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Bayes' formula

Bayes' formula follows from the two fundamental rules
of probability

Product rule: p(X,Y) = p(Y|X)p(X)

Sum rule:
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Because it allows to write p(Y|X) in terms of p(X]|Y), I.e.
it “flips” the conditional probability
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Bayes' formula

p(X|Y)p(Y')

Yy p(X[Y)p(Y)

Why Is so important?

Because it allows to write p(Y|X) in terms of p(X]|Y), I.e.
it “flips” the conditional probability

Bayes formula is hardwired in human decision making*:

It is our natural way of updating the probability we
assign to an event, at the light of new information

* except most of the time we get the math wrong!
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The underwear problem:
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The underwear problem:

What is the probability that your partner is cheating on
you, conditioned on you finding an unknown pair of
underwear in your drawer?
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The underwear problem:

v - PERY) (X [¥)p(y)

p(X) Sy p(X[YV)p(Y)

P(cheating | underwear appearing) =
P(underwear | cheating) * P(cheating) /
[P(underwear | cheating) * P(cheating) +

P(underwear | no cheating) * P(no cheating)]
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The underwear problem:

p(Y1X) = XY )p(Y) p(X[Y)p(Y)

p(X) Sy p(X[YV)p(Y)

P(partner is cheating) = 4% PRIOR
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The underwear problem:

p(Y1X) = XY )p(Y) p(X[Y)p(Y)

p(X) Sy p(X[YV)p(Y)

P(partner is cheating) = 4% PRIOR
P(underwear appearing | cheating) = 50% LIKELIHOOD

P(underwear appearing | not cheating) = 5%
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The underwear problem:

v - PERY) (X [¥)p(y)

p(X) Sy p(X[YV)p(Y)

P(partner is cheating) = 4% PRIOR
P(underwear appearing | cheating) = 50% LIKELIHOOD

P(underwear appearing | not cheating) = 5%

P(cheating | underwear appearing) = 29 % POSTERIOR
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The 9/11 problem:

P(terrorists would crash planes into twin towers) = 0.005%
PRIOR

P(plane hitting | terrorists are attacking twin towers) = 100%
LIKELIHOOD

P(plane hitting | terrorists are NOT attacking twin towers) =
0.008%

P(terrorist attack | first plane hits) =38 % POSTERIOR
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Bayes formula at work

(example from Nate Silver's The Signal and the Noise)

The 9/11 problem:

P(terrorists would crash planes into twin towers) = 0.005%
PRIOR

P(plane hitting | terrorists are attacking twin towers) = 100%
LIKELIHOOD

P(plane hitting | terrorists are NOT attacking twin towers) =
0.008%

P(terrorist attack | first plane hits) = 38 % PO RIOR PRIOR
P(terrorist attack | second plane hits) = 99.99 %
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Bayesian inference

Let's assume to have a model that depends on
unknown parameters M that we want to use to

describe observations (data) d
POSTERIOR ~ LIKELIHOOD * PRIOR

P(M[d)  ~ P(d|M) * P(M)
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unknown parameters M that we want to use to

describe observations (data) d
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Bayesian inference

Let's assume to have a model that depends on
unknown parameters M that we want to use to

describe observations (data) d

POSTERIOR ~ LIKELIHOOD
P(M|d)

|

P(d|M)

|

* PRIOR
* P(M)

|

Probability of

seeing the data
(conditioned on
data)

parameters AFTER

Probability that the
data is generated by
a given set of
parameters

Probability of
parameters
BEFORE seeing the
data
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Machine Learning for Space Weather

Home Team Projects Publications Resources  Jobs Contact Us

Machine Learning for Space
Weather

Coupling physics-based simulations with Artificial
Intelligence

Goal

In this project we aim at enhancing the current state-of-the-art simulations for Space Weather, by using prior knowledge gathered from historical
satellite data. Several Machine Learning techniques will be used for data-mining, classification, and regression. The long-term objective of the
project is the creation of a portfolio of data-enhanced reduced models, along with automated rules for model selection. Depending on the real-time
conditions observed by satellites, the resulting 'grey-box' model should choose the relative importance between physical and empirical estimations.

CWI/INRIA consortium

This project has started as funded by a CWI/INRIA collaboration. However, several other parties have joined in this activity, either as external

collaborators, or more actively involved. Visit the team page for a list of all the people involved.

r 4
w ,

INVENTEURS DU MONDE NUMERIQUE

CWI is the Dutch National Center for Mathematics and Computer Science. INRIA is the French Institute for Research in Computer Science and

Automation.
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Ensemble simulations in hazard prediction

] COMPUTER MODEL TRACK

Ay f ,l ‘

... this is not yet a routine in space weather forecasting
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Physics-based forecast of
radiation belt electron flux

Run In real-time
24/ 7_| Sh Reanal: s: VERB + real-time data

One deterministic
simulation!

This is the
ground truth

http://rom.epss.ucla.edu/realtime-forecast/
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Ensemble simulations of RB electron flux
via importance sampling

x chorus distribution Density distribution

Kp max distribution

o
o)

o
o

o

Probability

e
=
o

©
Q

o
o

/\ 0
10 20 30 40 50 60 0 10 40 50
A (deg) density (cm™)

Three Input parameters assumed independent
and normally distributed.

225 simulations in total
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Ensemble simulations of RB electron flux
via importance sampling

E =2 MeV; Time = 1 day E =2 MeV; Time = 2 days E =2 MeV; Time = 3 days
ean 10 10

- -Mode
75% prob. interval

Ref: Camporeale et al. (2016) On the propagation of uncertainties in radiation belt
simulations, Space Weather, 14, 982
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Ensemble simulations of RB electron flux
via importance sampling
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Two orders of magnitude uncertainty!
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Sampling problem in UQ

How to sample ensemble |
members in highly-dimensional |} RALPH C. SMITH
parameter space?

Uncertainty Quantification

H OW t O b e at I\/I C ? Theory, Implementation, and Applications

Suggested strategy: adaptive,
mesh-free approach (RBF)

Proof-of-principle in

Camporeale et al. (2017) Adaptive
selection of sampling points for

uncertainty quantification, Int. J. s

Coll'putat-io-n'a'll Science & Engineering) | .||

Uncertainty Quant. e i e
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Bayesian parameter estimation

Radial diffusion (quasi-linear theory)
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Bayesian parameter estimation

Parametrize Diff coeff. and loss term

Quantify likelihood of observed data
conditioned on parameters

Perform MCMC sampling to construct posterior
distribution
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Bayesian parameter estimation

Tested on synthetic data (work In progress...)

Posterior Samples ot vs B

k(2 1), A(£, t) ~ afP10°KP(2)

2
T X

Posterior Samples ¢ Ground Truth
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Gaussian Process

Gaussian Process (GP) models approximate an unknown function f(x) on
a finite set of points x1, X5, - - - xy by a multivariate Gaussian distribution
(equation 2).

y = f(x) + € with ENN(Ogaz)

(f(x1), F(x2), - F(xn)) " ~ N (1, T)
wi = m(x;) (Mean)

2 ;i = K(xj,x;) (Covariance matrix)
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Gaussian Process Regression

lllustration of the mechanism of
Gaussian process regression for
the case of one training point and
one test point, in which the red el-
lipses show contours of the joint dis-
tribution p(t1,t2). Here t; is the
training data point, and condition-
ing on the value of ¢;, correspond-
ing to the vertical blue line, we ob-
tain p(t2|t1) shown as a function of
t2 by the green curve.
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Gaussian Process Regression

The output of GP regression is a Gaussian distribution (i.e. a mean value
and a standard deviation) — probabilistic forecast
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GP regression for one-hour ahead
DST prediction

, variable
e~ Dst
- predicted
- lower
upper

0 25 50 75 100
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Figure 6. OSA predictions with +¢ error bars for event: 8 March to 10 March 2012.
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GP regression for one-hour ahead DST prediction
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Ref. Chandorkar et al. Space Weather (2017)
63 storms from Ji et al. JGR (2012)
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GP regression for one-hour ahead DST prediction

o
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Ref. Chandorkar et al. Space Weather (2017)
63 storms from Ji et al. JGR (2012)
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GP for solar wind classification

Xu & Borovsky, JGR (2014)

Coronal-Hole QOrigin
Pseudostreamer -
Strahl-Confusian-Zones -
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GP for solar wind classification

Table 1. List of attributes

Attribute

Symbol

Solar wind speed

Viw

Proton temperature standard deviation  op

Sunspot number

R

Solar radio flux (10.7 cm) fio.7

Alfven speed

UA

Proton specific entropy S.

p
T T

Temperature ratio

o ©
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gy 00

o

% Correctly categorized
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———T
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o

=
T
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o]
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Coronal Hole Sector Reversal

Streamer Belt
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GP for solar wind classification

Table 4. Confusion matrix for the case of 20% training set, when only probabilities larger

than 50% are considered. Probabilities are conditioned on the observed category.

Observed category
Prediction Ejecta Coronal hole Sector reversal Streamer belt
Ejecta 97.9 0 0.8 0.6
Coronal hole origin 0.2 100 0.1 0.1
Sector reversal origin 1.0 0.0 98.5 0.3
Streamer belt origin 1.0 0.0 0.5 99.0
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GP for solar wind classification

More statistics available: ROC curves,
Reliability diagram, transition probabillity, etc.

200k+ hours of OMNI database (1965-2017
classified)

Database available on mlspaceweather.org (not
yet...)
Paper under review...
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Conclusions

Need for probabillistic forecasts
Bayesian framework can help for:

Parameter estimation
Probabillistic regression

Probabilistic classification

Data-driven (ML informed) ensemble
simulations

Open problem for Uncertainty
Quantification/Propagation
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