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Abstract

We introduce a new graphical model for
tracking radio-tagged animals and learning
their movement patterns. The model pro-
vides a principled way to combine radio
telemetry data with an arbitrary set of user-
defined, spatial features. We describe an ef-
ficient stochastic gradient algorithm for fit-
ting model parameters to data and demon-
strate its effectiveness via asymptotic analy-
sis and synthetic experiments. We also ap-
ply our model to real datasets, and show
that it outperforms the most popular ra-
dio telemetry software package used in ecol-
ogy. We conclude that integration of dif-
ferent data sources under a single statistical
framework, coupled with appropriate param-
eter and state estimation procedures, pro-
duces both accurate location estimates and
an interpretable statistical model of animal
movement.

1 INTRODUCTION

Animals move through their environments in complex
ways. Understanding the processes that govern ani-
mal movement is a fundamental problem in ecology
and has important ramifications in areas such as home-
range and territorial dynamics, habitat use and conser-
vation, biological invasions and biological control [7].
Ecologists rely heavily on collecting and analyzing an-
imal movement data to deepen their understanding of
these processes.

In recent years, various technological advances, such
as radio telemetry systems and the Global Positioning
System (GPS), have created new avenues for collect-
ing data from animals [17]. In radio telemetry, an-
imals are tagged with a tiny radio transmitter. At

regular time intervals, fixed-location towers in the en-
vironment record the signal from the transmitter and
use this information to infer the direction of the an-
imal with respect to the tower. In contrast to GPS,
radio telemetry systems can use smaller transmitters,
can collect data more frequently, are simpler to im-
plement, and can be used under rainforest canopies.
An implementation of such a system in Barro Col-
orado Island, called the Automated Radio Telemetry
System Initiative (ARTS), provides researchers access
to hundreds of thousands of directional data measure-
ments collected from a variety of animals [4]. However,
even though this method has led to a proliferation of
directional data measurements, it has been difficult
to harness the full potential of these data sets be-
cause: 1) directional measurements obtained through
radio telemetry are notoriously noisy; 2) telemetry
databases may contain very large amounts of data;
and 3) directional measurements are not in a form that
is easily interpretable. What is needed are computa-
tional tools that would efficiently and accurately con-
vert these large and noisy data sets into a form that
would enhance ecological research.

Previously, various sequential probabilistic graphical
models have been proposed to solve this problem.
Anderson-Sprecher and Lodelter [1, 2] used an iter-
ated extended Kalman filter-smoother to estimate an-
imal locations. Jonsen et al. [6, 7] represented ani-
mal movements as correlated random walks and used
Bayesian techniques to infer posterior model param-
eters and animal locations. Ovaskainen [13] used a
diffusion approach to model movement in heteroge-
neous landscapes. Morales et al. [11] fitted multiple
random walks to animal movement paths and modeled
switching probabilities between them as a function of
landscape variates. Patterson et al. [14] and Schick
et al. [15] further review past probabilistic graphical
models and their applications to ecology and animal
movement.

In this work, we propose a new state space model



(SSM) approach. In contrast to previous work, our
SSM includes a richer and more general animal move-
ment model. It can utilize arbitrary geographical
features, such as the population densities of various
tree species or the location of water sources, to repre-
sent geographically-dependent animal movement mod-
els that cannot be represented by previous approaches
at this generality. While our animal movement model
also generalizes Gaussian random walks, which are
models associated with Kalman filters, combining and
incorporating spatial features, especially geographical
ones, yields an interpretable model that enunciates
the relationship between the animal and its environ-
ment. Furthermore, a richer model leads to increased
accuracy in estimating animal locations from teleme-
try data.

In order to handle the challenges of incorporating
a very large and feature-rich latent state space, we
present an efficient stochastic gradient algorithm for
learning the parameters of the model. We demonstrate
the algorithm’s effectiveness in training our model by
comparing it to the expectation-maximization (EM)
algorithm both via asymptotic analysis and synthetic
experiments. We note that, in contrast to sequential
Monte Carlo methods such as particle filters, our infer-
ence algorithms allow us to train parameters and infer
past estimates based on all observations.

Finally, we apply our model to real datasets and
demonstrate that it outperforms the most popular ra-
dio telemetry software package used in ecology. In con-
clusion, we show that our methods aid us in producing
interpretable results and accurate animal location es-
timates from large and noisy telemetry datasets.

This paper is organized as follows. In Section 2, we
specify the SSM and formalize its parameter and state
estimation problems. In Section 3, we detail the EM
and Viterbi algorithms for solving the estimation prob-
lems and analyze their time-complexity. In Section 4,
we present and analyze the stochastic gradient algo-
rithm. We report the results of our experiments on
synthetic and real datasets in Section 5 and conclude
in Section 6.

2 A STATE SPACE MODEL

In this work, we define a telemetry data set as a
long sequence of directional measurements that are ob-
served by a small number of fixed-location towers at
regular time intervals. Note that all directional mea-
surements in a given telemetry data set are received
from the same animal. We model the data as if it were
generated by an SSM. In this section, we describe the
SSM by detailing its latent state space as well as its
start, transition and observation models. Then, we for-

malize the parameter and state estimation problems,
and argue how solving the estimation problems yields
an interpretable model of animal movement and accu-
rate animal location estimates.

Intuitively, the latent state space is the space of pos-
sible animal locations. In order to use the SSM ma-
chinery, we discretize a continuous latent state space
of animal locations into a finite and discrete space of
coordinates Q ⊂ R

2. In practice, Q is constructed
by partitioning a larger state space into finitely many
equally sized grid cells and assigning each midpoint of
a grid cell as a coordinate in Q.

The start model generates the first element of the la-
tent animal location data. For simplicity’s sake, we
use the uniform distribution as the start model. Let
the latent random state at time step t ∈ {1, . . . , T } be
denoted by xt ∈ Q. Then, the start model is:

p (x1) =
1

|Q|
. (1)

The transition model, a Gibbs distribution, generates
the rest of the latent animal location data. Gibbs dis-
tributions, also known as the conditional exponential
model, have emerged as popular models in machine
learning due to their practical success and their the-
oretical elegance. These distributions are defined us-
ing features, which in our case are functions that en-
code information about the spatial properties of the
environment. For example, a feature may encode the
distance between two coordinates in the latent state
space, or it may encode the minimum distance to a
certain tree species. In a slightly different but related
setting, it has been shown that the maximum likeli-
hood estimate of a Gibbs distribution is equivalent to
the maximum entropy distribution with various con-
straints imposed by the features [3]. In our case, we
adopt the Gibbs distribution as the transition model
because it provides a means to incorporate spatial fea-
tures without making any independence assumptions
about them, remains resilient to the extension of fea-
ture space by irrelevant features, and generalizes dis-
crete versions of simpler random walk models which
have previously been used to model animal movement.

More formally, let fk : Q × Q → R denote the kth
feature and λk ∈ R denote the corresponding weight
parameter, where k ∈ {1, . . . ,K}. We use λ as a vector
representation of feature weights. Then the transition
model is:

p (xt+1|xt;λ) =

exp

(

K
∑

k=1

λkfk (xt, xt+1)

)

∑

xq∈Q

exp

(

K
∑

k=1

λkfk (xt, xq)

) . (2)



The observation model generates the directional mea-
surements observed by the towers. We model the be-
havior of towers as a von Mises distribution, a circular
analogue of the normal distribution [10]. A von Mises
distribution is parameterized by µ and κ, roughly the
analogs of the mean and the variance of a normal dis-
tribution, respectively. Intuitively, a radial bearing is
sampled from a von Mises distribution, and it is added
as noise to the true bearing that points in the direction
of the animal.

More formally, fix a radial bearing system shared by
all towers (i.e., bearing π

2 points north and bearing
0 points west). Let yt,n ∈ [−π, π) denote the ran-
dom variable, a radial bearing, observed by tower
n ∈ {1, . . . , N} at time step t. This is a noisy observa-
tion that is supposed to point in the direction of the
animal. Let zn ∈ R

2 denote the coordinate of tower
n and define h(x, zn) ∈ [−π, π) to be the true radial
bearing of the vector that points from tower n towards
location x. Let µn ∈ R and κn ≥ 0 denote the param-
eters of the von Mises distribution for tower n. Let I0
denote the modified Bessel function of the first kind
with order 0, which simply acts as the normalization
constant for the von Mises distribution. Finally, let
µ, κ, and yt be the vector representations of the cor-
responding parameters and random variables. Then,
the observation model is:

p (yt|xt;µ,κ) =

N
∏

n=1

p (yt,n|xt;µn, κn)

=
N
∏

n=1

exp (κ cos (yt,n − h(xt, zn)− µn))

2πI0(κ)
.

(3)

The factorization occurs because of the conditional in-
dependence assumptions that hold between the obser-
vations.

The start, transition, and observation models can be
used to compute all the marginal and conditional prob-
ability distributions of the SSM. Let y denote the vec-
tor of all observations and let θ = (λ,µ,κ) denote
the vector of model parameters. As usual, the joint
probability distribution of the SSM is:

p (x,y; θ) = p (x,y;λ,µ,κ)

= p (x1)

T−1
∏

t=1

p (xt+1|xt;λ)

T
∏

t=1

p (yt|xt;µ,κ) .

(4)

Parameter estimation is the problem of estimating the
model parameters (i.e. θ). We choose maximum likeli-
hood estimation (MLE) as the method of fitting model
parameters to data. We define the problem of param-

eter estimation as:

θ̂ =
(

λ̂, µ̂, κ̂
)

= argmax
λ∈RK ,µ∈RN ,κ≥0

log p (y;λ,µ,κ) .

(5)
State estimation, on the other hand, is the problem
of estimating values of unobserved random variables.
We choose to seek the hidden state sequence that max-
imizes the probability conditioned on the observations
and the MLE parameter estimates. More formally, we
define the problem of state estimation as:

x̂ = argmax
x∈QT

p
(

x|y; θ̂
)

. (6)

Our intention is to use the parameter estimates of the
Gibbs distribution as an interpretable model of ani-
mal movement, and the state estimates of the latent
random variables as animal location estimates. We
note that an analysis of Gibbs weights might not con-
clusively explain the processes governing animal move-
ment, but we hope that it will be a first step in further
exploration of these processes.

3 EM

In this section, we detail the EM and Viterbi algo-
rithms for solving the estimation problems, and ana-
lyze their time-complexity. Later in the paper, we will
see that for the type of datasets we have, where both
the cardinality of the latent state space and the num-
ber of time steps is large, but the cardinality of the
feature space is small, the stochastic gradient algo-
rithm is asymptotically superior to EM. The analysis
in this section will allow us to compare EM and the
stochastic gradient algorithms.

Algorithm 1 EM( θ0, maxT ime)

1: i← 0.
2: repeat

3: ∀t ∈ {1, . . . , T } and ∀xt ∈ Q,
compute log p

(

xt|y; θ
i
)

.
4: ∀t ∈ {1, . . . , T − 1} and ∀ (xt, xt+1) ∈ Q2,

compute log p
(

xt, xt+1|y; θ
i
)

.

5: ∀n ∈ {1, . . . , N},
(

µi+1
n , κi+1

n

)

←

argmax
µn,κn

T
∑

t=1

E
xt|y; θi

[log p (yt,n|xt;µn, κn)] .

6: λi+1 ← argmax
λ

T−1
∑

t=1

E
xt|y; θi

[log p (xt+1|xt;λ)] .

7: i← i+ 1.
8: until elapsed time exceeds maxT ime.
9: return θi.

In Algorithm 1, we present the adaptation of EM to
our setting. Here, maxT ime denotes the maximum al-
lowed running time and θ0 =

(

λ0,µ0,κ0
)

denotes the



initial parameter settings. Lines 3 and 4 describe what
is traditionally called the E-step and involve computa-
tions of various conditional log-probabilities. These
log-probabilities can be computed using algorithms
such as the forward-backward algorithm. Similarly,
Lines 5 and 6 describe what is traditionally called the
M-step and involve maximization of expected complete
log-likelihoods. The maximization problem in Line 5,
after substitution of Equation (3) and some trigono-
metric manipulations, can be rewritten as:

argmax
µn,κn

(

T
∑

t=1

κn cosµn E
xt|y; θi

[cos (yt,n − h(xt, zn))]

)

+

(

T
∑

t=1

κn sinµn E
xt|y; θi

[sin (yt,n − h(xt, zn))]

)

− T log 2πI0 (κn) . (7)

In this form, it is equivalent to the problem of find-
ing MLE estimates of von Mises parameters from i.i.d
samples, and it can be solved in closed form using tech-
niques from directional statistics [10]. The maximiza-
tion problem in Line 6 is convex and unconstrained,
and it can be solved using numerical optimization al-
gorithms such as BFGS [9, 12].

EM is an iterative algorithm and it is hard to predict
beforehand how many iterations are necessary until
convergence. Here, we analyze the time-complexity
of each iteration for a direct implementation of Algo-
rithm 1. When it is clear from context, we write Q

for |Q|. We also remind the reader that Q denotes the
latent state space, K denotes the number of features,
and T denotes the number of time steps. Almost all
EM computations rely on the transition matrix, which
can be computed in Θ

(

Q2K
)

. The E-step, Lines 3 and
4, consists of computation of conditional log probabili-
ties, which takes Θ

(

Q2T
)

. The M-step, Lines 5 and 6,
consists of both iterative and non-iterative optimiza-
tion algorithms for estimating Gibbs and von Mises
parameters, respectively. Optimization of von Mises
parameters can be computed in Θ(QT ), whereas opti-
mization of Gibbs parameters is itself conducted iter-
atively using BFGS. However, in practice, the number
of BFGS iterations is small. For each BFGS iteration,
it takes Θ

(

Q2T
)

to evaluate the objective function and

Θ
(

Q2K
)

to evaluate its gradient. Finally, we note that
we suppressed the dependence on N , the number of
towers, since it is small. Overall, each EM iteration
takes Θ

(

Q2 (K + T )
)

.

For solving the problem of state estimation, Equa-
tion (6), the Viterbi algorithm may be used. Viterbi
is not iterative and it only needs to be executed once.
Once the transition matrix is computed in Θ

(

Q2K
)

,

the most likely path is computed in Θ
(

Q2T
)

, yielding,

like EM, a total running time of Θ
(

Q2 (K + T )
)

.

An important factor in determining both computa-
tional efficiency and statistical accuracy is the res-
olution of the grid used to construct Q, the latent
state space. As the diagonal distance between cor-
ners of each grid cell in Q gets shorter, the latent state
space representation becomes more accurate1 linearly,
whereas the cardinality of the latent state space in-
creases quadratically. Thus, an increase in statistical
accuracy at a linear rate is offset by an increase in com-
putational complexity at a quartic rate, since EM and
Viterbi themselves have time-complexity quadratic in
the cardinality of the latent state space. This trade-off
leads to a rapid increase in the running time of these
algorithms in exchange for small gains in statistical
accuracy.

4 STOCHASTIC GRADIENT

In this section, we propose a stochastic gradient al-
ternative to EM, which under certain conditions, is
asymptotically superior to EM. The algorithm is an
optimization method that can be used when one has
access to a noisy approximation of the gradient of the
objective function [16]. Younes [18] used it to esti-
mate parameters of partially observed Markov Ran-
dom Fields. Delyon et al. [5] proved convergence re-
sults for a family of stochastic approximations to EM,
including the stochastic gradient algorithm of the form
depicted in Algorithm 2. In the rest of the section, we
present our implementation of the stochastic gradient
algorithm, analyze its time-complexity and compare
it to that of EM, and detail how our implementation
differs from other implementations.

Algorithm 2 SG( θ0, numBurn, maxT ime)

1: i← 0.
2: repeat

3: Sample xi ∼ p
(

.|y; θi
)

using randomized
Gibbs sampling with a burn-in period of
numBurn.

4: θi+1 ← θi + γi∇Lxi

(

θi
)

, where γi is cho-
sen to satisfy Wolfe conditions with respect
to Lxi

(

θi
)

.
5: i← i+ 1.
6: until elapsed time exceeds maxT ime.
7: return θi.

The algorithm is presented formally as Algorithm 2.

1One measure of accuracy is the diagonal distance be-
tween the corners of a grid cell. In the worst-case sce-
nario, a larger grid cell would yield a higher absolute error
between the location estimate and the true location even
when the true location is estimated by the closest cell mid-
point.



Here, θ0 denotes the initial parameter settings,
maxT ime denotes the maximum allowed running
time, and numBurn denotes the number of Markov
Chain Monte Carlo (MCMC) iterations executed be-
fore a sample obtained through Gibbs sampling is ac-
cepted. The log-likelihood of the complete data, de-
noted L, is defined as:

Lx (θ) = Lx (λ,µ,κ) = log p (x,y;λ,µ,κ) . (8)

In Line 3, latent random variables are sampled from
the conditional distribution using Gibbs sampling, and
in line 4, model parameters are updated in the direc-
tion of the gradient. We note that the algorithm is a
stochastic gradient algorithm because the gradient of
the log-likelihood of the complete data, Equation (8),
is a noisy approximation of the gradient of the objec-
tive function, Equation (5).

The main difference between our implementation of
the stochastic gradient algorithm and previous imple-
mentations is the choice of the learning rate γ. Com-
mon implementations of the stochastic gradient al-
gorithm use a decreasing learning rate sequence that
guarantees the convergence of the algorithm to a sta-
tionary point. [5]. However, in practice, the choice of
the constant factor associated with such sequences sig-
nificantly influences the speed of convergence and it is
a difficult task to identify the optimal factor. We tune
the learning rate automatically by choosing one that
satisfies the Wolfe conditions. These are line search
conditions that guarantee the convergence of gradient
updates to an optimum in deterministic convex opti-
mization settings [12], but in our case, we use them
in a stochastic optimization setting. In practice, pa-
rameters that satisfy these conditions can be found
by providing the objective function and its gradient
to line search methods. Even though we lack a proof
of convergence, we have observed informally that our
criterion for selecting the learning rates ensures bet-
ter performance than manually choosing learning rates
that satisfy the customary assumptions. Furthermore,
our approach provides an automated way to set the
learning rate based on the dataset.

We conclude the section with an analysis of the time
complexity of our implementation of Algorithm 2.
Line 3 takes Θ(Q (B + V K)), where B is the burn-
in period and V is the number of unique states visited
during sampling. In order to achieve this complex-
ity, we compute the transition probabilities only for
the sampled states, and use memoization to store and
recall them. Line 4 is conducted iteratively, due to
the line search that involves finding the right learning
rate, but number of iterations is very small in practice.
Computing the objective function takes Θ(QVK + T ),
and computing the gradient takes Θ(K (QV + T )).

In conclusion, the choice between EM and the stochas-
tic gradient algorithm depends on the relative size of
the latent state space, the feature space, and the num-
ber of time steps; however, in our problem, where both
the cardinality of the latent state space and the num-
ber of time steps is large, but the cardinality of the fea-
ture space is small, the stochastic gradient algorithm
is asymptotically superior.

An asymptotic comparison of each iteration does not
suffice to determine which algorithm to use; thus in the
next section, we perform empirical tests that compare
these algorithms with respect to a variety of perfor-
mance measures. Also, we note that both algorithms
may be optimized such that only state transitions to a
small neighborhood are taken into account in the com-
putations. This would reduce time-complexity from
Θ
(

Q2
)

to Θ(QR), where R is the cardinality of the
largest neighborhood. Our implementation of all dis-
cussed algorithms take advantage of this optimization.

5 EXPERIMENTS

In this section, we demonstrate our model on both syn-
thetic and real datasets. First, we generate synthetic
datasets to evaluate our model in a setting where true
feature weights are known. We also use the synthetic
datasets to compare the performance of the EM and
the stochastic gradient algorithms. Then we use the
real datasets to compare our model with LOAS, the
most ubiquitous radio telemetry software package used
in ecology.

5.1 SYNTHETIC DATASETS

In order to simulate a real-world application as closely
as possible, we created a virtual island that has ap-
proximately the same dimensions and the same tower
locations as the Barro Colorado Island. We parti-
tioned the virtual island into 3654 grid cells (latent
states), where each grid cell is 100×100 meters square.
Then we created 10 different animal movement mod-
els (transition models). Each animal movement model
consisted of 5 features whose function values were gen-
erated uniformly at random from [0, 1), and each fea-
ture’s weight was generated uniformly at random from
[−10, 10]. For each animal movement model, we gen-
erated an animal path of length 1000. In order to be
as realistic as possible, we constrained the animal to
move at most 500 meters at each time step and normal-
ized the probabilities of the animal movement model
accordingly. We also used the same constraint during
the parameter estimation. As for the von Mises pa-
rameters of the towers, we set each µ to 0 and κ to
15, which approximates a normal distribution with a
standard deviation of 15 degrees. For each of the 10



animal paths, we generated the corresponding noisy
bearings, and together with the corresponding features
(but without the feature weights), provided them as
input to the parameter estimation algorithms.

In the first batch of experiments, we compared the
performance of the stochastic gradient algorithm and
the EM algorithm. For both algorithms, we set their
initial Gibbs weights to 0, which corresponds to a uni-
form transition model, and their initial κ parameters
to 50. For the stochastic gradient algorithm, we used
a burn-in period of 100, 000. We executed the algo-
rithms on each dataset for 10 hours. To evaluate their
performance, we measured the arithmetic mean error
of the location estimates, the Euclidean distance be-
tween the learned weights and the true weights, and
the log-likelihood of the observed bearings. We used
the Euclidean distance between the weights as a mea-
sure of the interpretability of the model, where the
closer weights were considered more interpretable.

As suggested by the asymptotic analysis, the stochas-
tic gradient algorithm executed many more iterations
than EM, and outperformed EM with respect to both
the arithmetic mean error of the location estimates and
the Euclidean distance between the learned weights
and the true weights. The stochastic gradient algo-
rithm also attained a higher log-likelihood than EM.
We display the results, averaged over the 10 datasets,
in Figure 1.
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Figure 1: In these plots, we compare the performance
of the EM and the stochastic gradient algorithms. During
10 hours, EM had an average of 10 iterations, whereas
stochastic gradient had an average of 500 iterations. The
left plot reports the Euclidean distance between the learned
weights and the true weights, and the right plot reports the
average mean error of the location estimates. Stochastic
gradient outperforms EM in both cases.

In the second batch of experiments, we compared the
performance of our animal movement model with a dis-
crete version of the animal movement model used by
Anderson-Sprecher [1]. By doing so, we both wanted
to demonstrate how our model can generalize previ-
ous animal movement models and we wanted to ob-
serve whether having a richer model leads to an im-
provement in the accuracy of location estimates. The

animal movement model used by Anderson-Sprecher
is an isotropic bivariate Gaussian random walk which
was trained using an extended Kalman filter-smoother.
His model is defined as:

p
(

xt+1|xt;σ
2
)

=
1

2πσ2
exp

(

−
‖xt+1 − xt‖

2

2σ2

)

. (9)

We can represent the same model approximately as a
Gibbs distribution using the single distance-based fea-

ture fdist = −
‖xt+1−xt‖

2

2 . Similar to the first batch of
experiments, we executed two copies of the stochas-
tic gradient algorithm on the same datasets; one copy
used the features that generated the datasets and the
other copy used the single feature that represents the
bivariate Gaussian random walk. The richer model
outperformed the Gaussian random walk model with
respect to the accuracy of the location estimates. We
display the results of these experiments, averaged over
10 datasets, in Figure 2.
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Figure 2: In this plot, we compare the performance be-
tween using a richer feature-based (Environment) model
versus using a simpler random walk (Kalman) model. The
results imply that, if the animal indeed moves around based
on environmental features, a model that incorporates such
features does yield better location estimates than a simpler
random walk model.

5.2 REAL DATASETS

We applied our model to the radio telemetry data col-
lected from two sloths, named Chispa and Wendi, that
live on the Barro Colorado Island. These sloths were
one of the few animals on the island whose true loca-
tions were labeled every few days by human researchers
via GPS devices. Thus, we were able to use the radio
telemetry data to train our algorithms and the GPS
data to test them.

The radio telemetry data was collected every 4 minutes
for 10 days, yielding approximately 3600 time points.
Both datasets had considerable noise in the bearing
measurements. In order to apply our model, we dis-
cretized the island into 1200 grid cells, each of size
50× 50 meters square. As features, we used both the
distance-based feature that encodes a bivariate ran-
dom walk, Equation (9), and tree-based features that



encode the change in the population density of various
tree species across grid cells. In particular, the model
included 18 features: 1 distance-based feature and 17
tree-based features. Each of the 17 tree-based features
corresponded to a different tree species and they were
normalized to have values in [−1, 1]. We initialized
the Gibbs weights to 0, the µ parameters to 0, and
the κ parameters to 10. We executed 10 different in-
stances of the stochastic gradient algorithm, each us-
ing a different random seed, and averaged the results.
As a baseline comparison, we used LOAS, which is the
most popular radio telemetry software package used in
ecology [8].

We display the results in Figure 3 and Figure 4. For
both datasets, SSM outperformed LOAS with respect
to the accuracy of the location estimates. As demon-
strated for the Wendi dataset, our model success-
fully learned a diminishing movement variance for the
sloth, represented in the top-right figure as the grow-
ing weight associated with the distance-based feature.
It also identified a small portion of the tree species
that the sloth seems to have a preference for.
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Figure 3: Left: This plot compares the location esti-
mation performance of the two algorithms. cH and wH
represent the performance of the SSM; cL and wL repre-
sent the performance of LOAS. The initial letters ”c” and
”w” refer to the Chispa and Wendi datasets, respectively.
Right: This plot displays the evolution of the transition
weights for the Wendi dataset. We only plotted the weights
that exceeded the 0.5 threshold. ”D” and ”T” denote the
distance-based and tree-based features, respectively.

We also generalized our movement model features to
be temporally-dependent. In particular, we parti-
tioned each day into different time zones, and for each
such zone, we allowed the animals to move according
to a different movement model. The changes in the
daily activity of the sloths have already been studied
by field biologists; so for our experiments, we set the
time zones, ”day” and ”night”, based on biologists’
feedback.

In our last experiment, we were interested in eval-
uating whether feature weights converge to mean-
ingful values, whether they are interpretable, and
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Figure 4: These plots display the true locations, SSM
estimates, and LOAS estimates. SSM estimates are based
on the last stochastic gradient iteration. Left plot displays
the results for theWendi dataset and the right plot displays
the results for the Chispa dataset.

how different types of features interact with each
other. For this purpose, we created an artificial tree
type, where for each of the very few locations GPS
data was available for Wendi, we placed a virtual
tree. We defined this tree-feature formally as ftree =

− ‖tree dist(xt+1)−tree dist(xt)‖
2

2 , where tree dist (x) is
the Euclidean distance between x and the closest tree
of that type. By defining the tree-based feature this
way, we set it to the ”same” unit as the distance-
based feature associated with Equation (9), allowing
the feature weights to be numerically comparable. Af-
ter normalizing all feature values to be within [−1, 1],
the weights converged to 0.704 for distance-based fea-
ture at night and 0.316 during day; −1.279 for tree-
based feature at night and −1.312 during day. As
expected, interpreting distance-based weights indicate
that Wendi moves more during day than night and
that the positive magnitude of these weights indicate
that the animal is more likely to stay in place in suc-
ceeding time steps. Also, tree-based weights correctly
indicate that Wendi has a strong preference for certain
neighborhoods on the map (i.e. the true locations),
and that the strength of these preferences are indiffer-
ent to the time zone.

6 CONCLUSION

In this paper, we presented an SSM approach to lo-
cate radio-tagged animals and learn their movement
patterns. We presented a model that incorporates
both geographical and non-geographical spatial fea-
tures to improve animal location estimates and pro-
vide researchers an interpretable model that enunci-
ates the relationship between the animal and its en-
vironment. We showed that the model generalizes
discrete versions of random walk models and demon-
strated empirically that a richer model improves an-
imal location estimates. We also provided a fast pa-
rameter estimation algorithm, the stochastic gradient
algorithm, and demonstrated its effectiveness against



EM both asymptotically and empirically. Finally, we
applied our model to real datasets. Our model outper-
formed LOAS, the most popular radio telemetry soft-
ware package in ecology, with respect to the accuracy
of the location estimates. Our model also hypothe-
sized that the sloth has a relatively strong preference
for certain types of trees. We are currently working on
applying our model to other telemetry datasets col-
lected at the Barro Colorado Island.
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