ReDef: Context-Aware Recognition of Interleaved Activities using OWL 2 and **Defeasible Reasoning**

Georgios Meditskos, Efstratios Kontopoulos, Ioannis Kompatsiaris

Information Technologies Institute Center for Research & Technology Hellas

CFRTH

Information Society and Media

Dem@Care Project

- A close-loop multi-parametric remote monitoring framework
 - For timely diagnosis, assessment, maintenance and promotion of self independence of people with dementia
- Enhance clinical workflow by
 - Continuous monitoring the condition and progress of PwD
 - Providing objective multi-sensor measurements

Dem@Care Project

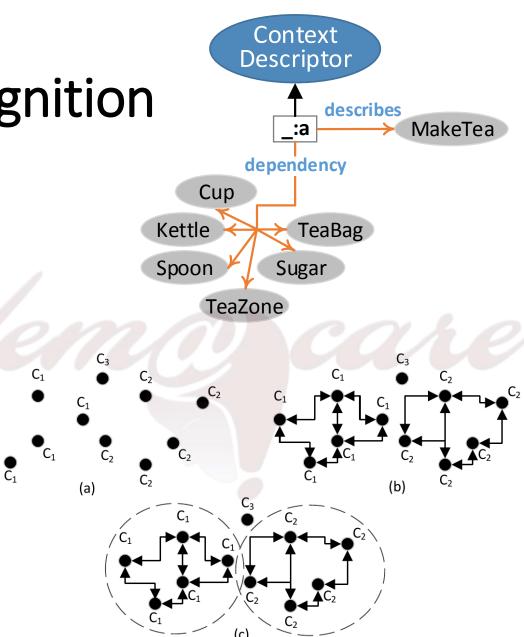
- Focus on three directions:
 - Implementation of multi-sensor monitoring and analysis of behavior/activities
 - Support person-tailored, timeevolving behaviour profiling & interpretation
 - Support feedback for personalized treatment and care

Multi-sensor Monitoring, Behaviour Profiling dem Car At home Clinician treatment closed loop closed loop

Outline

- Introduction
- Knowledge-driven recognition of activities using OWL 2 and SPARQL
- Problem description / Interleaved activities
- The ReDef extension
 - Activity telicity
 - Defeasible rules for handling interleaved activities
- Use case
- Conclusions

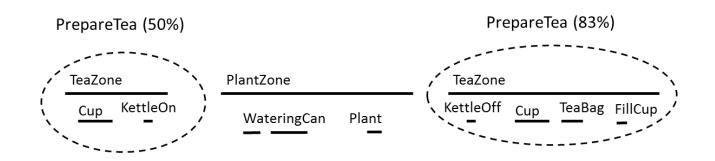
Human Activities in Pervasive Environments


- Smart Homes, Health Care, ...
 - e.g. monitoring the heath status of elderly people
- Key challenges
 - Fusion and correlation of heterogeneous sensors and modalities
 - contact sensors, video analytics, sleep sensors, accelerometers, ...
 - Noise, missing observations, synchronization issues
 - Behavioral variability
 - Different ways the activities are performed (even by the same person)

Ontologies and Activity Recognition

- Knowledge-driven solutions
 - Vocabularies for representing low-level observations
 - objects, locations, events
 - Complex activities
 - e.g. activity hierarchies, activity models
 - Profile/Clinical information
 - habits, trends, abnormal situations / problems, etc.
- Ontologies + Rules
 - Modelling of richer relations
 - e.g. temporal relations
- Ontologies + Data-driven solutions
 - learn activity models, update profile ontologies ...

Context-Aware Activity Recognition


- Combination of SPARQL and OWL 2 meta-modelling
- Context descriptors
 - dependencies among lower level observations and high-level activities
 - e.g. objects, locations, actions relevant to an activity
- Given a set of low-level observations and a set of situation descriptors, the context-aware algorithm segments the initial trace of observations into meaningful contexts

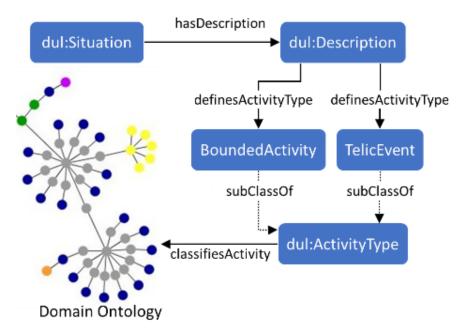
G. Meditskos, E. Kontopoulos, I. Kompatsiaris, Knowledge-Driven Activity Recognition and Segmentation Using Context Connections, ISWC 2014

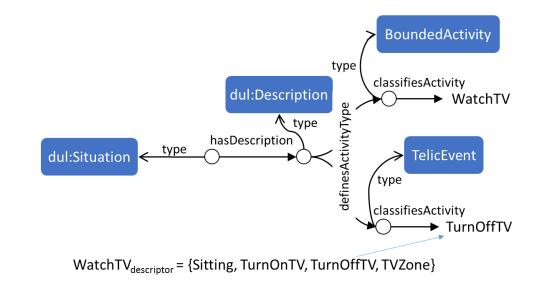
Problem/Challenge

- Interleaved activities
 - one activity may be paused in order to perform one or more other activities
- Problem
 - interleaved contexts are recognized as individual activities, affecting the performance
- Challenge
 - classify interrupted instances of the same task as a single activity
- Example
 - Preparing tea and watering the plant

PrepareTea_{descriptor} = {TeaZone, Cup, KettleOn, KettleOff, TeaBag, FillCup}

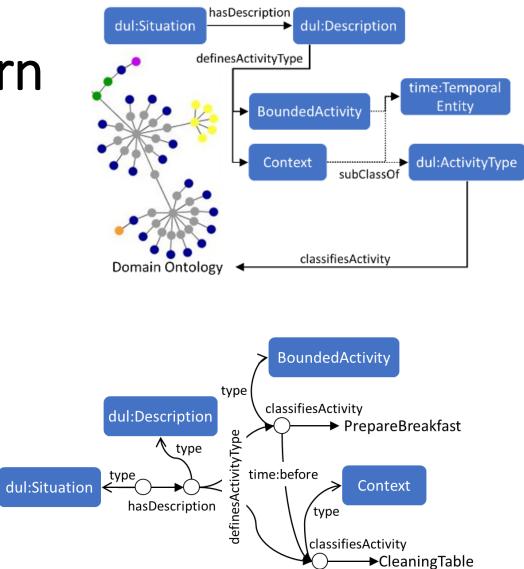
Context-Aware Handling of Interleaved Activities


- Trivial solution
 - Time windows: group similar activities within the same time interval
 - Problem: activity duration usually varies
- Our approach
 - Context-aware grouping of interrupted activities by introducing the notion of telicity
 - Groups activities based on the existence of certain observations or certain activity contexts
 - Implementation using Defeasible rules


Activity Telicity: Two types

- The context that designates when an activity has been completed
- Two ontology patterns for modelling two types of telicity
 - Telic event
 - Inter-context
- Both ontologies implement the descriptions and situations (DnS) ontology pattern of DOLCE Ultra Lite (DUL)
- Make use of the meta-modelling capabilities of OWL 2 (punning)

Telic Event Pattern

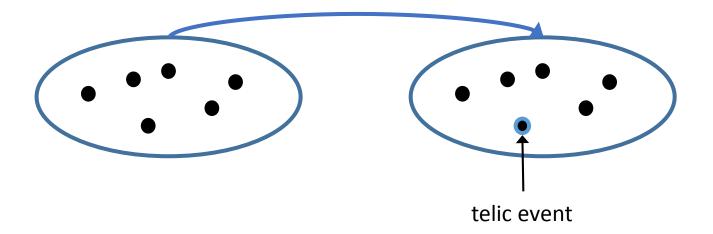

- Defines the terminating state of a complex activity
 - an observation type that belongs to the activity's situation descriptor and denotes the completion of the activity
 - e.g. turning TV off (watching TV)

Inter-context Telicity Pattern

- There are activities that cannot be bounded to specific endpoints
 - e.g. preparing breakfast is a dynamic task that involves many activities without a predefined order or terminating contexts
- Capture activity telicity by means of existence of another context
 - e.g. the detection of an activity relevant to cleaning the table in the morning is an indication that the individual may have prepared a breakfast earlier

ReDef: Recognising Interleaved Activities

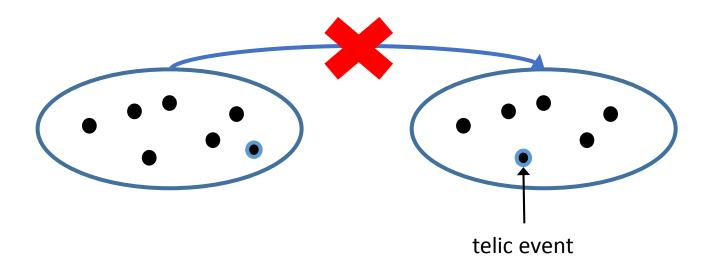
- Given:
 - Activity traces: set of detected complex activities with start/end timestamps
 - Sub-events: the constituent parts (observations) of the complex activities.
 - Activity telicity patterns: instantiations of the patterns
- Examining already detected activities to detect situations when the telicity patterns are satisfied in order to derive interleaved tasks
- Use of Defeasible reasoning to aggregate activities


Defeasible Reasoning

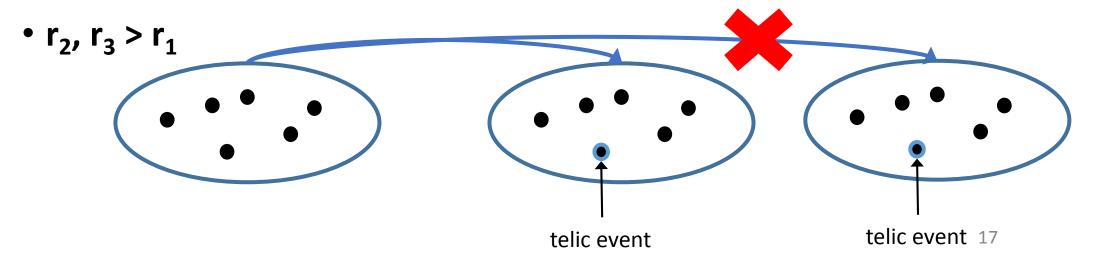
- Non-monotonic logics formalism
 - intuitive knowledge representation
 - conflict resolution mechanisms
- Strict rules: A -> p
- **Defeasible rules**: A => p (can be defeated, *holdsFork(X) => havingLunch(X)*)
- Defeaters: A ~> p (sleep(X) ~> ¬havingLunch(X))
- Superiority relationship: for resolving conflicts among defeasible rules
- Some advantages:
 - Low computational complexity
 - Reasoning with incomplete information (critical in sensor environments)
 - More intuitive type of reasoning, much closer to human reasoning especially for the nonaccustomed users (e.g. doctors, patients, etc.)

Telic Event Rule 1

r₁: activity(A1,T11,T12), activity(A2,T21,T22), T21 > T12, type(A1,A), type(A2,A), telic(TL,A), subEvent(Z,A2), type(Z,TL) ⇒
 interleaved(A1,A2)


 r_1 determines when two separate activities constitute a single, interleaved one, based on the existence of the corresponding telic observation in the activity context that takes place last

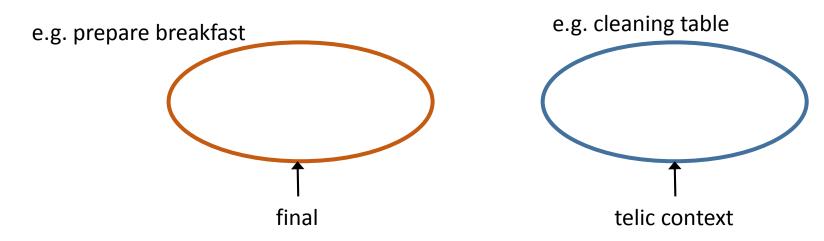
Telic Event Rule 2


r₂: activity(A1,T11,T12), activity(A2,T21,T22), T21 > T12, type(A1,A), type(A2,A), telic(TL,A), subEvent(Z,A1), type(Z,TL) ⇒
 ¬interleaved(A1,A2)

 r_2 establishes an exception to r_1 that takes place when the first activity (also) includes a telic observation.

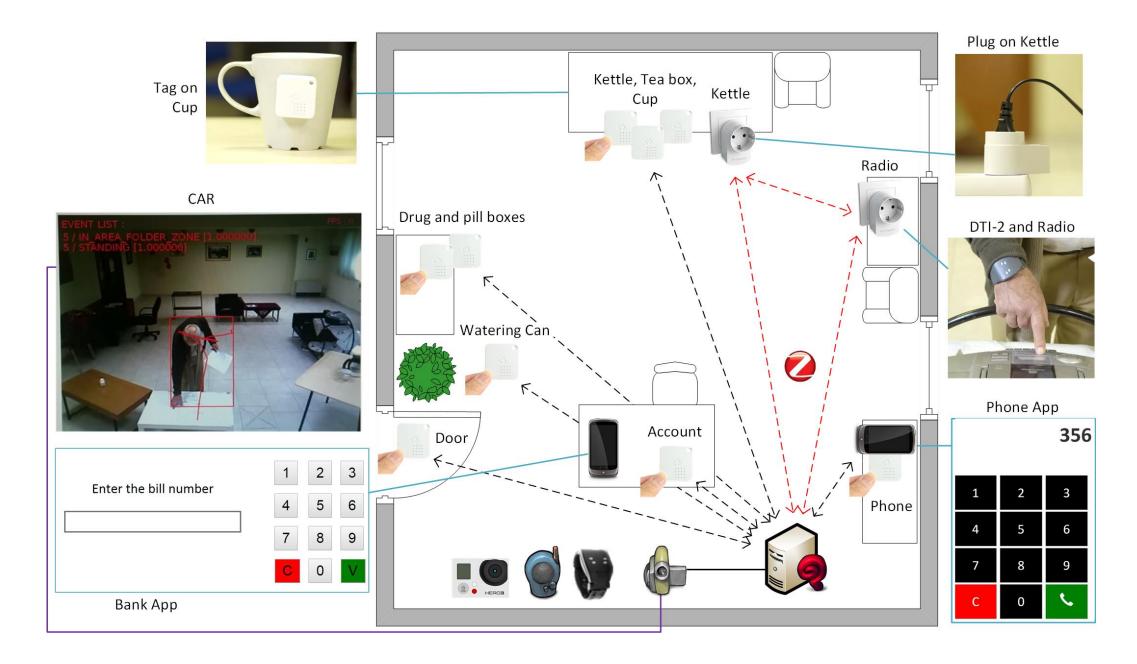
Telic Event Rule 3

- r₃: activity(A1,T11,T12), activity(A2,T21,T22), activity(A3,T31,T32), T21
 > T12, T31 > T22, type(A1,A), type(A2,A), type(A3,A), telic(TL,A), subEvent(Z1,A2), subEvent(Z2,A3), type(Z1,TL), type(Z2,TL)
 ⇒ ¬interleaved(A1,A3)
- *r*₃ ensures that an activity is linked only with the most recent telic context



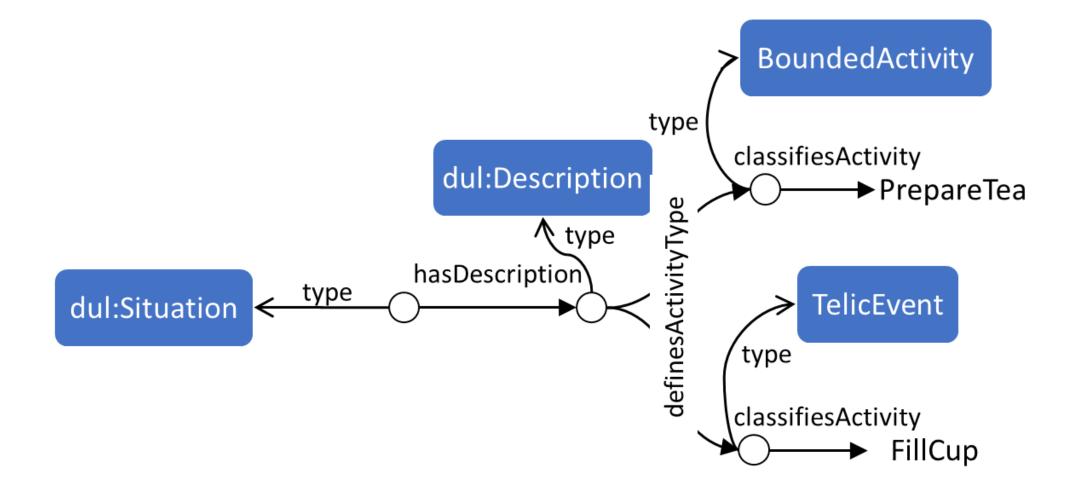
Inter-Context Telicity rules

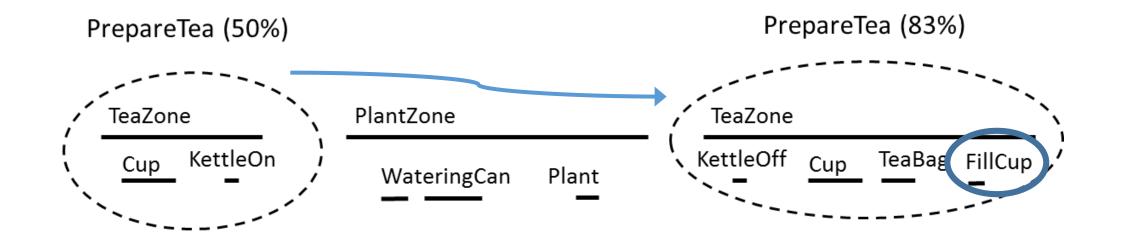
r₄: activity(A1,T11,T12), activity(B1,T21,T22), latest(A1,B1), type(A1,A), type(B1,B), telicContext(A,B) ⇒ final(A1)


final(A): indicates that activity A is completed (no subsequent
activities of the same type may be appended to A)

[latest(A1,B1), type(A1,A), type(B1, B)] retrieves the closest most recent activity of type A to type B

Use Case


- ReDef is part of an Activity of Daily Living (ADL) recognition framework deployed in a hospital for monitoring Alzheimer's disease patients
- The aim of this deployment is to help clinicians assess the condition of individuals, based on a goal-directed protocol.
 - preparing the drug box, talking on phone, preparing tea and watering the plant.


Use Case

- The majority of the tasks involved in the protocol can be performed in a sequential manner
- low accuracy in detecting the preparation of hot tea performed in an interleaved manner
 - after putting water in the kettle and turning the kettle on, participants went on with other tasks

Usage of Telic Event Pattern

Grouping of Interrupted Contexts

PrepareTea_{descriptor} = {TeaZone, Cup, KettleOn, KettleOff, TeaBag, FillCup}

Evaluation

- Preliminary results are very promising
 - Testing so far with a small number of participants ongoing pilots
- Problems have been identified in cases when the analysis modules fail to detect the telic event of an activity, e.g. FillCup in our example
 - In this case telicity cannot be inferred and the detection of interleaved activities fails.
- We are currently investigating the extension of the defeasible rules so as to handle missing information, e.g. by integrating negation-asfailure or more refined/explicit rules expressing exceptions.

Summary

- ReDef: framework for handling interleaved activates based on contextual information
- OWL 2 ontologies to capture the notion of telicity
 - the context that designates the end of an activity
 - Two types of telicity
 - Telic event
 - Inter-context telicity
- Defeasible rules implement the semantics of the two telicity types
- Practical use case on the healthcare domain

Future Work

- Identify/Define more types of telicity
- Handle missing information / sensor misinterpretations
- Deploy the framework in home settings
- Extensively evaluate the performance

Thank you!

