A Bayesian Approach to Space Weather Prediction

Enrico Camporeale
Center for Mathematics and Computer Science (CWI)
Amsterdam, The Netherlands

Collaborators:
M. Chandorkar (CWI), A. Care' (U. Brescia), J. Borovsky (SSI),
TAO team (INRIA), Y. Shprits (GFZ)
Bayes' formula

- Bayes' formula follows from the two fundamental rules of probability
- Product rule:
 \[p(X, Y) = p(Y|X)p(X) \]
- Sum rule:
 \[p(X) = \sum_Y p(X, Y) \]
Bayes' formula

- Bayes' formula follows from the two fundamental rules of probability
- Product rule:
 \[p(X, Y) = p(Y|X)p(X) \]
- Sum rule:
 \[p(X) = \sum_Y p(X, Y) \]

\[p(Y|X)p(X) = p(X|Y)p(Y) \]

Enrico Camporeale www.mlspaceweather.org
Bayes' formula

Bayes' formula follows from the two fundamental rules of probability.

Product rule:

\[p(X, Y) = p(Y|X)p(X) \]

Sum rule:

\[p(X) = \sum_Y p(X, Y) \]

\[p(Y|X)p(X) = p(X|Y)p(Y) \rightarrow p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} \]
Bayes' formula

\[p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)} \]

- Why is so important?
Bayes' formula

\[p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)} \]

- Why is so important?
 - Because it allows to write \(p(Y|X) \) in terms of \(p(X|Y) \), i.e. it “flips” the conditional probability
Bayes' formula

\[p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)} \]

Why is so important?
- Because it allows to write \(p(Y|X) \) in terms of \(p(X|Y) \), i.e. it “flips” the conditional probability
- Bayes formula is hardwired in human decision making*: It is our natural way of updating the probability we assign to an event, at the light of new information

* except most of the time we get the math wrong!
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

- **The underwear problem:**
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

- The underwear problem:
 - What is the probability that your partner is cheating on you, conditioned on you finding an unknown pair of underwear in your drawer?
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

The underwear problem:

\[p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)} \]

\[P(\text{cheating } | \text{ underwear appearing}) = \]
\[P(\text{underwear } | \text{ cheating}) \times P(\text{cheating}) / \]
\[[P(\text{underwear } | \text{ cheating}) \times P(\text{cheating}) + \]
\[P(\text{underwear } | \text{ no cheating}) \times P(\text{no cheating})] \]
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

- **The underwear problem:**

\[
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{\sum_Y p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)}
\]

- P(partner is cheating) = 4%
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

- The underwear problem:

\[
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)}
\]

P(partner is cheating) = 4% \hspace{1cm} \text{PRIOR}

- P(underwear appearing | cheating) = 50% \hspace{1cm} \text{LIKELIHOOD}

- P(underwear appearing | not cheating) = 5%
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

The underwear problem:

\[
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)}
\]

- P(partner is cheating) = 4% PRIOR
- P(underwear appearing | cheating) = 50% LIKELIHOOD
- P(underwear appearing | not cheating) = 5%

- P(cheating | underwear appearing) = 29% POSTERIOR
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

- **The 9/11 problem:**

P(terrorists would crash planes into twin towers) = 0.005% (PRIOR)

- P(plane hitting | terrorists are attacking twin towers) = 100% (LIKELIHOOD)

- P(plane hitting | terrorists are NOT attacking twin towers) = 0.008%

- P(terrorist attack | first plane hits) = 38% (POSTERIOR)
Bayes formula at work
(example from Nate Silver's *The Signal and the Noise*)

- **The 9/11 problem:**

 \[
 P(\text{terrorists would crash planes into twin towers}) = 0.005\% \\
 \]

 PRIOR

- \[
 P(\text{plane hitting | terrorists are attacking twin towers}) = 100\% \\
 \]

 LIKELIHOOD

- \[
 P(\text{plane hitting | terrorists are NOT attacking twin towers}) = 0.008\% \\
 \]

 PRIOR

- \[
 P(\text{terrorist attack | first plane hits}) = 38\% \\
 \]

 POSTERIOR PRIOR

- \[
 P(\text{terrorist attack | second plane hits}) = 99.99\% \\
 \]

 POSTERIOR
Bayesian inference

Let's assume to have a model that depends on unknown parameters M that we want to use to describe observations (data) d

$$\text{POSTERIOR} \sim \text{LIKELIHOOD} \ast \text{PRIOR}$$

$$P(M|d) \sim P(d|M) \ast P(M)$$
Bayesian inference

Let's assume to have a model that depends on unknown parameters \(M \) that we want to use to describe observations (data) \(d \)

\[
P(M|d) \sim P(d|M) \times P(M)
\]

Posterior \(P(M|d) \) equals Probability of parameters BEFORE seeing the data \(P(M) \) times Likelihood \(P(d|M) \)
Bayesian inference

Let's assume to have a model that depends on unknown parameters \(M \) that we want to use to describe observations (data) \(d \)

\[
\text{POSTERIOR} \sim \text{LIKELIHOOD} \times \text{PRIOR} \\
P(M|d) \sim P(d|M) \times P(M)
\]

- **Probability of parameters BEFORE seeing the data**
- **Probability that the data is generated by a given set of parameters**

Enrico Camporeale
www.mlspaceweather.org
Bayesian inference

Let's assume to have a model that depends on unknown parameters M that we want to use to describe observations (data) d

$$P(M|d) \sim P(d|M) \times P(M)$$

POSTERIOR \sim ** LIKELIHOOD \times PRIOR

- Probability of parameters AFTER seeing the data (conditioned on data)
- Probability that the data is generated by a given set of parameters
- Probability of parameters BEFORE seeing the data
Machine Learning for Space Weather

Coupling physics-based simulations with Artificial Intelligence

Goal
In this project we aim at enhancing the current state-of-the-art simulations for Space Weather, by using prior knowledge gathered from historical satellite data. Several Machine Learning techniques will be used for data-mining, classification, and regression. The long-term objective of the project is the creation of a portfolio of data-enhanced reduced models, along with automated rules for model selection. Depending on the real-time conditions observed by satellites, the resulting 'grey-box' model should choose the relative importance between physical and empirical estimations.

CWI/INRIA consortium
This project has started as funded by a CWI/INRIA collaboration. However, several other parties have joined in this activity, either as external collaborators, or more actively involved. Visit the team page for a list of all the people involved.

CWI is the Dutch National Center for Mathematics and Computer Science. INRIA is the French Institute for Research in Computer Science and Automation.
Ensemble simulations in hazard prediction

... this is not yet a routine in space weather forecasting
Physics-based forecast of radiation belt electron flux

- Run in real-time 24/7-ish
- One deterministic simulation!
- This is the ground truth

http://rbm.epss.ucla.edu/realtime-forecast/
Enrico Camporeale

Ensemble simulations of RB electron flux via importance sampling

Three input parameters assumed independent and normally distributed.

- 225 simulations in total
Ensemble simulations of RB electron flux via importance sampling

Ref: Camporeale et al. (2016) On the propagation of uncertainties in radiation belt simulations, *Space Weather, 14, 982*
Ensemble simulations of RB electron flux via importance sampling

Two orders of magnitude uncertainty!
Sampling problem in UQ

- How to sample ensemble members in highly-dimensional parameter space?
- How to beat MC?

Suggested strategy: adaptive, mesh-free approach (RBF)

Proof-of-principle in
Bayesian parameter estimation

- Radial diffusion (quasi-linear theory)

\[
\frac{\partial f}{\partial t} = \ell^2 \frac{\partial}{\partial \ell} \left(\frac{\kappa(\ell, t) \partial f}{\ell^2 \frac{\partial f}{\partial \ell}} \right) - \lambda(\ell, t) f
\]
Bayesian parameter estimation

- Parametrize Diff coeff. and loss term

\[\kappa(\ell, t), \lambda(\ell, t) \sim \alpha \ell^\beta 10^{b K_p(t)} \]

- Quantify likelihood of observed data conditioned on parameters

- Perform MCMC sampling to construct posterior distribution
Bayesian parameter estimation

- Tested on synthetic data (work in progress...)

\[\kappa(\ell, t), \lambda(\ell, t) \sim \alpha \ell^\beta 10^{bKp(t)} \]
Gaussian Process (GP) models approximate an unknown function $f(x)$ on a finite set of points $x_1, x_2, \cdots x_N$ by a multivariate Gaussian distribution (equation 2).

$$y = f(x) + \varepsilon \text{ with } \varepsilon \sim \mathcal{N}(0, \sigma^2)$$ \hspace{1cm} (1)

$$(f(x_1), f(x_2), \cdots f(x_N))^T \sim \mathcal{N}(\mu, \Sigma)$$ \hspace{1cm} (2)

$$\mu_i = m(x_i) \text{ (Mean)}$$ \hspace{1cm} (3)

$$\Sigma_{ij} = K(x_i, x_j) \text{ (Covariance matrix)}$$ \hspace{1cm} (4)
Gaussian Process Regression

Illustration of the mechanism of Gaussian process regression for the case of one training point and one test point, in which the red ellipses show contours of the joint distribution $p(t_1, t_2)$. Here t_1 is the training data point, and conditioning on the value of t_1, corresponding to the vertical blue line, we obtain $p(t_2 | t_1)$ shown as a function of t_2 by the green curve.
Gaussian Process Regression

The output of GP regression is a Gaussian distribution (i.e. a mean value and a standard deviation) → probabilistic forecast
GP regression for one-hour ahead DST prediction

Figure 6. OSA predictions with ±σ error bars for event: 8 March to 10 March 2012.

Ref: Chandorkar et al. Space Weather (2017)
GP regression for one-hour ahead DST prediction

Ref: Chandorkar et al. Space Weather (2017)
63 storms from Ji et al. JGR (2012)
GP regression for one-hour ahead DST prediction

63 storms from Ji et al. *JGR* (2012)

Enrico Camporeale www.mlspaceweather.org
GP for solar wind classification

Xu & Borovsky, JGR (2014)
GP for solar wind classification

Table 1. List of attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar wind speed</td>
<td>V_{sw}</td>
</tr>
<tr>
<td>Proton temperature standard deviation</td>
<td>σ_T</td>
</tr>
<tr>
<td>Sunspot number</td>
<td>R</td>
</tr>
<tr>
<td>Solar radio flux (10.7 cm)</td>
<td>$f_{10.7}$</td>
</tr>
<tr>
<td>Alfven speed</td>
<td>v_A</td>
</tr>
<tr>
<td>Proton specific entropy</td>
<td>S_p</td>
</tr>
<tr>
<td>Temperature ratio</td>
<td>T_{exp}/T_p</td>
</tr>
</tbody>
</table>

![Graph showing the percentage of correctly categorized samples for different solar wind conditions](image)
GP for solar wind classification

Table 4. Confusion matrix for the case of 20% training set, when only probabilities larger than 50% are considered. Probabilities are conditioned on the observed category.

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Ejecta</th>
<th>Coronal hole</th>
<th>Sector reversal</th>
<th>Streamer belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejecta</td>
<td>97.9</td>
<td>0</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Coronal hole origin</td>
<td>0.2</td>
<td>100</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sector reversal origin</td>
<td>1.0</td>
<td>0.0</td>
<td>98.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Streamer belt origin</td>
<td>1.0</td>
<td>0.0</td>
<td>0.5</td>
<td>99.0</td>
</tr>
</tbody>
</table>
GP for solar wind classification

- More statistics available: ROC curves, Reliability diagram, transition probability, etc.
- 200k+ hours of OMNI database (1965-2017 classified)
- Database available on mlspaceweather.org (not yet...)
- Paper under review...
Conclusions

● Need for probabilistic forecasts
● Bayesian framework can help for:
 – Parameter estimation
 – Probabilistic regression
 – Probabilistic classification
● Data-driven (ML informed) ensemble simulations
 – Open problem for Uncertainty Quantification/Propagation