI by Smith and

Simmons (2005) and SARSOP by Kurniawati, Hsu and

Lee (2008). Neither approach takes advantage of factored

structure.

A number of prior fully-observable MDP approaches do

leverage factored structure (such as Boutlier, Dearden and

Goldsmidt (2000)). Symbolic Perseus (Boger et al., 2005)

and Symbolic HSVI (Sim et al., 2008) are two offline

POMDP algorithms for factored state spaces which scale

to large problems. In practice both perform fairly similarly

to each other. Online, forward search POMDP planners

can also leverage factored structure, and Paquet, Tobin and

Chaib-draa (2005) used forward search to handle an ex-

tremely large, factored RoboCup rescue problem. How-

ever, their approach and other forward search techniques

typically scale as O((|A||Z|)H) where H is the search

horizon,and |A| and |Z| are, respectively, the action and

observation branching factors. Such approaches will typi-

cally struggle in long horizon problems with a large num-

ber of observations or actions unless value heuristics can

be used to shape the search. Unlike our algorithm, these

factored approaches do not leverage any further structure

in the domain dynamics.

Several recent approaches do seek to leverage topological

structure in the dynamics model similar to the structure im-

plied by our second and third assumptions. Dai and Gold-

smith (2007) leveraged the presence of layered positive-

effect state structure (certain clusters of states cannot be re-

turned to) in their Topological Value Iteration (TVI) MDP

algorithm. Dibangoye et al. (2009) assumed a similar struc-

ture, and used this to create a heuristic Topological Order

Planner (TOP) for POMDPs. These and related approaches

consider structure in the ground state space: in contrast,

our approach considers structure in the factored space. Fo-

cussing on structure in the factored space helps our ap-

proach to scale to large domains as we can often avoid even

enumerating the flat state space.

Finally, our approach is inspired by work in the fully ob-

servable planning community. To scale to very large, fully

observable MDPs, Dean et al. (1995) proposed an any-

time approach which initially restricts MDP planning to a

smaller envelope of reachable states. Gardiol and Kael-

bling (2004) extended this approach to be applicable in

relational MDPs using action-based equivalence. To our

knowledge our RAPID algorithm is the first approach that

performs envelope-based planning in partially observable

environments.

3 PROBLEM DESCRIPTION

We are interested in decision making in POFUP par-

tially observable, stochastic environments that may be

specified by the tuple 〈S,L,A,Z, b0, E, p((si)′|si, a), . . .
p(z|(si)′, a), r(s, a), sG, sT 〉 where

• S is a set of states. The domain consists of L binary-

valued variables s1, s2, . . . , sL, and each state is an

assignment of values (true or false) to all the domain

variables: s = 〈s1, s2, . . . , sL〉.

• A is a set of actions. Each action aij is associated with

a particular state variable si and has the potential to

make only that variable true.1 There will generally be

multiple actions associated with the same state vari-

able si. For example, there could be a drill exercise

1Actions or operators which have a single effect have been
previously described as unary operators (Brafman & Domshlak,
2003).



L1

L2

L5

L3 L4

L6

(a) Precondition graph

000000 000001

000011

010001

000111

010011

110001

000010

000110

001110

001111

010111

110011

000100

001001

000101

001100

001011

011001

001101

011101

011111

110111

001000 011011

111001

111011

111101

111111

010000

110000

010010

110010

010110

110110

011110

010100

010101

110100

011100

110101

111100

100110

100111

101110

101111

111110

011000

111000

011010

111010

100000 100001

100011

100010

101000 101001

101011

101010

101100

101101

(b) State space

000000 000001

000011

010001

000111

010011

110001

001111

010111

110011

011111

110111

111111

(c) States reachable from s0 = {0, 0, 0, 0, 0, 0}

Figure 1: The relationship between the precondition vari-

able graph of 6 binary state variables, the possible state

space and transitions, and the reachable state space start-

ing at a particular initial state.

action and a lesson action to help a student understand

two-digit addition.

• Z is a set of observations.

• b0 is the initial belief state which is a sparse represen-

tation of the possible initial states and associated prob-

abilities. The sum of the probabilities over all possible

initial states is constrained to equal 1.

• E is a precondition graph which specifies for

each state variable si the set of state variables

sip1, sip2, . . . sipM (equivalent to parents of si in a

DBN) that must be true before state variable si can

become true. We assume there is a unique conjunction

of precondition variables for each variable (for exam-

ple, s1∧s2 can be a precondition, but not s1∨s2). As

a concrete example, the precondition graph for a stu-

dent to master the multiplication skill would include

the addition skill as a prerequisite.

• p((si)′ = false|si = false, aij) specifies the proba-

bility of a state variable si remaining false even when

all si’s preconditions are satisfied and a relevant ac-

tion ai∗ is taken. If a state variable si’s preconditions

are not satisfied, and action ai∗ is applied, si always

remains false. Continuing the prior example, let aij be

a multiplication exercise, and si be the multiplication

skill. Then p((si)′ = false|si = false, aij) is the

probability that after trying a multiplication exercise,

a student still may not yet understand multiplication,

even if she has all the necessary preconditions skills

(addition, etc.) as specified in E.

• p(z|(si)′, aij) specifies the probability of receiving a

particular observation given that a particular action aij

is taken, and the resulting value of the action’s asso-

ciated state variable (si)′. Note that since an action

is only associated with a single variable, only a single

p(z|(si)′, aij) will be applicable at each time step.

• r(s, aij) is the reward for taking action aij in state s.

The reward is negative, and depends only on the action

(aka independent of the state) for all states except the

goal state sG and terminal state sT .

• sG is the goal state. r(sG, a) is positive or zero.

• sT is the terminal state. sG deterministically transi-

tions to sT . sT is a sink state where the reward is 0

and the observation probabilities are identical to the

observation probabilities of sG.

Figure 1 shows the relation between the number of vari-

ables as expressed in a precondition graph, and the poten-

tial state space and state transition graph.

As the states are partially observable, we maintain a dis-

tribution over states, known as the belief state, which is a

sufficient statistic of the history of actions taken and ob-

servations received. The planning objective is to maximize

the expected sum of rewards given the initial belief state b0.

Due to the reward formulation, this is similar to a partially

observable, stochastic shortest path problem.

4 ALGORITHM

Prior flat and factored POMDP approaches typically fail to

scale to domains with a large number of variables. This

often continues to hold true even when, for particular ini-

tial belief states, the reachable state space is significantly

smaller than the full state space.

Instead we draw inspiration from envelope-based planning

algorithms for large fully observable MDPs and extend

these ideas to our POFUPP domains. Dean et al. (1995)

presented the idea of computing a policy for fully observ-

able, flat MDPs by planning only over a smaller envelope

of states. As time allowed, the state envelope was expanded

to include more of the reachable state space.



Algorithm 1 RAPID: REACHABLE ANYTIME PLAN-

NING FOR IMPRECISELY-SENSED DOMAINS

1: Sample an initial state from the initial belief

2: Construct an initial envelope using a deterministic

MDP relaxation that can be solved efficiently.

3: while remaining time do

4: Define & solve a POMDP over the envelope

5: Expand the envelope

6: end while

To our knowledge RAPID is the first algorithm to take

a similar approach in the context of partially-observable

planning. There are several key technical challenges that

need to be overcome to apply envelope-based planning in

partially observable domains that can be characterized as

POFUPP problems. First, we require an algorithm for ef-

ficiently computing a good initial envelope over the large,

factored, partially observable state space. Second, we need

a method for converting this envelope into a fully defined

POMDP and solving the resulting model. We present so-

lutions for both these challenges, and RAPID’s empirical

efficiency allows us to scale to very large problem sizes.

The RAPID algorithm is summarized in Algorithm 1.

4.1 INITIAL ENVELOPE CONSTRUCTION

Given a POFUPP process M , we first need to construct

an initial envelope of states. Ideally the envelope would

include states that have a reasonable probability of being

visited given a good policy for the partially observable do-

main. The states visited along the optimal MDP solution

starting with one of the possible initial states would seem

intuitively to be reasonable, as the MDP solution forms an

upper bound on the POMDP performance. However, stan-

dard MDP value iteration will be intractable since it scales

as a function of the state space, which in our process is an

exponential function of the number of variables. Even al-

ternate factored solvers will typically be too slow.

Instead we propose an approach which leverages the par-

ticular properties of our structured process by first relaxing

the process to its deterministic, fully observable equivalent,

and use this to very quickly compute a good trajectory be-

tween a start state s0 and the goal sG.

We first sample a state s0 from the initial belief state b0.

Given s0, and the variable precondition graph E, RAPID

identifies the state variables whose value is false in s0 and

true in the goal state sG. RAPID then computes a topo-

logical order of these state variables given the precondi-

tion graph E. A topological order of these variables is any

linear ordering such that each state variable comes before

all other state variables to which it has outbound arrows in

the precondition graph. For example, in Figure 1a, state

variable L1 must appear before all other variables, and L2

must appear before L3. As the precondition graph E is a

directed acyclic graph (DAG)2, the topological order can

be computed in time linear in the number of state variables

and precondition conditions (Cormen et al., 1999).

The computed topological state variable ordering (such as

〈s2, s68, . . . s16〉) is converted into a state trajectory be-

tween the start s0 and goal state sG by simply adding in or-

der each state variable to the original s0. Therefore the cost

of generating an initial envelope is simply a linear function

of the number of state variables. In Section 4.5 we will

show that this state trajectory consists of the state variables

visited by following an optimal MDP policy for M starting

at the sampled state s0.

4.2 ENVELOPE POMDP POLICY GENERATION

RAPID proceeds by defining a POMDP P ′ over the current

state envelope. We supplement the envelope state space

defined by the state trajectory sequence by two additional

states: a terminal out state stout, and a terminal goal state

stg . The definition of an out state follows prior work in

the fully observable envelope literature (Dean et al., 1995).

The dynamics of the states within the envelope are the same

as in the original process M , except if a state transition

lead to a state outside the envelope, then that transition,

and associated probability, are set to go to the sout state.

The out state itself transitions with probability one to the

terminal out sink state stout which has self-loop dynamics.

The separation of stout and sout is done in order to specify

separate reward functions.

To discourage leaving the envelope, the reward for the out

state is set to a large negative value. stout has reward zero.

Separating sout from stout allows there to be a single shot

cost for exiting the envelope.3

The observation model for all states within the envelope

is the same as in the POFUPP M . In contrast to enve-

lope planners for fully observable MDPs where all states,

including the out state, is fully observed, in POMDP do-

mains the out states are most naturally modeled as partially

observable, since they represent the remaining partially ob-

servable states that are not in the envelope. This raises the

interesting side problem of how to represent the observa-

tion probabilities for the out states, which represent the po-

tential observation probabilities of all states outside the en-

velope. In general there will be an exponential (in the num-

ber of variables) states outside of the envelope, and so for

now we take the simple approach of approximating the ob-

servation probability of sout by averaging the observation

models of a sampled set of states lying outside the enve-

lope. The observation model of stout is identical to sout.

2Since actions have positive-only effects, there are also no cy-
cles in the corresponding state dynamics.

3An alternate strategy would be to define rewards over state,
action, next state tuples.



If there is any initial probability over states outside of the

envelope, then a new belief state is defined over only the

envelope state space, with all remaining probability mass

in the out state sout.

POMDP P ′ can be solved using any generic POMDP plan-

ner with optimality bounds and in our experiments we used

the publicly-available HSVI (Smith & Simmons, 2005).

POMDP planning proceeds until the error bound over the

initial belief state drops below a chosen ǫ-threshold, or a

specified time limit is reached.

Note that the computed policy for POMDP P ′ can be used

to act in the original POFUPP M .

4.3 ENVELOPE EXTENSION

If additional planning time is available after the initial pol-

icy is computed, then the state envelope can be expanded.

There are numerous potential strategies for envelope ex-

pansion and in this initial work we used a simple, but em-

pirically effective approach. We consider three possible

methods, in order, for identifying a new state to add to the

envelope; in other words, we try the first method and see if

it identifies a new state to be added, if it does, we stop, else

we run the second method, etc.

The first method samples any potential initial state s0i

which has non-zero probability in the initial belief state b0,

but is not yet part of the envelope of states. If all potential

initial states are in the envelope, the second method tries to

find a new non-envelope state by expanding the envelope

fringe. This expansion is performed by starting at a pos-

sible initial state and simulating a trajectory using an ǫr-

greedy policy4 until either a non-envelope state is reached,

or a goal state is reached. This process is repeated until

a non-envelope state is reached or a set number of itera-

tions pass. If no non-envelope states are found, in the third

method, we iterates through each state and tries all applica-

ble actions (given the preconditions the state represents) to

see if a new non-envelope state is reachable. This ensures

that, given enough time, the envelope will grow to reach the

full reachable state space, given the possible initial states

defined by the initial belief state.

Once a non-envelope state is identified, it must be added to

the envelope. In many cases these newly-added states will

be multiple state transitions from the existing envelope of

states. For example, consider a mathematics tutor domain

where to start a student either knows algebra, or algebra and

calculus. If the initial envelope is constructed starting from

the state where the student knows calculus, and then the

state representing the student only knows algebra is added,

there are many missing steps between algebra and calculus

that need to be added in order to compute a reasonable pol-

4The POMDP policy is followed (1−ǫr) fraction of time time,
and a random action is taken ǫr fraction of the time.

icy for the newly added initial state. To address this, when

a new potential state is added, RAPID re-performs the ini-

tial envelope construction of creating a complete state tra-

jectory to the goal, starting from the newly added state.

This process is very fast, and the main limitation of this

approach is that it can add O(L) states to the envelope

per state, which slows down the POMDP planning process.

However, the benefit of increasing the probability that the

new states will immediately improve the computed policy,

was thought to outweigh this slight shortcoming.

4.4 PERFORMANCE AND COMPUTATIONAL

COMPLEXITY

First, for completeness, we note that RAPID is guaranteed

to converge to an ǫ-optimal policy, as long as an ǫ-optimal

POMDP planner is used, since RAPID is guaranteed to

eventually expand the envelope to include all states reach-

able from the initial belief state.

Computing a state trajectory from an initial to goal state,

and associated value computations, takes time linear in the

number of variables. The initial envelope will have at most

O(L) states, which means that the initial POMDP planning

will be performed over a state space which is a linear func-

tion of the number of variables. The maximum number of

states in the envelope is the reachable state space, which

is typically much smaller than the potential 2L state space.

The complexity of solving a POMDP depends on the par-

ticular technique. HSVI performs a depth-first roll out, and

updates an explicit representation of an upper and lower

bounds on the POMDP value function along the roll out.

Each lower bound backup and belief update is a quadratic

function of the number of states, so both operations will be

impacted positively by a smaller input state space.

4.5 UPPER BOUNDS FOR POFUPP PROBLEMS

We will shortly prove that the trajectory of states between

a start and the goal state, as computed during envelope ini-

tialization and expansion, consists of states visited by fol-

lowing an optimal policy for the fully observable MDP of

the POFUPP process. We leverage this property to effi-

ciently compute the fully-observable optimal MDP value

of the states within the envelope, which can then be used

to calculate an upper bound on the initial belief state b0.

Such bounds can be useful for at least two reasons. First,

many POMDP solvers (including HSVI and SARSOP) use

upper bounds during planning. Typically these bounds are

computed by solving the MDP, which is known to be an up-

per bound to the POMDP values. However, solving the flat

MDP typically requires multiple backup operations, each

of which requires time polynomial in the number of states.

Second, upper bounds provide useful benchmarks for eval-

uating RAPID’s performance. However, solving the MDP

upper bound over the complete factored space of hundreds



or more variables is computationally infeasible. In contrast,

our approach scales as O(LNb0) where Nb0 is the number

of initial states with non-zero probabilities.

We now illustrate how we compute the value of the the

states along a trajectory between a start and goal state, as

returned during envelope initialization and expansion. We

first modify the original rewards. Let r̃(s−i, aij) be the

new reward for taking action aij in a state s−i where state

variable si is false but all its preconditions are true. We

define the value of this new reward as:

r̃(s−i, aij) =
r(s−i, aij)

1 − p((s−i)′ = false|s−i = false, aij)
. (1)

Intuitively, r̃(s−i, aij) represents the expected reward/cost

of making state variable si true using action aij , given the

stochasticity of action aij . To compute the state trajectory

values, we start with the goal state, and traverse the trajec-

tory backwards, at each step selecting the action aij with

the minimum expected cost r̃ required to make the subse-

quent variable si in the consecutive state true. The values

are computed simultaneously, by summing up the rewards

during the traversal:

a∗(s−i) = argmax
j

r̃(s−i, ai,j) (2)

V (s−i) = r̃(s−i, a
∗(s−i)) + V (s+i) (3)

where state s+i is the same as state s−i except now state

variable si is also true. This value computation requires

time linear in the number of variables. This process can

be done at the same time as when the state trajectory is

constructed from the topological order.

Theorem 1. Given a POFUPP M , let Mf be the fully-

observable MDP version of M , s0 be a state sampled from

b0, {s0, straj1, . . . , sG} be the state trajectory computed by

the initial envelope method, πMf
be the associated policy,

and V (s0), . . . , V (sG) be the calculated state trajectory

values. These values and policy represent an optimal policy

and the optimal values of these states in the MDP Mf .

Proof. (Sketch) The initial topological order constructed is

an optimal plan to the goal from the start state s0 for the

deterministic, uniform action-cost, fully observable pro-

cess Mduf version of the POFUPP M . This is true due

to the particular POFUPP structure assumed. Briefly, the

positive-only effects and the presence of unique precon-

ditions to make a single variable true, imply that all per-

mutations (that respect the precondition structure) of the

same set of state variables will result in the same final state.

As in Mduf all rewards are constant except at the goal, all

paths of the same length between the same start state and

the goal state will have the same cost. Therefore we can ar-

bitrarily select any ordering that respects the preconditions,

and its value is guaranteed to be optimal (and equal to all

other topological orderings between the same start state and

goal).

To determine the optimal value (and policy) of each state

along the corresponding state trajectory in the determinis-

tic (but with the original action costs/rewards) MDP Mdf

version of M requires considering the state-action values

of each state. From Bellman the state-action value can be

expressed as the immediate reward of taking an action in a

state, plus the future expected reward. As we currently as-

sume each action is deterministic, the state action value of

a state s−k which is a state where state variable sk is false

but all its preconditions are true, can be expressed as

Q(s−k, akj) = r̃(s−k, akj) + V (s+k) (4)

where s+k is the state identical to s−k except state variable

sk is also true. In the deterministic MDP M , Q(s, akj)
represents the expected cost of making the state variables

in sG true which are false in the current state s. However,

since in a POFUPP process each variable requires a unique

set of precondition variables to be true, the order in which

these state variables are acquired is irrelevant: any order

that satisfies the precondition structure E is equivalent. The

only difference in rewards/costs comes from which action

akj out of a set of actions ak∗ is chosen to achieve a state

variable sk; note here that all ak∗ have the same precon-

ditions, but they may have different costs, different self-

transition probabilities, and different observation probabil-

ities. Therefore, the state trajectory obtained from the topo-

logical order is equal to any other trajectory of states be-

tween s0 and the goal G. Given this, action selection for

each state along the trajectory can be restricted without loss

of optimality to only those actions which pertain to the next

variable to be acquired along the topological order (as spec-

ified by Equation 2). This means that the next state s+k in

Equation 4 will be identical for all considered actions ak∗,

and to find the optimal action it suffices to only consider the

immediate expected reward r̃. Therefore the policy and val-

ues in Equation 2 and 3, respectively, represent an optimal

policy and the optimal value for the deterministic MDP.

Finally, the MDP Mf falls into the class of stochastic short-

est path problems. Therefore the computed value function

and policy for the deterministic MDP Mdf which has no-

self loops (as just specified) using the modified rewards de-

fined in Equation 1 has an identical policy and value func-

tion to the original MDP Mf (pg.25, Bertsekas and Tsit-

siklis, (1996)). Therefore, the values and policy computed

using Equation 2 and 3 for all states along the trajectory are

guaranteed to be optimal for MDP Mf .

Theorem 1 shows that we can efficiently compute the opti-

mal MDP values for states inside the constructed envelope.

Once the envelope includes all possible initial states, we

will have a value on each initial state computed using Equa-

tion 3. We can then compute an upper bound for initial be-

lief state value (V̄ (b0)) by taking the weighted sum of the



add
1 digits

add
2 digits
1 carry

subtract

add
2 digits

2nd carry
due to 1st carry

multiply
1 digits

subtract
1 borrow

2 digit-1 digit

add
multiple
carries

subtract
1 borrow

2 digit-2 digit

multiply
1 by multiple

digits

identify
fraction

subtract
multiple
borrows

subtract
borrow
across 0

divide
multiple 1

by 1 divisions

divide
multiple

digit by 1

divide
1 digit

by 1
subtract
fractions

same denom

add fractions
same denom

add
fractions

req convert
1 denom

add
fractions
convert

both denom

Figure 2: SmallMath Precondition Graph.

state values:

V̄ (b0) =
∑

ssi

b0(ssi)V (ssi). (5)

Note that this provides an upper bound to the original PO-

FUPP process: in contrast, any bounds computed by the

POMDP solvers over the envelope only apply to the re-

stricted envelope POMDP P ′. We later calculate V̄ (b0) for

our two experimental domains. This bound can be com-

puted in time linear in the product of the number of state

variables and initial possible states.

5 EXPERIMENTS

Due to our interest in tutoring applications, we performed

simulation experiments in two tutoring-inspired domains.

5.1 DOMAINS

In both cases, the variable precondition graph construction

was informed by literature from the education communi-

ties: the transition probabilities, observation probabilities

and reward values were chosen by hand.

The first domain, SmallMath, consisted of 19 elemen-

tary math skills, yielding a potential state space of 219 ∼
500, 000 states. The precondition graph for the skills is

displayed in Figure 2. There are two possible observations,

and 38 actions, 2 for each skill. The first action for a skill,

a “teaching” action, has a high probability of causing the

skill to transition to being true (p = 0.8) if it is not al-

ready and the preconditions for that skill are fulfilled; how-

ever, it does not provide any feedback about whether the

student has successfully acquired the skill. In our exper-

iments we set the probability of each observation is 0.5
for actions 1,3,5,. . .,37. The second action for each skill

(actions 2,4,. . .,38) loosely corresponds to a practice exer-

cise, and only causes skill acquisition with probability 0.5.

However, practice exercises provide more useful feedback

about whether that skill was acquired: the observation is

true with probability 0.9 if the hidden skill is true, and true

with probability 0.2 if the skill is false. The reward for

reaching the state where all skills are true was set to 10000,

and there was a reward of -1 for all other states and actions.

The initial belief state had three non-zero initial start states.

In the past there have been a number of papers on “learn-

ing hierarchies” in the education literature. Learning hier-

archies consist of ordered hierarchies, or graphs, of skills,

which are very similar to our variable precondition graphs.

Numerous classroom studies have been done to construct

these learning hierarchies from student data, though the

analysis historically treats the data as fully observable

rather than modeling student knowledge as a hidden state.

Given this work, for the second domain, BigMath, we

constructed a larger tutoring-inspired problem consisting

of addition, subtraction, multiplication, and addition and

subtraction of fractions skills. The fraction precondition

graph was derived from Miller and Phillips (1974) and

Uprichard and Phillips (1977). We combined the fraction

precondition structure with the subtraction hierarchy from

Gagné (1974), and the addition, subtraction, multiplication

and division hierarchies from Close and Murtagh (1986).

The full precondition graph is displayed in Figure 3 and

consisted of 122 skills.5 The flat state space is 2122 which

is over 1030 states. Similar to the first domain, we created

an action space with two potential actions for each skill,

one lesson-like action, and one drill-like action. The ob-

servation and transition probabilities, given the precondi-

tion variables are satisfied, were defined the same way as

in the SmallMath domain. The reward for reaching the state

where all skills are true was set at 100000, and there was

a reward of -1 for all other states and actions. The original

belief state had four non-zero probability initial start states,

consisting of plausible variable subgroups.

Note that the horizon of both problems is quite long. Even

in the deterministic versions of both problems, if the world

state starts with no variables true, the number of steps to

reach the goal is 19 in SmallMath and 122 in BigMath.

5A file displaying this precondition structure is available at
http://www.cs.berkeley.edu/∼emma/bigmathpreconditions.pdf



k1

k2a

k3

k6

k19

k101

k105

k106

k4

k5

k16

k7

k11

k8

k9

k10

k12

k14

k27

k51

k52

k28

k2

k22

k21

k23

k79

k102

k113

k112

k33

k34

k94

k29

k30

k31a

k31

k32

k35

k36

k103

k108

k109

k104

k41

k48

k40

k77

k44

k45

k46

k49 k50

k54

k58

k74

k59

k93

k80

k95

k75

k67

k55 k56

k57 k61
k53

k86

k60 k66 k65

k83 k69 k85 k70 k71

k62 k64 k63 k73 k72 k89 k84 k76 k90 k78 k91 k81 k82
k92

k68

k88 k87

k107

k111 k110

k117 k114

k115

k119 k118 k120 k116

Figure 3: Precondition Graph for BigMath. This structure was derived by combining the Miller and Phillips (1974) and

Uprichard and Phillips (1977) learning hierarchies for fractions, with Gagneé and Briggs’ (1974) subtraction hierarchy

and Close and Murtagh’s (1986) addition, subtraction, multiplication and division hierarchy.

As both problems are stochastic, the expected number of

steps can be significantly longer, depending on the initial

belief state distribution. Therefore, both domains exhibit

what are typically known in the POMDP community as the

curse of history, due to the long horizon, and the curse of

dimensionality, due to the problem size.

5.2 SOLUTION PARAMETERS

As stated earlier, we used HSVI to solve the envelope

POMDPs. The maximum horizon for SmallMath was set

at a conservative 450 steps, and for BigMath at 1000 steps.

Identical horizon limits were used when evaluating the em-

pirical reward of the computed policy. The reward for the

out state was set to be -1000 for SmallMath and -100 for

BigMath. As there will typically be some probability that

the state will transition into an out-of-envelope state, and

both problems can require a long horizon of acting to reach

the goal, the out state reward was loosely chosen to discour-

age transitioning to the out state without so severely penal-

izing the transition that the computed policy conservatively

avoids adding any more skills. We did not optimize perfor-

mance by varying this parameter, and other values might

lead to further performance benefits.

HSVI terminates when a terminal time limit is reached or a

minimum distance (ǫ) between the upper and lower bounds

on value of the initial belief state is achieved. In SmallMath

we set the maximum time limit to 1200 seconds and ǫ =
200. In BigMath we set the maximum time limit to 8000

seconds and ǫ = 1000.

5.3 EVALUATION METRICS

After each envelope expansion, we evaluated the envelope

policy reward empirically over multiple episodes of the rel-

evant problem’s max horizon length. For SmallMath we

evaluated the empirical reward for 20 episodes after each

expansion, and for BigMath we evaluated the empirical re-

ward for 5 episodes after each expansion: BigMath is sig-

nificantly more computationally intensive to evaluate due

to the larger state space, and longer problem horizon. We

present results averaged over 5 runs with different initial

seeds for SmallMath and 8 runs for BigMath.

5.4 BASELINES

Even the smaller of the two problems, SmallMath, still re-

quires over 500,000 states to enumerate the exhaustive set

of state variable combinations, which limited the potential

alternate algorithms to compare against.

SARSOP (Kurniawati et al., 2008) is a non-factored state-

of-the-art generic POMDP solver which accepts factored

input files.

Symbolic Perseus (Boger et al., 2005) is a factored-state-

space POMDP solver. Symbolic Perseus was used to

compute a good approximate solution to a factored hand-

washing assistance problem with 13 variables, and over

50 ∗ 106 states.

In some cases the reachable state space may be quite small,

and so we also explored first enumerating the reachable

space, and then using HSVI to compute a POMDP policy

over the reachable states.

We also implemented a simple, very fast, heuristic Fixed

Threshold, No-Forgetting (FTNF) policy similar to poli-

cies used in prior intelligent tutoring systems (Corbett &

Anderson, 1995; Koedinger et al., 1997). At each step,

FTNF identifies the variable with the highest probability of

being true below an input threshold probability, whose pre-

conditions have exceeded this threshold probability. FTNF



2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Envelope expansion iteration

A
v
e
ra

g
e
 e

m
p
ir
ic

a
l 
re

w
a
rd

 p
e
r 

it
e
ra

ti
o
n

(a) SmallMath Reward vs No. Expansions

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

x 10
4

Cumulative time (s)

A
v
e

ra
g

e
 e

m
p

ir
ic

a
l 
re

w
a

d

(b) BigMath Reward vs. Cumulative Time

1 2 3 4 5
0

2

4

6

8

10

x 10
4

Envelope expansion iteration

A
v
e
ra

g
e
 e

m
p
ir
ic

a
l 
re

w
a
rd

 p
e
r 

it
e
ra

ti
o
n

(c) BigMath Reward vs. No. Expansions

Figure 4: Results from both simulations, showing RAPID’s average performance after each round of envelope expansion.

In (a) and (c) results are averaged over multiple algorithm runs. In (b) each RAPID run is shown in a different color, with

circles representing the mean reward of the run’s policy at different times. The dotted line is an upper bound on the initial

belief state value.

executes the action most likely to make that variable true,

and updates the belief probability over that variable. Once

a variable exceeds the input probability threshold, its value

is assumed to be true for the rest of the episode.

Finally, we also computed an upper bound on the value of

the initial belief state using Equation 5.

5.5 RESULTS

5.5.1 SmallMath

We display the performance of RAPID on SmallMath in

Figure 4a. RAPID could generally quickly find a good so-

lution, and its consistency in doing so increased as the com-

putation time increased, as should be expected.

We represented SmallMath in the SARSOP POMDPX for-

mat but found that SARSOP problem initialization con-

sistently tried to exceed our limit of available memory (2

gigabytes). We believe this is because the current imple-

mentation still uses a non-factored dynamics representa-

tion, and a full sized-representation of SmallMath would

require 219 × 219 × 38 entries.

Symbolic Perseus requires specifying the number of sam-

pled belief states to use for planning. When we specified

a small number of beliefs (N=20), the algorithm computed

a solution in 5150s, but the resulting policy could never

find a trajectory to the goal. Using a larger number of be-

liefs (N=120), Symbolic Perseus was still generating belief

points and had yet started computing a policy after 8 hours;

as this well exceeded the time necessary to achieve good

performance in the SmallMath domain using RAPID, we

did not run Symbolic Perseus further.

Given the initial belief selected, the reachable state space

of SmallMath is significantly smaller than the potential

state space size, at only 109 states. It is computationally

tractable to simply enumerate this reachable state space and

run HSVI over the resulting states. This approach yielded

the best performance, with an average reward of 9962 on

200 trials (each consisting of at most 200 steps). This

corresponded to an average of 39 steps to reach the goal

state. The heuristic FTNF policy performed worse than

the RAPID policy over a number of thresholds, and was

significantly worse (t-test, p¡0.001) than the POMDP solu-

tion over the reachable state space at even the best thresh-

old (0.925) examined (FTNF average reward=9947, mean

number of steps to goal=54). These results highlight the ad-

vantage of a POMDP planning approach, which may both

infer the value of earlier variables based on later variable

values, and revisit an earlier variable if later evidence sug-

gests its value is not yet true.

5.5.2 BigMath

RAPID again was able to fairly quickly achieve good per-

formance in this domain. Figure 4b & c display the av-

erage performance after each envelope expansion for dif-

ferent runs versus cumulative running time, and after each

envelope expansion, respectively.

Due to our experience with SARSOP and Symbolic

Perseus on SmallMath, we did not explore their use on Big-

Math, which is a substantially larger problem.

In BigMath, given the chosen initial belief, even the reach-

able space is over millions of states and the potential state

space exceeds 1030 states. It was therefore not feasible to

perform standard planning over the reachable space.

We compared FTNF to the performance of RAPID after 4

envelope expansions. Though FTNF is very fast, it gener-

ally performed much worse than RAPID over a wide range

of thresholds (from 0.8 to 0.9999). FTNF with the best



found threshold (0.9999) performed slightly better than

RAPID over an 80 episode simulation, but the difference

was not significant (t-test, p=0.18). Our experience sug-

gests that it may be hard to identify a good threshold for

FTNF in advance, and choosing a too-high value can lead

to overly conservative policies.

6 CONCLUSION & FUTUREWORK

There exist a number of important stochastic, partially ob-

servable problems that exhibit a large amount of structure

that can be used to perform efficient planning. In this pa-

per we focused on problems exhibiting a form of topolog-

ical structure in the factored state space: domains which

possess such structure include student tutoring, dialogue

and potentially assembly tasks. Our RAPID algorithm

leverages this structure to compute an initial state envelope

based on the optimal MDP policy in time linear in the num-

ber of variables. RAPID then performs standard POMDP

planning over this restricted envelope, before expanding the

envelope and re-solving in an anytime fashion. Our exper-

imental results demonstrate RAPID can quickly produce a

good policy for an extremely large factored problem where

the problem structure is constructed using prior precondi-

tion graphs from the education community.

There is ample scope for future work. We intend to explore

additional envelope expansion techniques, such as trying

to bias the new trajectories to the goal to lie within exist-

ing parts of the envelope. In addition, we currently re-solve

the POMDP without considering the previously computed

solution. We believe it should be possible to achieve fur-

ther computational gains by re-using the value function (α-

vectors) computed using the prior envelope, by setting the

value of the additional states to a lower bound on their po-

tential value.6 In this paper we have assumed the POMDP

model parameters are provided, but to integrate this in a

real ITS will necessitate learning the model parameters. We

plan to learn model parameters across multiple students’

performances, motivated by the success of prior ITSs (see

Koedinger et al. 1997) that use population-level model pa-

rameters.

Acknowledgements

The authors wish to thank Sarah Finney, Jason Wolfe, Luke

Zettlemoyer and the anonymous reviewers for their helpful

comments. E.Brunskill was supported by a NSF Mathe-

matical Sciences Postdoctoral Fellowship.

References

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic program-
ming. Athena Scientific.

6Trivial lower bounds can be computed using the minimum
reward and maximum horizon.

Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., & Mi-
hailidis, A. (2005). A decision-theoretic approach to task as-
sistance for persons with dementia. IJCAI.

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic
dynamic programming with factored representations. Artificial
Intelligence Journal.

Brafman, R., & Domshlak, C. (2003). Structure and complexity
in planning with unary operators. Journal of Artificial Intelli-
gence Research, 18, 315–349.

Close, J., & Murtagh, F. (1986). An analysis of the relation-
ships among computation-related skills using a hierarchical-
clustering technique. Journal for Research in Mathematics Ed-
ucation, 17, 112– 129.

Corbett, A., & Anderson, J. (1995). Knowledge tracing: Model-
ing the acquisition of procedural knowledge. User Modeling
and User-Adapted Interaction, 4, 253–278.

Cormen, T., Leiserson, C., & Rivest, R. (1999). Introduction to
algorithms. McGraw-Hill Book Company.

Dai, P., & Goldsmith, J. (2007). Topological value iteration algo-
rithm for Markov decision processes. IJCAI.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995).
Planning under time constraints in stochastic domains. Artifi-
cial Intelligence, 76, 35–74.

Dibangoye, J., Shani, G., Chaib-draa, B., & Mouaddib, A. (2009).
Topological order planner for POMDPs. IJCAI.

Gagné, R., & Briggs, L. (1974). Principles of instructional de-
sign. Holt, Rinehard, and Winston.

Gardiol, N. H., & Kaelbling, L. P. (2004). Envelope-based plan-
ning in relational MDPs. NIPS.

Koedinger, K. R., Anderson, J., Hadley, W., & Mark, M. (1997).
Intelligent tutoring goes to school in the big city. International
Journal of Artificial Intelligence in Education, 8, 30–43.

Kurniawati, H., Hsu, D., & W.S., L. (2008). SARSOP: Ef-
ficient point-based POMDP planning by approximating opti-
mally reachable belief spaces. RSS.

Miller, P., & Phillips, E. R. (1974). Developed of a learning hier-
archy for the computational skills of fractional number subtrac-
tion. American Educational Research Association Meeting.

Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of
Markov decision processes. Mathematics of Operations Re-
search, 12, 441–450.

Paquet, S., Tobin, L., & Chaib-draa, B. (2005). An online
POMDP algorithm for complex multiagent environments. AA-
MAS.

Sim, H., Kim, K., Kim, J., Chang, D., & Koo, M. (2008).
Symbolic heuristic search value iteration for factored pomdps.
AAAI.

Smith, T., & Simmons, R. (2005). Point-based POMDP algo-
rithms: Improved analysis and implementation. UAI.

Uprichard, A. E., & Phillips, E. (1977). An intraconcept analysis
of rational number addition: A validation study. Journal for
Research in Mathematics Education, 8, 7–16.


