Coupling Fluid and Kinetic Scales for Space Weather Applications

G. Lapenta, S. Poedts, R. Keppens, M.E. Innocenti, V. Olshevsky, D. González-Herrero, E. Boella, F. Pucci, J. Amaya, F. Bacchini, K. Makwana

UCLA

KU LEUVEN

J. Berchem, R. Walker, M. El Alaoui, M. Zhou

Why do we need kinetics in space weather forecasting?

The challenge in modeling space plasmas: multiple scales

Bottom up:

- Making kinetic codes capable of handling larger scales
- Development of methods capable of working at all scales
- Need to remove stability constraints

Explicit and implicit Computational approaches

Operations:

- 1. Solve Newton equations in previous electromagnetic fields
- 2. Solve Maxwell equations with previous particle positions

Implicit Particle in cell

Over each time step, iteratively solve the two coupled equations until convergence

The challenge in modeling space plasmas: multiple scales

- Explicit methods need to resolve all temporal and spatial scales:
 - a) Explicit Maxwell solver:
 c Δt < Δx
 - b) Explicit mover :
 - $\omega_{pe} \Delta t < 2$
 - c) Explicit Particle- Grid coupling: $\Delta x < \xi \lambda_{De}$
- Implicit methods can resolve any range of scales

Semi implicit energy conserving

Mass Matrix Formulation

Applications of the ECsim approach

The crucible of complexity

Parallel propagation

Wave spectra courtesy of Carl Sovinec

The challenge in modeling space plasmas: multiple scales

Advanced Fluid

Connect fluid with kinetic

- Make fluid codes compatible
- Lagrangian fluid PIC method

Is NOT a kinetic PIC code!

- Fluid Particle-in-cell (*PIC or FLIP*) method for compressible fluids was invented by F. Harlow (1963), at LANL. It combines particles to follow material motion with a grid to solve the equations of motion. *Each particle is a blob of fluid*.
- **Kinetic Cloud-in-cell** (*CIC or PIC*) is a reinvention of PIC for plasma simulation, combines Vlasov + Maxwell (Brackbill, 2005, Lapenta 2012 for a review). *Each computational particle is a cloud in phase-space.*
- Molecular Dynamics (MD or PP) uses particles as real particles and computes forces by pairs

PIC Fluid methods chosen by Disney for the effects in the movie Frozen

1.05 1.09 1.12 1.16 1.19

rho

Coupling scales: MLMD Adaptive Approach

Innocenti, et al. JCP 238 (2013)

Example of application of the MLMD Innocenti, et al. PoP, 23 (2016).

iPic3D coupled with different MHD codes

Multiscale Global MHD -> PIC Simulation

Collaboration: J. Berchem, R. Walker, M. El Alaoui, M. Zhou (UCLA)

UCLA-MHD: Solar wind input from ACE:

- southward IMF: $B_{\chi} = B_{\gamma} = 0$; $B_{Z} = -8 \text{ nT}$
- V_{xc}= -650 km/s
- $V_{\gamma} = V_{Z} = 0$
- $n = 4 \text{ cm}^{-3}$
- *P_{th}* = 360 pPa
- iPic3D initial and boundary conditions are determined from the MHD simulation.
 Top/Bottom are open BC.

Electrons are well resolved:

- $\Delta x = \Delta y = 0.02 d_e$
- $\omega_{ce} \Delta t = 0.02$

Reconnection and turbulence in the Earth Dayside

Regions simulated at the kinetic level

MMS Crescents in LMN Coordinates

Event reported in Burch et al, Science, 2016

Crescents at the EDR

Lapenta et al, JGR, 10.1002/2016JA023290 (2017)

0

v_N/c

0.1

electrons

Crescents in the tail

Lapenta et al, JGR, 10.1002/2016JA023290 (2017)

MMS detects crescents also in the tail – June 17, 2017.

Structure in the dawn-dusk direction

Lower-hybrid drift modes

Bow Shock

Quasi-perpendicular shock

Magnetotail: Simulation Approach

Multiscale approach:

Combine global MHD with implicit PIC model (iPic3D) using a large-scale simulation system (30 R_E x 12 R_E x 12 R_E)

Method:

Run MHD simulation with upstream solar wind parameters from ACE

At onset of tail reconnection place 3D iPic3D box :

(-45 < x < -15, -3 < y < 9, -9 < z < 3)

 $\Delta_{PIC}/d_i = 0.06$ $\Delta_{PIC}/d_e = 1.0$ $m_i/m_e = 256$

- Use initial and boundary conditions from iPic3D code taken from MHD simulation
- Inject particles with a drifting Maxwellian based on MHD values.

North South (B_z) Component of the Magnetic Field

Ashour-Abdalla et al, JGR, 10.1002/2014JA020316 (2015)

Time Development of V_{ex} and V_{ix} on the Maximum Pressure Surface

T = 153 s

Agyrotropy

Walker et al, JGR, submitted (2017)

