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Abstract

The Nyström method is an efficient technique
used to speed up large-scale learning applica-
tions by generating low-rank approximations.
Crucial to the performance of this technique
is the assumption that a matrix can be well
approximated by working exclusively with a
subset of its columns. In this work we re-
late this assumption to the concept of matrix
coherence, connecting coherence to the per-
formance of the Nyström method. Making
use of related work in the compressed sens-
ing and the matrix completion literature, we
derive novel coherence-based bounds for the
Nyström method in the low-rank setting. We
then present empirical results that corrobo-
rate these theoretical bounds. Finally, we
present more general empirical results for the
full-rank setting that convincingly demon-
strate the ability of matrix coherence to mea-
sure the degree to which information can be
extracted from a subset of columns.

1 Introduction

Modern problems in computer vision, natural lan-
guage processing, computational biology and other ar-
eas often involve datasets containing millions of train-
ing instances. However, several standard methods in
machine learning, such as spectral clustering (Ng et

al., 2001), manifold learning techniques (de Silva and
Tenenbaum, 2003; Schölkopf et al., 1998), kernel ridge
regression (Saunders et al., 1998) or other kernel-based
algorithms do not scale to such orders of magnitude. In
fact, even storage of the matrices associated with these
datasets can be problematic since they are often not
sparse and hence the number of entries is extremely
large. As shown by Williams and Seeger (2000), the
Nyström method provides an attractive solution when

working with large-scale datasets by operating on only
a small part of the original matrix to generate a low-
rank approximation. The Nyström method has been
shown to work well in practice for various applications
ranging from manifold learning to image segmenta-
tion (Fowlkes et al., 2004; Platt, 2004; Talwalkar et

al., 2008; Zhang et al., 2008).

The effectiveness of the Nyström method hinges on
two key assumptions on the input matrix, G. First,
we assume that a low-rank approximation to G can be
effective for the task at hand. This assumption is often
true empirically as evidenced by the widespread use
of singular value decomposition (SVD) and principal
component analysis (PCA) in practical applications.
As expected, the Nyström method is not appropriate
in cases where this assumption does not hold, which
explains its poor performance in the experimental re-
sults of Fergus et al. (2009). Previous work analyzing
the performance of the Nyström method incorporates
this low-rank assumption into theoretical guarantees
by comparing the Nyström approximation to the ‘best’
low-rank approximation, i.e., the approximation con-
structed from the top singular values and singular vec-
tors of G (see Section 2 for further discussion) (Drineas
and Mahoney, 2005; Kumar et al., 2009a).

The second crucial assumption of the Nyström method
involves the sampling-based nature of the algorithm,
namely that an accurate low-rank approximation can
be generated exclusively from information extracted
from a small subset of l ≪ n columns of G. This
assumption is not generally true for all matrices. For
instance, consider the extreme case of the n×n matrix
described below:

G =
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∣∣∣


 , (1)

where ~ei is the ith column of the n dimensional iden-
tity matrix and ~0 is the n dimensional zero vector.



Although this matrix has rank r, it nonetheless can-
not be well approximated by a random subset of l
columns unless this subset includes e1, . . . , er. In order
to account for such pathological cases, previous theo-
retical bounds relied on sampling columns of G from
a non-uniform distribution weighted precisely by the
magnitude of the diagonal elements of G (Belabbas
and Wolfe, 2009; Drineas and Mahoney, 2005). In-
deed, these bounds give better guarantees for patho-
logical cases. However, in practice, when working with
real-world datasets, uniform sampling is more com-
monly used, e.g., Fowlkes et al. (2004); Platt (2004);
Talwalkar et al. (2008); Williams and Seeger (2000),
since diagonal sampling is more expensive and does not
typically outperform uniform sampling (Kumar et al.,
2009c). Hence the diagonal sampling bounds are not
applicable in this setting. Furthermore, these bounds
are typically loose for matrices in which the diagonal
entries of the matrix are roughly of the same magni-
tude, as in the case of all kernel matrices generated
from RBF kernels, for which the Nyström has been
noted to work particularly well (Williams and Seeger,
2000).

In this work, we propose to characterize the ability to
extract information from a small subset of l columns
using the notion of matrix coherence, an alternative
data-dependent measurement which we believe to be
intrinsically related to the algorithm’s performance.
Coherence measures the extent to which the singular
vectors of a matrix are correlated with the standard
basis. Intuitively, if we work with sufficiently incoher-
ent matrices, then we avoid pathological cases such as
the one presented (1). Recent work on compressed
sensing and matrix completion, which also involve
sampling-based approximations, have relied heavily on
coherence assumptions (Candès and Romberg, 2007;
Candès et al., 2006; Donoho, 2006).

The main contribution of this work is the connec-
tion that is made between matrix coherence and the
Nyström method. Making use of related work in the
compressed sensing and the matrix completion liter-
ature, we give a more refined analysis of this algo-
rithm as a function of matrix coherence, presenting a
novel preliminary theoretical bound for the Nyström
method. We also present extensive empirical results
that strongly relate coherence to the performance of
the Nyström method.

The remainder of the paper is organized as follows.
Section 2 introduces basic definitions of coherence and
gives a brief presentation of the Nyström method. In
Section 3 we present our novel bound for the Nyström
method under low-rank, low-coherence assumptions.
Section 4 presents extensive empirical studies that sup-
port our bound and illustrate a similar connection be-

tween matrix coherence and the performance of the
Nyström method for full-rank matrices. Our empiri-
cal results also show that incoherence assumptions are
valid for several datasets derived from real-world ap-
plications.

2 Preliminaries

Let G ∈ R
n×n be a symmetric positive semidefinite

(SPSD) matrix. SPSD matrices, such as Gram or
kernel matrices, often appear in the context of ma-
chine learning. For any Gram matrix, there exists an
N and X ∈ R

N×n such that G = X⊤X. We de-
fine X(j), j = 1 . . . n, as the jth column vector of X
and X(i), i = 1 . . . N , as the ith row vector of X, and
denote by ‖·‖ the ℓ2 norm of a vector. Using sin-
gular value decomposition (SVD), the Gram matrix
can be written as G = V ΣV ⊤, where V is orthonor-
mal and Σ = diag(σ1, . . . , σn) is a real diagonal ma-
trix with diagonal entries sorted in decreasing order.
For r = rank(G), the pseudo-inverse of G is defined

as G+ =
∑r

t=1 σ−1
t V (t)V (t)⊤. Further, for k ≤ r,

Gk =
∑k

t=1 σtV
(t)V (t)⊤ is the ‘best’ rank-k approx-

imation to G, or the rank-k matrix with minimal ‖·‖ξ

distance to G, where ξ ∈ {2, F} and ‖·‖2 denotes the
spectral norm and ‖·‖F the Frobenius norm of a ma-
trix.

2.1 Nyström method

The Nyström method was presented in Williams and
Seeger (2000) to speed up the performance of kernel
machines. This is done by generating low-rank approx-
imations of G using a subset of the columns of the ma-
trix. Suppose we randomly sample l ≪ n columns of
G uniformly with replacement, and let C be the n × l
matrix of these sampled columns. Then, without loss
of generality, we can rearrange the columns and rows
of G based on this sampling and define X = [X1 X2]
where X1 ∈ R

N×l, such that

G = X⊤X =

[
W X⊤

1 X2

X⊤
2 X1 X⊤

2 X2

]
(2)

and C =

[
W

X⊤
2 X1

]
, (3)

where W = X⊤
1 X1. The Nyström approximation is

now defined as:

G ≈ G̃ = CW+C⊤. (4)

The Frobenius distance between G and G̃, ‖G− G̃‖F ,
is one standard measurement of the accuracy of the
Nyström method. The runtime of this algorithm is



O(l3 + nl2): O(l3) for SVD on W and O(nl2) for mul-
tiplication with C. The Nyström method is often pre-
sented with an additional step whereby W in (4) is
replaced by its rank-k approximation, Wk, for some
k < l, thus generating G̃k, the rank-k Nyström ap-
proximation to G. In this case, the runtime of the
algorithm is reduced to O(l3 + nlk).

2.2 Coherence

Although the Nyström method tends to work well in
practice, the performance of this algorithm depends on
the structure of the underlying matrix. We will show
that the performance is related to the size of the en-
tries of the singular vectors of G, or the coherence of
its singular vectors. We define Vr as the top r singular
vectors of G, and denote the coherence of these sin-
gular vectors as µ(Vr), which is adapted from Candès
and Romberg (2007).

Definition 1 (Coherence). The coherence of a matrix

of Vr with orthonormal columns is defined as:

µ(Vr) =
√

n max
i,j

|Vr
(j)
(i) | . (5)

The coherence of Vr is lower bounded by 1, as is the
case for the rank-1 matrix with all entries equal to
1/
√

n, and upper bounded by
√

n, as is the case for
the matrix of canonical basis vectors. As discussed
in Candès and Recht (2009); Candès and Tao (2009),
highly coherent matrices are difficult to randomly re-
cover via matrix completion algorithms, and this same
logic extends to the Nyström method. In contrast, in-
coherent matrices are much easier to successfully com-
plete and to approximate via the Nyström method, as
discussed in Section 3.

In order to provide some intuition, Candès and Recht
(2009) give several classes of randomly generated ma-
trices with low coherence. One such class of matrices
is generated from uniform random orthonormal singu-
lar vectors and arbitrary singular values. For such a
class they show that µ = O(

√
log n · 4

√
r) with high

probability.1 In what follows, we will show bounds on
the number of points needed for reconstruction that
become more favorable as coherence decreases. How-
ever, the bounds are useful for more generous values
of coherence than given in the above example. We
will also provide an empirical study of coherence for
various real-world and synthetic examples.

1For low-rank matrices, 4
√

r is quite small. Moreover,
this 4

√
r factor only appears due to our use of the generally

loose inequality µ
2 ≤

√
rµ1, where µ1 is a slightly different

notion of coherence used in the original bound in Candès
and Recht (2009) for this class of matrices.

3 Low-rank, low-coherence bounds

In this section, we make use of coherence to analyze the
Nyström method when used with low-rank matrices.
We note that although the bounds presented through-
out this section hold for matrices of any rank r, they
are only interesting when r = o(

√
n), and hence they

are most applicable in the “low-rank” setting.

3.1 Nyström method bound

The Nyström method is empirically effective in cases
where G has low-rank structure even if the matrix has
full-rank, i.e., G ≈ Gk for some k ≪ n. Furthermore,
as stated in Theorem 1 below, when G is actually a
low-rank matrix, then the Nyström method can ex-
actly recover the initial matrix (we include the short
proof for the sake of completeness).

Theorem 1 ((Kumar et al., 2009b) Thm. 3). Suppose

r = rank(G) ≤ k ≤ l and rank(W ) = r. Then the

Nyström approximation is exact, i.e., ‖G− G̃k‖F = 0.

Proof. Since G = X⊤X, rank(G) = rank(X) = r.
Similarly, W = X⊤

1 X1 implies rank(X1) = r, i.e., the
columns of X1 span the columns of X. We next let
UX1,k be the k left singular vectors of X1 associated
with the top k singular values of X1. We then repre-
sent W and C in terms of X1 and X2, to rewrite the
Nyström approximation as:

G̃ = CW+
k C⊤

=

[
X⊤

1

X⊤
2

]
X1(X

⊤

1 X1)
+
k X⊤

1

[
X1 X2

]

= X⊤UX1,kU⊤

X1,kX. (6)

Furthermore, since columns of X1 span the columns
of X, UX1,r is an orthonormal basis for X and I −
UX1,rU

⊤

X1,r is an orthogonal projection matrix into the
nullspace of X. Since k ≥ r, from (6) we have

‖G − G̃k‖F = ‖X⊤(I − UX1,kU⊤

X1,k)X‖F = 0. (7)

This theorem implies that if G has low-rank, then there

exists a particular sampling such that rank(W ) =
rank(G) and the Nyström method can perfectly re-
cover the full matrix. However, selecting a suitable
set of l columns from an n × n SPSD matrix can be
an intractable combinatorial problem, and there ex-
ist matrices for which the probability of selecting such
a subset uniformly at random is exponentially small,
e.g., the rank-r SPSD diagonal matrices discussed ear-
lier. In contrast, a large class of SPSD matrices are
much more incoherent, and for these matrices, we will



next show that by choosing l to be linear in r and
logarithmic in n we can can with very high probabil-
ity guarantee that rank(W ) = r, and hence exactly
recover the initial matrix.

Probability of choosing a good subset

We start with a rank-r Gram matrix, G, and a fixed
distribution, D, over the columns of G. Our goal is to
calculate the probability of randomly choosing a subset
of l columns of G according to D such that rank(W ) =
r. Recall that G = X⊤X, X = [X1 X2] and W =
X⊤

1 X1. Then, by properties of SVD, we know that
rank(G) = rank(X) and rank(W ) = rank(X1). Hence,
the probability of this desired event is equivalent to the
probability of sampling l columns of X according to D
such that rank(X1) = r, as shown in (10). Next, we
can write the thin SVD of X as X = UrΣrV

⊤
r , where

Ur ∈ R
m×r, Σr ∈ R

r×r and Vr ∈ R
n×r. Since Ur

contains orthonormal columns and Σr is invertible, we
know that

Σ−1
r U⊤

r X = V ⊤

r . (8)

Further, using the block representation of X, we have

X⊤

1 UrΣ
−1
r = Vr,l, (9)

where Vr,l ∈ R
l×r corresponds to the first l compo-

nents for each of the r right singular vectors of X.
Since rank(X1) = rank(X⊤

1 UrΣ
−1
r ), we obtain the

equality of (11).

Pr
D

[rank(W ) = r] = Pr
D

[rank(X1) = r] (10)

= Pr
D

[rank(Vr,l) = r]. (11)

In the next section we calculate this probability for a
specific distribution in terms of l as well as a measure
of the coherence of Vr.

Sampling Bound

Given the orthonormal matrix Vr, we would like to
find a choice of l such that Vr,l created by uniform

sampling has rank r with high probability. As pointed
out in the previous section, a meaningful bound may
not be possible for any l < n if no assumption is made
on Vr. Here we adopt the assumption that Vr has low
coherence, as defined in Definition 1. We then observe
that by properties of SVD we have

Pr
(
rank(Vr,l) = r

)
= Pr

(
rank(V ⊤

r,lVr,l) = r
)

. (12)

Next, we define σ = ‖V ⊤

r,lVr,l‖2 and note that for 0 <

c < 1/σ, cV ⊤

r,lVr,l is an r×r SPSD matrix with singular

values less than one. Furthermore, I − cV ⊤

r,lVr,l is also

SPSD with

Pr
(
rank(V ⊤

r,lVr,l) = r
)

= Pr
(
‖cV ⊤

r,lVr,l − I‖ < 1
)

,

(13)
since ‖cV ⊤

r,lVr,l − I‖ = 1 implies that the nullspace of

cV ⊤

r,lVr,l is nonempty. Alternatively, if c ≥ 1/σ, then

Pr
(
rank(V ⊤

r,lVr,l) = r
)
≥ Pr

(
‖cV ⊤

r,lVr,l − I‖ < 1
)

,

(14)
since, for large enough c, we could have ‖cV ⊤

r,lVr,l −
I‖ ≥ 1 even if rank(V ⊤

r,lVr,l) = r. Thus the inequality
in (14) holds for any constant c > 0, i.e., the probabil-
ity on the RHS of (14) serves as a lower bound for the
probability of interest to us.

The probability on the RHS of (14) has been studied
in previous compressive sampling literature. Specifi-
cally, Candès and Romberg (2007) makes use of a main
lemma of Rudelson (1999) to derive Theorem 2, which
provides us with our desired lower bound.

Theorem 2 ( (Candès and Romberg, 2007) Thm.
1.2). Define Vr ∈ R

n×r such that V ⊤
r Vr = I and let

Vr,l ∈ R
l×r be generated from Vr by sampling rows

uniformly at random. Then, the following holds with

probability at least 1 − δ,

∥∥n

l
V ⊤

r,lVr,l − I
∥∥ <

1

2
, (15)

for any l that satisfies,

l ≥ rµ2(Vr)max
(
C1 log(r), C2 log(3/δ)

)
, (16)

where C1 and C2 are positive constants.

Note that our definition of coherence and statement of
Theorem 2 are modified to account for the fact that
V ⊤

r Vr = I as oppose to nI, as in Candès and Romberg
(2007). Also, Vr is not square as assumed in the origi-
nal theorem, however it can be verified that the proof
holds even for this case.

By making use of Theorem 2, we can now answer the
question regarding the number of columns needed to
sample from G in order to obtain an exact reconstruc-
tion via the Nyström method. Theorem 3 presents a
bound on l for matrix completion in terms of µ.

Theorem 3. Let G ∈ R
n×n be a rank-r SPSD

matrix where Vr ∈ R
n×r is a matrix of its sin-

gular vectors. Define G̃k as the Nyström approxi-

mation of G using l randomly sampled columns of

G, with l ≥ k ≥ r. Then it suffices to sam-

ple l ≥ rµ2(Vr)max
(
C1 log(r), C2 log(3/δ)

)
columns,

where C1 and C2 are positive constants, to have with

probability at least 1 − δ,

‖G − G̃k‖ = 0 . (17)



Dataset Type of data # Points (n) # Features (d) Kernel
PIE (Sim et al., 2002) face images 2731 2304 linear
MNIST (LeCun and Cortes, 1998) digit images 4000 784 linear
Essential (Gustafson et al., 2006) proteins 4728 16 RBF
Abalone (Asuncion and Newman, 2007) abalones 4177 8 RBF
Dexter (Asuncion and Newman, 2007) bag of words 2000 20000 linear
Random random features 1000 20000 linear
Artificial high coherence 2000 - -

Table 1: A summary of the datasets used in the experiments, including the type of data, the number of points
(n), the number of features (d) and the choice of kernel.
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Figure 1: Mean percent error over 10 trials of Nyström approximations of rank 100 matrices. Left: Results for l
ranging from 5 to 200. Right: Magnified view of experimental results for l ranging from 80 to 200.

Proof. Theorem 1 states sufficient conditions for ex-
act matrix completion. Equations (10) and (11) re-
duce these sufficient conditions to a condition on the
rank of Vr,l. Equations (12) and (14) further reduce
this problem to a similar problem previously studied
in the context of compressed sensing. Finally, we use
Theorem 2 to bound with high probability the RHS of
(14).

4 Experiments

In this section we present a series of empirical results
that show the empirical connection between matrix co-
herence and the performance of the Nyström method.
We first perform two sets of experiments that corrob-
orate the theoretical claims made in the previous sec-
tion – Section 4.1 illustrates the performance of the
Nyström method for low-rank matrices using the seven
datasets detailed in Table 1 while Section 4.2 interprets
these results in the context of the coherence of these
datasets. Next, we present more general experimental
results in Section 4.3 that connect matrix coherence to
the Nyström method in the case of full-rank matrices.

4.1 Reconstruction error

In our first set of experiments we measure the accu-
racy of the Nyström approximation (G̃k) for a variety
of rank-r matrices, with r = 100. For the first six
datasets listed above, we initially constructed the op-
timal rank-r approximation to each kernel matrix by
reconstructing with the top r eigenvalues and eigen-
vectors. The final rank-r SPSD matrix (Artificial) was
constructed to have high coherence, i.e., large µ, fol-
lowing the procedure outlined in Section 4.3.2 Next,
we performed the Nyström method for various values
of l to generate a series of approximations to our rank-r
matrices (note that we set k = l). For each approxima-
tion, we calculated the percent error of the Nyström
approximation using the notion of percent error, de-
fined as follows:

Percent error =
‖G − G̃k‖F

‖G‖F

× 100. (18)

The results of this experiment, averaged over 10 trials,
are presented in Figure 1. The figure shows that for
five of the seven datasets, the Nyström method exactly

2We used an artificial dataset due to the difficulty of
finding multiple real examples with large µ.
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Figure 2: Coherence of Datasets. Left: Coherence of rank 100 SPSD matrices used in experiments in Section
4.1. Right: Asymptotic growth of coherence for MNIST and Abalone datasets. Note that coherence values are
means over ten trials.

reconstructs the initial rank r matrix when the num-
ber of sampled columns (l) is equal or slightly larger
than r. Note that this observation holds for each of
the ten trials, since the mean error is zero for each of
these datasets when l ≈ r. In contrast, for the cases
of the Abalone and Artificial datasets, we do not see
convergence to zero percent error as l surpasses r, and
the percent error is non-zero even when l = 2r.

4.2 Coherence of datasets

In this set of experiments, we use the concept of coher-
ence to explain the results from Section 4.1, namely
that the Nyström method generates an exact ma-
trix reconstruction for l ≈ r for five of the seven
datasets, but fails to do so for the Abalone and Ar-
tificial datasets. As such, we first calculated the co-
herence of each of the SPSD rank 100 matrices used
in Section 4.1, using the definition of coherence from
Definition 1. The left panel of Figure 2 shows the co-
herence of these matrices with respect to the number
of points in the dataset. This plot illustrates the stark
contrast between Abalone/Artificial and the other five
datasets in terms of coherence, and helps validate our
theoretical connection between low-coherence matrices
and the ability to generate exact reconstructions via
the Nyström method.

Next, we performed an experiment in which we repeat-
edly subsampled the initial SPSD matrices to generate
matrices with different dimensions, i.e., different val-
ues of n. For each value of n, we computed the coher-
ence of the subsampled matrix, again using Definition
1. The right panel of Figure 2 shows the mean re-
sults over ten trials for both the MNIST and Abalone
datasets. As illustrated by this plot, the coherence of

the Abalone dataset grows much more quickly than
that of the MNIST dataset. As illustrated by the or-
thogonal random model, we expect incoherent matri-
ces to exhibit a slow rate of growth, i.e. O(

√
log n· 4

√
r).

The plots for the Artificial dataset are comparable to
the Abalone dataset, and the plots for the other four
datasets are comparable to the MNIST dataset (plots
not shown). These results provide further intuition
for why the Nyström method is able to perform exact
reconstruction on all datasets except for Abalone.

4.3 Full rank experiments

As discussed in Section 1, the Nyström method hinges
on two assumptions: good low-rank structure of the
matrix and the ability to extract information from a
small subset of l columns of the input matrix. In this
section, we analyze the effect of each of these assump-
tions on Nyström method performance on full-rank
matrices, using matrix coherence as a quantification
of the latter assumption. To do so, we devised a series
of experiments using synthetic datasets that precisely
control the effects of each of these parameters.

To control the low-rank structure of the matrix, we
generated artificial datasets with exponentially decay-
ing eigenvalues with differing decay rates, i.e., for
i ∈ {1, . . . , n} we defined the ith singular value as
σi = exp(−iη), where η controls the rate of decay. For
a fixed value of η, we then measured the percentage of
the spectrum captured by the top k singular values as
follows:

Percent of Spectrum =

∑k

i=1 σi∑n

i=1 σi

. (19)

To control coherence, we generated singular vectors
with varying coherences by forcing the first singular
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Figure 3: Coherence experiments with full-rank synthetic datasets, with n = 2000 and k = 50. Each plot
corresponds to matrices with a fixed eigenvalue decay rate (resulting in a fixed percentage of spectrum captured)
and each line within a plot corresponds to the average results of 10 randomly generated matrices with the
specified coherence. Furthermore, results for each such matrix for a fixed percentage of sampled columns are the
means over 5 random subsets of columns.

vector to achieve our desired coherence and then us-
ing QR to generate a full orthogonal basis. The small-
est values of µ used in our experiments correspond to
randomly generated orthogonal matrices. We report
the results of our experiments in Figure 3. For these
experiments we set n = 2000 and k = 50. Each plot
corresponds to matrices with a fixed eigenvalue decay
rate (resulting in a fixed percentage of spectrum cap-
tured) and each line within a plot corresponds to the
average results of 10 randomly generated matrices with
the specified coherence. Furthermore, results for each
such matrix for a fixed percentage of sampled columns
are the means over 5 random subsets of columns.

There are two main observations to be drawn from our
experiments. First, as noted in previous work with the
Nyström method, the Nyström method generates bet-
ter approximations for matrices with better low rank
structure, i.e., matrices with a higher percentage of
spectrum captured by the top k singular values. Sec-
ond, following the same pattern as in the low-rank

setting, the Nyström method generates better approx-
imations for lower coherence matrices, and hence, ma-
trix coherence appears to effectively capture the degree
to which information can be extracted from a subset
of columns.

5 Conclusion and future work

In this work, we make a connection between matrix co-
herence and the performance of the Nyström method.
Making use of related work in the compressed sensing
and the matrix completion literature, we derive novel
coherence-based bounds for the Nyström method in
the low-rank setting. We then present empirical results
that corroborate these theoretical bounds. Finally, we
present more general empirical results for the full-rank
setting that convincingly demonstrate the ability of
matrix coherence to measure the degree to which in-
formation can be extracted from a subset of columns.

Future work involves generalizing our coherence-based



bounds to the case of full-rank matrices. Additionally,
our preliminary studies suggest that matrix coherence
can perhaps be estimated using a subset of matrix
entries. Developing an algorithm to efficiently esti-
mate matrix coherence is of crucial importance to help
quickly determine the applicability of the Nyström
method (and other algorithms with performance tied
to matrix coherence) on a case-by-case basis.
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