
Autonomous Composition and Execution
of REST APIs for Smart Sensors

Daniela Ventura1, Ruben Verborgh2, Vincenzo Catania1, and Erik Mannens2

1 University of Catania - Dpt. of Electrical, Electronic and Computer Engineering
Viale A. Doria 6, 95125 Catania, Italy

{daniela.ventura,vincenzo.catania}@dieei.unict.it
2 Ghent University - iMinds - Multimedia Lab

Gaston Crommenlaan 8, B-9050 Ledeberg-Ghent, Belgium
{ruben.verborgh,erik.mannens}@ugent.be

Abstract. Autonomous services discovery, composition and execution is an im-
portant problem in the Machine-to-Machine field. Achieving this objective requires
addressing several issues: a) how to describe in a machine-understandable for-
mat which operations and functionalities an object is able to perform; b) how to
represent the interfaces in unambiguous way and allow two or more machines to
understand the data exchanged with each other; c) how to make a machine able to
aggregate services in order to execute a specific task. Narrowing the domain just
to REST APIs, we propose to semantically describe APIs (exposed by objects or
web servers) using RESTdesc descriptions and to use JSON-LD as data exchange
format. In order to illustrate the straightforward services composition and invo-
cation process, we have implemented a smart client able to generate and execute
plans (sequences of HTTP requests) that satisfy the set of operations which should
be done for ensuring ideal environmental conditions to plants in a garden.

Keywords: Machine-to-Machine, Smart Client, Reasoning, Composition, REST
API, Semantic Descriptions, Autonomous Execution

1 Introduction

Machine-to-Machine (M2M) interactions, the ability of devices to exchange data in
order to execute a task not explicitly required by a human being, has become a promising
domain for the next-generation communications, and is undergoing a rapid spread and
development. M2M communications are expected to grow exponentially in the near
future, aided by the large deployment of sensors, actuators, RFID/NFC tags. Ericsson’s
Media Vision 2020 research has predicted that by 2020 there will be 50 billion con-
nected devices [8], and of these, 12 billion will be used only for machine-to-machine
communications [15]. Therefore, M2M represents a huge potential business opportunity
for companies and is expected to advance our lifes in a significant way, covering a broad
range of vertical markets (e.g. smart homes, cars, smart factories).

The first issue is to describe what functionalities a device provides using a machine-
interpretable format. In other words, each machine has to be able to offer semantic
descriptions of its services. As smart objects are commonly equipped with actuators

2 Daniela Ventura, Ruben Verborgh, Vincenzo Catania, and Erik Mannens

that determine their states, semantic descriptions should also contain information about
the behavior an object applies when its services are invoked. The service composition
problem takes as input a set of service descriptions and a goal, and consists in generating
a plan/workflow represented by a ordered sequence of services that have to be invoked
in order to satisfy the goal. Finally, in order for two (or more) systems to communicate
successfully, there has to be a well-defined and universal semantics on the exchanged
data, and a way for knowing at runtime the used interfaces.

In this paper we present a method to enable machines to automatically compose
and use services through standard semantic technologies. Despite the proliferation of
protocols with which two or more machines could communicate (e.g. Bluetooth Low
Energy, Zigbee, Xbee), we are witnessing the emergence of microcontrollers directly
connected to the Internet and which can host small web servers and then provide
REST APIs. According to the Web of Things (WoT), the physical world becomes thus
“integrable” with traditionally Web services. Therefore, in our work, a machine is, first of
all, a Web server that exposes a hypermedia API, which demands that a server supplied
the possible next steps alongside each resource. That way, an agent does not need to
know in advance how to use an API; instead, it can just follow the links at runtime
through these supplied hypermedia controls [21].

To allow cooperation between machines, we propose to describe the functionalities of
APIs through RESTdesc [22] and to use JSON-LD [13] as data exchange format. Entities
with reasoning abilities will be able to produce plans that involve not only services
exposed by physical objects but also Web services, generating what is commonly known
as “physical mashups”. Instead of specific tools or languages for services composition,
this approach only requires generic Semantic Web reasoners.

In our early work [19], we have showed how the description format RESTdesc
enables functionality-based compositions. Our major progress and contribution given in
this paper consists in to: a) demonstrate, implementing really autonomous clients, how
these services’ mashups can be executed by a machine without human involvement; b)
evaluate a complete cycle from the production to the execution of plan(s) in order to
determine how it can impact in term of time spent and number of requests done from
resource-constrained devices.

The present paper is structured as follows. The next Section contains a brief descrip-
tion on the state of art about already existing methods for describing and composing
REST APIs. In Section 3, we explain the technologies we have adopted and the proposed
approach. As proof of concept about the feasibility and flexibility of the method intro-
duced in this work, a use case has been implemented on the field of smart gardens and is
presented in Section 4. Section 5 contains the evaluation of our approach and Section 6
concludes the paper and provides an overview of future work.

2 Related Work

In this section, we discuss some related works about syntactic and semantic descriptions
of REST APIs and present some existing approaches in services composition.

Autonomous Composition and Execution of REST APIs for Smart Sensors 3

2.1 Methods to describe the syntax and semantic of REST APIs

REST-based services are still almost exclusively described by human-readable doc-
umentation, due to a lack of universal formalism. SA-REST [14], hRESTS [11] are
some ways to describe REST APIs. The REST APIs’ interfaces and their corresponding
meaning, are typically documented in HTML pages. SA-REST leverages this common
practice by annotating those pages with RDFa in order to make the information machine-
interpretable. hRESTS is very similar to SA-REST. The main difference is that hRESTS
uses microformats instead of RDFa. However, for a more complete overview about these
and other methods, we refer to [20].

Other types of approaches to describe the functionality of Web APIs are based on the
definition of specific ontologies. This is the case with the Hydra Core Vocabulary [12]
for hypermedia APIs, which describes hypermedia controls (similar to HTML’s <a>,
<link> and <form> tags) in a machine-processable way. Hydra makes it possible to
identify a number of concepts commonly used in Web APIs, such as links or collections
of resources. By the definition of a common ontology to describe these concepts, a client
can construct HTTP requests at runtime in order to manipulate the server’s state. Finally,
key relevant works in the service modelling prevalently for sensors are SSN model [23]
and OGC’s sensor Observation service [9].

2.2 Web Services Composition and Physical Mashups

The composition of Web APIs is still a task that is mainly done manually by users. Many
applications allow to connect logical blocks which represent Web services or physical
devices. Two of the best-known of such types of tools are IFTTT [4] and Atooma [1].

In the state of art we have found many architectures supporting creation, manage-
ment and execution of service mashups directly on the Cloud. SenseStream [10] and
SODIUM [17] are two examples but, unfortunately, these type of platforms are usually
domain-dependent. Different solutions are presented in [6], that proposes decentralized
and stateless control-flow patterns in order to support REST APIs’ composition, and
in [16], in which an extension of BPEL for REST services is described.

In this context, activities of standardization led by ETSI TC M2M [2] and by
the Alliances (like Open Mobile Alliance [5]) are noteworthy. Although they aim is
prevalently to define architectures and specifications for machine-to-machine interactions
regardless of protocols, an important part under study is data exchange based on Semantic
Web in order to enable machines to autonomously interpret responses received by peers
and provide new APIs created combining the basic services. The biggest challenge is to
reach agreements between all the member manufacturers.

3 Basic Approach and Adopted Technologies

In order to create an ecosystem of interoperable devices able to communicate each other
and satisfy goals involved in an algorithm in a fully automated way, the first step is to
find the technologies able to answer the following questions: a) how can a server describe
the semantic meaning of its APIs and its states in machine-understandable format?; b)

4 Daniela Ventura, Ruben Verborgh, Vincenzo Catania, and Erik Mannens

Listing 1 This RESTdesc description represents a service to transit from the current
on/off state to another for an irrigation pump

1 @prefix vocab: <http://example.org/vocab#>.

2 @prefix http: <http://www.w3.org/2011/http#>.

3 @prefix st: <http://www.mystates.org/states#>.

4 @prefix log: <http://www.w3.org/2000/10/swap/log#>.

5 @prefix bonsai: <http://lpis.csd.auth.gr/ontologies/bonsai/BOnSAI.owl#>.

6 {

7 ?actuator a vocab:IrrigationPump.

8 ?state a st:State;

9 log:includes { ?actuator vocab:hasSwitchingState ?oldValue. }.

10 ?newValue a bonsai:SwitchAction;

11 vocab:hasValue ?val.

12 }

13 =>

14 {

15 _:request http:methodName "PUT";

16 http:requestURI (?actuator ?val);

17 http:resp [http:body ?actuator].

18 [a st:StateTransition;

19 st:typeOperation "replacement";

20 st:oldComponent { ?actuator vocab:hasSwitchingState ?oldValue. };

21 st:newComponent { ?actuator vocab:hasSwitchingState ?newValue. };

22 st:originalState ?state].

23 }.

how can a client invoke an function of an API without prior knowledge about the service
name and what the server expects and returns?. The answers to these questions will be
described in the next subsections.

3.1 API Semantic Description

Candidate technologies, in order to describe the functionalities of the Web APIs, must
take into account that real-world objects have properties that represent their physical
characteristics and capabilities. The value for each property at a given time determines
the object’s state. For example, the defining property for a multicolor lamp is its color.
Its capability is to change color when the value of this property is modified. Therefore,
descriptions need to express the concepts of properties and interstate transitions.

We have selected RESTdesc [19, 22] as method to describe REST Web APIs. It
expresses the semantics of Web services by pre- and postconditions in Notation3 (N3) [7]
rules and, integrates existing standards and conventions such as Link headers and URI
templates. An example of a RESTdesc description is presented in Listing 1. It describes
the process to switch on or off an irrigation pump. The precondition is included in
the lines 6-12, while le lines 14-23 are the postcondition. This RESTdesc description
indicates that if a resource exists whose type is IrrigationPump and a new SwitchingState
would be set, invoking a HTTP PUT request to the URI which identifies the resource
plus the value of new state, is possible the transition from the precondition to the related
postcondition. In particular, the postcondition expresses the meaning to replace the
old status with the new. As RESTdesc is a technique based on N3 rules, every N3

Autonomous Composition and Execution of REST APIs for Smart Sensors 5

reasoner can process RESTdesc descriptions and apply suitable inference rules. We
have used inference rules exactly in the postcondition of the example in Listing 1.
Finally, the fact that RESTdesc descriptions focus on resources and links between them,
makes them an excellent way to describe hypermedia APIs and to accomplish services
mashups. The use of N3, a superset of RDF 1.0, supports variables and quantification, is
necessary to express such rules. N3 is compatible with RDF, and thus JSON-LD, which
we discuss next.

3.2 Data Interchange Format and Services Interface

One of the main obstacles for more flexible clients are heterogeneous data format and
services interface issues. Semantic technologies can mitigate the problem of interoper-
ability and expressiveness in the exchanged data, but formats like RDF/XML, Turtle or
N3 are widely disliked to APIs’ developers and have not been optimized for Web APIs.

The power of JSON-LD has been to combine technologies from both the world
of Web APIs and the Semantic Web in order to produce a data interchange format
human/machine-understandable. Each JSON-LD message is a self-descriptive message,
both data and their semantic meaning are transmitted at the same time in the same
message. An important its feature is that each JSON-LD message can be converted
in RDF format and viceversa. Furthermore, since JSON-LD is 100% compatible with
traditional JSON, it is not needed to understand RDF to work with it.

Listing 2 JSON-LD response sent by a irrigation pump when it is switched on

1 { "@context" : {

2 "vocab" : "http://example.org/vocab#",

3 "schema" : "https://schema.org/",

4 "bonsai" : "http://lpis.csd.auth.gr/ontologies/bonsai/BOnSAI.owl#",

5 "actuatorState" : "vocab:hasSwitchingState",

6 "hasValue" : { "@id" : "vocab:hasValue", "@type" : "schema:Boolean" }

7 },

8 "@id" : "http://localhost:3300/actuators/1",

9 "@type" : "vocab:IrrigationPump",

10 "actuatorState" : { "@type" : "bonsai:SwitchAction", "hasValue" : 1 } }

JSON-LD requests and responses optimally fit with data represented in RESTdesc
descriptions allowing a simple and straightforward execution of chains of RESTful APIs.
The Listing 2 is the response received from a client when it does the request to switch on
the irrigation pump identified by http://localhost:3300/actuators/1 URL. This JSON-LD
message shows that the resource is a vocab:IrrigationPump and has a SwitchingState
whose value is the boolean data “true” (the meaning is that the actuator is switched on).

The conversion of this JSON-LD in to RDF will generate the Listing 3. Comparing
the resulted RDF with the RESTdesc description of the Listing 1, it is possible to see the
high degree of correlation and correspondence in them. In fact, RESTdesc description
not only suggests that the response to the PUT HTTP request (line 17) will be an actuator
resource but also contains already the information decoded in RDF (the type of resource

6 Daniela Ventura, Ruben Verborgh, Vincenzo Catania, and Erik Mannens

Listing 3 JSON-LD of Listing 2 converted in to RDF (without prefixes for brevity)

1 <http://localhost:3300/actuators/1> a vocab:IrrigationPump.

2 <http://localhost:3300/actuators/1> vocab:hasSwitchingState _:b0.

3 _:b0 a bonsai:SwitchAction; vocab:hasValue "1"^^<https://schema.org/Boolean>.

and properties). In other words, if we interpret a JSON-LD as triples, we can see it
actually realizes the N3 description we have.

4 Autonomous Composition and Invocation of Hypermedia APIs

In order to illustrate the theoretical services composition and invocation process, we
have implemented a use case on the field of smart gardens.

4.1 Use case

The objective of our use case is to create a smart garden system that autonomously
monitors environmental conditions and decides how and when to act in order to ensure
plants thrive. Real-time data about the current environment conditions can be got through
sensors (light, temperature and soil moisture) directly located in the garden and associated
to each plant or using the information produced by weather stations. In order to reach the
ideal environment conditions, each plant is associated to one or more actuators (irrigation
pumps, lamps, heaters and automated windows for greenhouses) whose status changes
during the execution of the decision-algorithm. The entities involved in our use case are:

– one Internet-connected microcontroller, i.e. a embedded board, that runs as server
and implements the Garden API3; sensors and actuators are directly connected to
the board (that could be an Arduino Yun, STM32 Nucleo, Intel Edison, and so on).
Moreover, the board stores plants’ information like type, species and ideal light,
temperature and soil moisture values during the different parts of day (morning,
afternoon, night). Finally, we assume that the embedded board has a GPS module in
order to know its geographical coordinates.

– Weather web server which implements the Weather Forecast API4; it returns the
current and forecast weather conditions for the required location (expressed in
geographical coordinates or city name).

– Smart client which is implemented as a software module5; it has the task to execute
a decision-algorithm in order to ensure the ideal environment conditions for each
plant. No pre-knowledge about what the APIs do and how invoking their services is
needed, because the smart client is able to understand the APIs’ functionalities and,
generate and execute plans that meet the goals whose the algorithm is composed.

The client can execute four types of algorithms progressively more complete:

3 Available: https://github.com/dventura3/irrigation-api
4 Available: https://github.com/dventura3/weather-forecast-api
5 Available: https://github.com/dventura3/plants-planning-agent

Autonomous Composition and Execution of REST APIs for Smart Sensors 7

1. In the first algorithm, the smart client uses only the real-time information given by
sensors to determine what status the actuators should have.

2. In case that a sensor is temporarily out of service (e.g. it is not connected to the
Network) or a plant has not been associated to a certain type of sensor, the use of
the current weather conditions, given by a weather API, can overcome the lack
of sensors’ data. Therefore, the second algorithm combines the current weather
conditions and sensors’ values to determine the actuators’ states.

3. Using the forecast weather condition is a good practice to decide when to switch
on/off the irrigation system in a garden or how to increase or decrease temper-
ature/light in a greenhouse. For example, if a plant needs to be watered but it is
expected that soon it will rain, it is possible to avoid turning on the irrigation pump
and simply wait. Therefore, in this third algorithm, the client generates plans to
know the weather forecast for the next three hours before to set the actuators’ states.

4. It is the same of the third algorithm, except for the fact that the smart client uses the
forecast weather conditions for a longer time, the next three days.

4.2 Smart Client’s Architecture

Since the generation and the execution of APIs compositions is done by the smart client,
we describe its architecture, highlighting its main features in the next subsections.

Fig. 1. The Smart Client’s Architecture. Plans are generated by Reasoner and parsed by Parser.
The Planner selects only one of them and manages its execution. The services invocation is done
by Proxy under the supervision of Planner

The client has a list containing IP and Host for each server (board or Web service)
and, during the initialization phase, uses it to get all the RESTdesc descriptions invoking
HTTP OPTIONS requests. After that, the Algorithms Manager can execute one of four
algorithms every 5 minutes. Whatever algorithm is chosen, it consists in a sequence
of instructions that involve remote services. Therefore, the Proxy is the block that has

8 Daniela Ventura, Ruben Verborgh, Vincenzo Catania, and Erik Mannens

Listing 4 Part of output generated by Reasoner. For the sake of brevity, we report only
the plan that will be really executed in order to get the sensors values for one board

1 p:lemma27 a c:ServiceCall.

2 p:lemma28 a c:ServiceCall.

3 p:lemma29 a c:ServiceCall.

4 p:lemma28 c:hasDependency p:lemma27.

5 p:lemma29 c:hasDependency p:lemma28.

6 p:lemma27 c:details {_:sk3_1 http:methodName "GET".

7 _:sk3_1 http:requestURI <http://127.0.0.1:3300/plants>; http:resp _:sk4_1.

8 _:sk4_1 http:body <http://127.0.0.1:3300/plants>.

9 <http://127.0.0.1:3300/plants> hydra:member _:sk5_1. _:sk5_1 a vocab:Plant}.

10 p:lemma28 c:details {_:sk36_1 http:methodName "GET".

11 _:sk36_1 http:requestURI _:sk5_2; http:resp _:sk37_1.

12 _:sk37_1 http:body _:sk5_2.

13 _:sk5_2 vocab:hasAssociatedSensors _:sk40_1; vocab:hasAssociatedActuators _:sk41_1.

14 _:sk5_2 vocab:hasIdealTemperature _:sk42_1; vocab:hasIdealMoisture _:sk43_1.

15 _:sk5_2 vocab:hasIdealLight _:sk44_1.

16 _:sk40_1 a vocab:SensorsPlantCollection; hydra:member _:sk45_3. _:sk45_3 a vocab:Sensor.

17 _:sk41_1 a vocab:ActuatorsPlantCollection; hydra:member _:sk46_1.

18 _:sk46_1 a vocab:Actuator; vocab:hasSwitchingState _:sk47_1.

19 _:sk42_1 a <http://dbpedia.org/resource/Temperature>.

20 _:sk43_1 a <http://dbpedia.org/resource/Moisture>.

21 _:sk44_1 a <http://dbpedia.org/resource/Light>}.

22 p:lemma29 c:details {_:sk104_1 http:methodName "GET".

23 _:sk104_1 http:requestURI _:sk45_4; http:resp _:sk105_1.

24 _:sk105_1 http:body _:sk45_4. _:sk45_4 vocab:madeObservation _:sk108_1.

25 _:sk108_1 vocab:hasTimestamp _:sk109_1; vocab:outputObservation _:sk110_1}.

to select/generate the goal associated to each specific service required by Algorithms
Manager and initialize the Planner. The latter executes the Reasoner which produces
all the possible plans that achieve the goal. These plans are transformed in a machine-
readable format by the Parser so that the Planner can determine that one to execute.
The plan execution consists in to invoke the services in order and use the JSON-LD
data of X response as input of X+1 request until the end of the plan. When the whole
plan is terminated, the final result is processed by the Proxy and communicated to the
Algorithms Manager, so that the execution of the algorithm can progress.

4.3 Reasoning and Parsing

All the four algoritmhs include the following goal: “Get sensors values associated with
each plant monitored by each embedded board known by the client”. In order to solve
this statement, the first operation to do is to find all the possible plans that fulfil the goal.
This is the Reasoner’s task. As defined in a previous work [19], a plan is a chain of
implications that starts from an Initial state and leads to entail the Goal state:

I ⇒ S1 ⇒ S2 ⇒ ...⇒ Sx ⇒ G

Of course, the way to meet the goal may not be unique, so many chains of dependency
(i.e. plans) can be found. As the RESTdesc descriptions are N3 descriptions, any N3
reasoner can generate these plans. We have used EYE [18]. The input information, used

Autonomous Composition and Execution of REST APIs for Smart Sensors 9

Fig. 2. All the three plans that could satisfy the goal about getting sensors values for each plant of
each embedded board. The selected plan is the longest, i.e. the first

by Reasoner, is: 1) the RESTdesc descriptions associated to one embedded board at
time and all remote web servers; 2) basic knowledge, that are RDF metadata about the
resources exposed by each server or embedded board and, is used to infer knowledge;
3) preference, usually is something that we want to set. For example, if we want to
switch on/off an actuator, this information has to be converted in N3 format as input
for the reasoning process (in the above example we don’t need any preference); 4) the
goal expressed as N3 rule. After a pre-parsing operation, part of output generated by
Reasoner, in order to solve the goal of the above example, is showed in the Listing 4.
The lines 1-5 contain the dependency among the different lemmas. The details for each
lemma are described in the remaining lines. The lemma27 is the initial lemma and we
already know its URI (it is a basic knowledge). The URIs for the other lemmas (lines 11
and 23) will be found only at plan’s execution time. Therefore, at the moment, we know
only the order in which the lemmas have to be run, namely the following plan:

I ⇒ lemma27 ⇒ lemma28 ⇒ lemma29 ⇒ G

In order to select one plan and execute the composition, the plans must be understood by
client. The N3 format presented in the Listing 4 is not easy to use for a machine/software.
Therefore, the Parser converts the output generated by Reasoner in JSON object properly
formatted.

4.4 Plan Selection and Execution

The Planner has the task to select and manage the plan execution. Using the example in
the previous subsection, the Planner should decide one of the three plans shown in the
Figure 2. As previously said, only the first column of URIs, used to pass from Initial state
to the next state, are known to the Parser, while we reveal the URIs of inner states just
for descriptive purpose. Lacking a mechanism of cache server (we have not implemented
yet) and taking into account the third plan does not have any reference to the associated
plant(s), we have decided to always select the longest plan, i.e. the first. Although more
complex, it is more reliable.

In order to execute the plan, the Planner needs to know all details of what each HTTP
request to those APIs should like. Fortunately, this information is contained in RESTdesc
descriptions and is kept by Parser. The execution starts from the first lemma and the

10 Daniela Ventura, Ruben Verborgh, Vincenzo Catania, and Erik Mannens

result is used to find the URI(s) in order to execute the next lemma. For this scope, a
bottom-up algorithm was implemented. To understand how it works, look at the Listing 4.
Suppose we have to find the requestURI of lemma28. The blank node associated to the
requestURI is _sk5_2. The first part, i.e. “sk5”, identifies the blank node in the lemma27
from which extracting the URI that we are searching. This blank node is _sk5_1, a Plant.
We can’t stop here, but we have to go up until the URI of lemma27 because we have to
know if _sk5_1 is only one or are many plants. In other words, we have to understand if
we are searching just one or many URIs, because one (or many) of visited nodes could
be a collection. This is exactly what happens in our example. Infact _sk5_1 is member
(the semantic property is hydra:member) of the collection http://127.0.0.1:3300/plants.
As demostrate in the Section 3, RESTdesc descriptions are strictly correlated with the
JSON-LD responses returned by server. In fact, the http://127.0.0.1:3300/plants call
returns a JSON-LD with a vocab:PlantsCollection whose members (the property is
hydra:member) are the URIs (of type vocab:Plant) we are searching. We use them to
advance in the execution of the plan. Similar considerations can be done to find the
requestURI of lemma29 and complete the plan.

5 Evaluation

In order to evaluate our approach, we have measured the average time spent by the Smart
Client’s blocks to generate and execute each of the four algorithms. The simulations
have been conducted using a Raspberry Pi Model B+ with processor Broadcom SoC at
700 MHz and 512 MB of RAM. The results are shown in the Table 5. The measurements
have been split in two operations: a) reasoning and parsing (to know the time used to
produce all the possible plans that achieve the correspondent goal); b) selection and
execution (involving the only plan that is really executed). The simulations have been
conducted with two different configurations: a) one plant, one sensor and one actuator;
b) three plants, each of them has associated the same three sensors and actuators.

Table 1. Time (expressed in milliseconds) spent by EYE reasoner to generate and parse all the
plans and to select and execute the only final plan that accomplish each goal for each algorithm
considering two configurations: A (smaller dataset) and B (bigger dataset).

Tasks Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Goal Operation A (ms) B (ms) A (ms) B (ms) A (ms) B (ms) A (ms) B (ms)
Get Plants Reas. + Pars. 361 366 426 417 403 408 394 399

Selec. + Exec. 33 79 46 96 50 85 47 83
Get Sensors Reas. + Pars. 380 387 465 459 401 420 413 420

Selec. + Exec. 35 80 49 104 42 93 50 94
Get Actuators Reas. + Pars. – – 572 560 489 504 482 498

Selec. + Exec. – – 35 98 38 87 39 98
Get Current
Weather

Reas. + Pars. – – 464 470 552 514 467 501
Selec. + Exec. – – 657 702 776 785 837 799

Get Current
Weather

Reas. + Pars. – – – – 451 456 500 459
Selec. + Exec. – – – – 835 850 805 865

Autonomous Composition and Execution of REST APIs for Smart Sensors 11

The number of plants, sensors or actuators for each board does not influence the
Reasoner and Parser’s tasks. This happens because their work is strictly correlated with
the number of APIs known to system and not with the data received when the APIs are
invoked. In other words if the number of APIs involved in to achieve a goal increases, also
the time spent to generate all the possible plans will increase linearly, as demonstrated in
our previous work [19]. In contrast, the number of results returned by each HTTP request,
done at each step of selected plan, influences greatly the time spent to complete the plan
execution. While the operations to read the sensors values on the board are simulated
(that means the time measured is not affected by the time required to physically reading
each sensor), our implementation of Weather API represents a JSON-LD wrapper for the
forecast.io [3] web service and therefore is affected by network delays. This shows how,
in a real-world setting, the time spent to generate the plan will be less than the time used
to execute the plan. As expected the first algorithm is the fastest (less than one second)
because it is the easiest but less accurate. On the contrary, the time spent to complete the
execution of more sophisticated algorithms (as 3-4) is approximately five seconds.

An other important aspect is about the number of requests necessary to accomplish a
plan. Note that selecting the longer plan has often as consequence to replicate HTTP
requests already executed. For example, all the three plans used to get information about
the ideal conditions of the plants or sensor values or actuators states associated with each
plant, need to invoke: 1) /plants and then 2) /plants/idPlant. These two requests are done
three times for the three different plans. A more accurate implementation could take
account of historical requests. The alternative, as already suggested, is to use a cache
server mechanism and choose not to perform the longer plan. Moreover, in other use
cases, information as energy consumption could be used to choose the best plan.

6 Conclusion

In this paper, we presented an approach to enable machines to compose and execute
REST Web APIs in a fully autonomous way. Our proposed is built on using RESTdesc
as method to describe the functionalities of services exposed by physical objects or
web servers, and JSON-LD as data exchange format. A machine or software agent can
generate plans involving REST Web APIs in order to achieve a goal simply using standard
Semantic Web reasoners. Implementing a smart client able to run algorithms that ensure
ideal environmental conditions to the plants in a garden, we have demonstrated that these
two technologies are deeply correlated and permit a straightforward plans execution.
Furthermore, the approach we followed has threefold benefits. First, it achieves an
improved decoupling between client and server. If the server’s API is updated and the
name or the order of parameters for invoking the API change, the code on the client side
is not affected by these changes. Second, if a server becomes (temporarily) unavailable,
the client may perform an alternative plan for getting to accomplish the goals. Third,
the same algorithm could be run differently at different times by implementing policies
to choose the more convenient plan depending on the context or the purpose of the use
case. As future work, we would like to generalize the implementation associated with
the use case, so as to be reusable in other Machine-to-Machine scenarios.

12 Daniela Ventura, Ruben Verborgh, Vincenzo Catania, and Erik Mannens

References
1. Atooma: A touch of magic, http://www.atooma.com/
2. ETCI-m2m, http://www.etsi.org/technologies-clusters/technologies/m2m
3. Forececast.io, http://forecast.io
4. IFTTT: Connect the apps you love, https://ifttt.com/
5. Open mobile alliance, http://openmobilealliance.org
6. Bellido, J., Alarcón, R., Pautasso, C.: Control-flow patterns for decentralized restful service

composition. ACM Transactions on the Web (TWEB) (2013)
7. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax, http://www.w3.

org/TeamSubmission/n3/
8. Ericsson, w.p.: Media Vision 2020: A Vision of the Television Future, http://www.

csimagazine.com/csi/whitepapers/MediaVision-Brochure-RevA.pdf, (2014)
9. Janowicz, K., Bröring, A., Stasch, C., Everding, T.: Towards Meaningful URIs for Linked Sen-

sor Data. In: Towards Digital Earth: Search, Discover and Share Geospatial Data. Workshop
at Future Internet Symposium 2010 (2010)

10. Kenda, K., Fortuna, C., Moraru, A., Mladenić, D., Fortuna, B., Grobelnik, M.: Mashups for
the web of things. In: Semantic Mashups, pp. 145–169 (2013)

11. Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML Microformat for Describing
RESTful Web Services. In: Web Intelligence and Intelligent Agent Technology (2008)

12. Lanthaler, M., Guetl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs. In: Linked
Data on the Web Workshop (2013)

13. Lanthaler, M., Gütl, C.: On Using JSON-LD to Create Evolvable RESTful Services. In:
Proceedings of the Third International Workshop on RESTful Design (2012)

14. Lathem, J., Gomadam, K., Sheth, A.: SA-REST and (S)mashups : Adding Semantics to
RESTful Services. In: International Conference on Semantic Computing (2007)

15. MachinaResearch: M2M connections to hit 18 billion in 2022, generating USD1.3 trillion rev-
enue, https://machinaresearch.com/static/media/uploads/machina_research_

press_release_-_m2m_global_forecast_&_analysis_2012-22_dec13.pdf, (2013)
16. Pautasso, C.: {RESTful} web service composition with {BPEL} for {REST}. Data and

Knowledge Engineering (2009)
17. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M., Pautasso, C., Heinis, T., Grønmo, R.,

Hoff, H., Berre, A.J., Glittum, M., Topouzidou, S.: Developing scientific workflows from
heterogeneous services. SIGMOD Rec. 35 (2006)

18. Verborgh, R., De Roo, J.: Drawing conclusions from linked data on the web. IEEE Software
32(5), 23–27 (May 2015)

19. Verborgh, R., Haerinck, V., Steiner, T., Van Deursen, D., Van Hoecke, S., De Roo, J., Van de
Walle, R., Gabarró Vallés, J.: Functional composition of sensor Web APIs. In: Proceedings of
the 5th International Workshop on Semantic Sensor Networks (Nov 2012)

20. Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner, T., Taheriyan, M., Van de
Walle, R.: Survey of Semantic Description of REST APIs. In: REST: Advanced Research
Topics and Practical Applications, pp. 69–89. Springer New York (2014)

21. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Gabarró Vallés, J., Van de Walle, R.:
Functional descriptions as the bridge between hypermedia APIs and the Semantic Web. In:
Proceedings of the Third International Workshop on RESTful Design. pp. 33–40 (Apr 2012)

22. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Gabarró Vallés, J.:
Capturing the functionality of Web services with functional descriptions. Multimedia Tools
and Applications 64(2), 365–387 (May 2013)

23. Wang, W., De, S., Cassar, G., Moessner, K.: Knowledge representation in the internet of things:
Semantic modelling and its applications. Automatika - Journal for Control, Measurement,
Electronics, Computing and Communications (2013)

