
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Developing GeoSPARQL Applications with Oracle

Spatial and Graph

Matthew Perry, Ana Estrada, Souripriya Das, Jayanta Banerjee

Oracle, One Oracle Drive, Nashua, NH 03062, USA

Abstract. Oracle Spatial and Graph – RDF Semantic Graph, an option for Ora-

cle Database 12c, is the only mainstream commercial RDF triplestore that sup-

ports the OGC GeoSPARQL standard for spatial data on the Semantic Web.

This demonstration will give an overview of the GeoSPARQL implementation

in Oracle Spatial and Graph and will show how to load, index and query spatial

RDF data. In addition, this demonstration will discuss complimentary tools

such as Oracle Map Viewer.

1 Introduction

The Open Geospatial Consortium (OGC) published the GeoSPARQL standard in

2012 [1]. This standard defines, among other things, a vocabulary for representing

geospatial data in RDF and an extension of the W3C SPARQL query language [4]

that allows spatial processing.

Oracle Database has provided support for RDF data with the Spatial and Graph op-

tion since 2005. GeoSPARQL has been supported since 2013, beginning with version

12c Release 1 [2]. Oracle Spatial and Graph is the only mainstream commercial RDF

triplestore that supports significant components of the OGC GeoSPARQL standard. A

demonstration of Oracle’s technology will give an overview of the current state-of-

the-art for managing linked geospatial data.

The remainder of this paper describes major components of OGC GeoSPARQL

and then discusses the architecture of Oracle Spatial and Graph. This is followed by a

description of key features of Oracle Spatial and Graph that will be demonstrated.

2 The OGC GeoSPARQL Standard

The OGC GeoSPARQL standard defines a number of components ranging from

top-level OWL classes to a set of rules for query transformations. Two of the most

fundamental components of the standard are (1) RDFS datatypes for serializing spa-

tial geometries and (2) a set of SPARQL extension functions for spatial computations.

OGC GeoSPARQL defines two RDFS datatypes for serializing spatial geometries:

ogc:wktLiteral
1
 and ogc:gmlLiteral. These serializations are based on existing

1 The namespace prefix ogc expands to <http://www.opengis.net/ont/geosparql#>

and widely supported OGC standards, which allow use of existing GIS tools for pro-

cessing. A sample ogc:wktLiteral is shown below.

"<http://www.opengis.net/def/crs/OGC/1.3/CRS84>

 POINT(-83.38 33.95)"^^ogc:wktLiteral

The ogc:wktLiteral serialization uses an OGC WKT string describing a geometry

value. The WKT string is optionally prefixed with a coordinate reference system URI

that identifies the CRS used for the geometry. If an explicit CRS URI is not provided,

then <http://www.opengis.net/def/crs/OGC/1.3/CRS84> (WGS84 long-lat)

is assumed as the CRS.

OGC GeoSPARQL includes several SPARQL extension functions. These include

both non-topological functions (distance, buffer, intersection, etc.) and topological

functions to test spatial relations based on the Dimensionally Extended Nine Intersec-

tion Model (DE-9IM). A general purpose ogcf:relate
2
 function is defined for test-

ing DE-9IM intersection patterns consisting of true/false values, and convenience

functions for testing common named topological relations (e.g., ogcf:sfWithin) are

available. An example GeoSPARQL query is shown below. This query finds

lgd:Monuments that are within a query window.

PREFIX geovocab: <http://geovocab.org/geometry#>

PREFIX lgd: <http://linkedgeodata.org/ontology/>

PREFIX ogc: <http://www.opengis.net/ont/geosparql#>

PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/>

SELECT ?s ?l ?wkt

WHERE { ?s rdf:type lgd:Monument . ?s rdfs:label ?l .

 ?s geovocab:geometry ?geom . ?geom ogc:asWKT ?wkt .

 FILTER(ogcf:sfWithin(?wkt,

 "POLYGON((-71.44 42.50, -71.42 42.40, -71.08 42.39,

 -71.03 42.56, -71.44 42.50))"^^ogc:wktLiteral))}

3 Support for GeoSPARQL in Oracle Spatial and Graph

Oracle Spatial and Graph supports the following conformance classes for the OGC

GeoSPARQL standard using well-known text serialization and the Simple Features

relation family.

 Core

 Topology Vocabulary Extension (Simple Features)

 Geometry Extension (WKT, 1.2.0)

 Geometry Topology Extension (Simple Features, WKT, 1.2.0)

 RDFS Entailment Extension (Simple Features, WKT, 1.2.0)

2 The namespace prefix ogcf expands to <http://www.opengis.net/def/function/geosparql/>

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://geovocab.org/geometry
http://linkedgeodata.org/ontology/

Oracle Spatial and Graph uses a relational schema to store RDF data and processes

SPARQL queries by translating them to equivalent SQL queries that are executed by

the parallel SQL engine in Oracle Database. SPARQL queries can be executed

through SQL, Java and HTTP interfaces. Core SPARQL-to-SQL translation logic

runs on the database server, and this logic can be invoked from the SEM_MATCH

SQL table function, which provides a SQL interface for SPARQL query execution, or

from an adapter for Apache Jena
3
, which provides a Java programming framework

and a standard-compliant HTTP SPARQL endpoint. Apache Jena typically runs on a

mid-tier server.

A simplified version of Oracle’s relational schema for RDF data consists of an

RDF_LINK$ table and an RDF_VALUE$ table. The RDF_VALUE$ table stores an ID to

lexical value mapping for RDF terms, and the RDF_LINK$ table stores 4-tuples of IDs

representing subject(S), predicate(P), object(O), and graph(G). This basic

schema is shown in Fig. 1.

Fig. 1. Relational Schema for RDF Data

The SQL translation of a SPARQL query consists of various operations against the

RDF_LINK$ table to evaluate structural aspects of the SPARQL query pattern (INNER

JOIN for conjunction, UNION ALL for disjunction, OUTER JOIN for SPARQL

OPTIONAL, etc.), and joins with the RDF_VALUE$ table are used to retrieve lexical

values that need to be returned from the query or are needed to evaluate a SPARQL

FILTER expression. Constant values in SPARQL triple patterns are resolved to IDs at

query compilation time to minimize joins with the RDF_VALUE$ table in the final

SQL translation.

Several indexes are used to speed up query processing. These indexes can be cus-

tomized through a management API. Multi-column indexes for various permutations

of SPOG (referred to as network indexes) can be created on RDF_LINK$. Three to four

3 https://jena.apache.org/

RDF_LINK$

 S P O G

1 2 3 4

… … … …

network

indexes

RDF_VALUE$

ID VALUE

1 <urn:a>

2 <urn:b>

3 "c"

4 <urn:g>

… …

pkey

datatype indexes

(function-based)

value-to-ID

index

such indexes will typically cover most access patterns and allow evaluation of opera-

tions on RDF_LINK$ with only index scans. The RDF_VALUE$ table includes a prima-

ry key index on the ID column for fast lookups of lexical values. Function-based in-

dexes on the VALUE column of RDF_VALUE$ (referred to as datatype indexes) are

used for fast evaluation of SPARQL FILTER expressions. The SQL translation of a

SPARQL FILTER expression uses PL/SQL functions to convert VARCHAR lexical

values into native Oracle types. For example, the SPARQL expression FILTER(?x <

10) would translate to getNumberValue(VALUE) < 10. In this case,

getNumberValue returns an Oracle NUMBER for all numeric literals and NULL for all

other values. A function-based index on getNumberValue will allow an index-based

evaluation of FILTER(?x < 10). Analogous functions exist for each datatype sup-

ported by SPARQL, and a convenient API is provided for managing datatype indexes,

including full-text and spatial indexes.

 Oracle Spatial and Graph provides an SDO_GEOMETRY SQL object type, an R-Tree

index type, and several SQL functions that perform various spatial computations [3].

These SQL capabilities are used to provide GeoSPARQL query support.

ogc:wktLiteral values are stored as VARCHARs (CLOBs in some cases) in

RDF_VALUE$, and a getGeometryValue(value, target_crs_id) function is

used to convert ogc:wktLiterals to SDO_GEOMETRY objects. As an example, con-

sider the following GeoSPARQL FILTER.

FILTER(ogcf:sfWithin(?wkt,

 "POLYGON((-71.44 42.50, -71.42 42.40, -71.08 42.39,

 -71.03 42.56, -71.44 42.50))"^^ogc:wktLiteral))

This FILTER would translate to the following SQL expression.

SDO_RELATE(

 getGeometryValue(V1.VALUE, 8307),

 getGeometryValue("POLYGON((-71.44 42.50, -71.42 42.40, -71.08 42.39,

 -71.03 42.56, -71.44 42.50))", 8307),

 'MASK=INSIDE+COVEREDBY+ON')='TRUE'

A function-based R-Tree index on RDF_VALUE$ for getGeometryValue will al-

low an index-based evaluation of spatial FILTERs. The CRS used for computation is

set at index time. Any number of different CRS values could be used within

ogc:wktLiteral values stored in RDF_VALUE$, but these are normalized to a com-

mon CRS, which is specified during index creation. That is, getGeometryValue

does any necessary transformations and returns SDO_GEOMETRY objects in the target

CRS, which is indicated by the target_crs_id parameter.

As concrete example, consider the SQL execution plan shown in Fig. 2. This is the

execution plan for the GeoSPARQL query shown in Section 2. The execution starts

with an index operation on the function-based R-Tree index to find IDs from

RDF_VALUE$ for ogc:wktLiterals that satisfy the FILTER condition. These IDs

are then used to drive a series of index-based nested loop joins to evaluate the triple

pattern conjunctions. Finally, lexical values for the remaining projected variables (?s

and ?l) are retrieved from RDF_VALUE$. The lexical value for ?wkt was retrieved in

the first step.

Fig. 2. GeoSPARQL Query Execution Plan

4 Planned Demonstration

The demonstration will show how to go from a downloaded RDF file containing

spatial data serialized with the OGC GeoSPARQL vocabulary to a fully functioning

GeoSPARQL-enabled SPARQL endpoint running against Oracle Database 12c with

the Spatial and Graph option. The major steps will include (1) efficiently bulk loading

spatial RDF data, (2) creating an R-Tree index for efficient GeoSPARQL queries, and

(3) configuring a SPARQL-endpoint to execute GeoSPARQL queries against loaded

data. In addition, supporting applications like Oracle Map Viewer and Enterprise

Manager will be discussed.

References

1. OGC GeoSPARQL - A Geographic Query Language for RDF Data, OGC Standard, doc-

ument number 11-052r4, 2012.

2. Oracle Spatial and Graph RDF Semantic Graph Developer's Guide, Retrieved June 26,

2015, from https://docs.oracle.com/database/121/RDFRM/toc.htm.

3. Oracle Spatial and Graph Developer's Guide, Retrieved June 26, 2015, from

https://docs.oracle.com/database/121/SPATL/toc.htm.

4. SPARQL 1.1 Query Language, W3C Recommendation, Retrieved June 26, 2015, from

http://www.w3.org/TR/sparql11-query/.

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOPS | |

| 2 | NESTED LOOPS | |

| 3 | VIEW | |

| 4 | NESTED LOOPS | |

| 5 | NESTED LOOPS | |

| 6 | NESTED LOOPS | |

| 7 | NESTED LOOPS | |

| 8 | TABLE ACCESS BY INDEX ROWID | RDF_VALUE$ |

|* 9 | DOMAIN INDEX (SEL: 0.100000 %)| RDF_V$GEO_IDX |

| 10 | PARTITION LIST SINGLE | |

|* 11 | INDEX RANGE SCAN | RDF_LNK_CPSGM_IDX |

| 12 | PARTITION LIST SINGLE | |

|* 13 | INDEX RANGE SCAN | RDF_LNK_CPSGM_IDX |

| 14 | PARTITION LIST SINGLE | |

|* 15 | INDEX RANGE SCAN | RDF_LNK_CPSGM_IDX |

| 16 | PARTITION LIST SINGLE | |

|* 17 | INDEX RANGE SCAN | RDF_LNK_PSCGM_IDX |

| 18 | TABLE ACCESS BY INDEX ROWID | RDF_VALUE$ |

|* 19 | INDEX UNIQUE SCAN | C_PK_VID |

| 20 | TABLE ACCESS BY INDEX ROWID | RDF_VALUE$ |

|* 21 | INDEX UNIQUE SCAN | C_PK_VID |

--

https://docs.oracle.com/database/121/RDFRM/toc.htm
https://docs.oracle.com/database/121/SPATL/toc.htm

