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Bayes' formula

● Bayes' formula follows from the two fundamental rules 
of probability

● Product rule:

● Sum rule: 
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Bayes' formula

● Why is so important?

– Because it allows to write p(Y|X) in terms of p(X|Y), i.e. 
it “flips” the conditional probability

– Bayes formula is hardwired in human decision making*:

It is our natural way of updating the probability we 
assign to an event, at the light of new information

* except most of the time we get the math wrong!   
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Bayes formula at work
(example from Nate Silver's The Signal and the Noise)

● The underwear problem:
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Bayes formula at work
(example from Nate Silver's The Signal and the Noise)

● The underwear problem:

– What is the probability that your partner is cheating on 
you, conditioned on you finding an unknown pair of 
underwear in your drawer?
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Bayes formula at work
(example from Nate Silver's The Signal and the Noise)

● The underwear problem:

P(cheating | underwear appearing) = 

P(underwear | cheating) * P(cheating) / 

[P(underwear | cheating) * P(cheating) + 

P(underwear | no cheating) * P(no cheating)]
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P(partner is cheating) = 4%              PRIOR
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(example from Nate Silver's The Signal and the Noise)

● The underwear problem:

P(partner is cheating) = 4%              PRIOR

● P(underwear appearing | cheating) = 50%  LIKELIHOOD

● P(underwear appearing | not cheating) = 5%
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Bayes formula at work
(example from Nate Silver's The Signal and the Noise)

● The underwear problem:

P(partner is cheating) = 4%              PRIOR

● P(underwear appearing | cheating) = 50%  LIKELIHOOD

● P(underwear appearing | not cheating) = 5%

● P(cheating | underwear appearing) = 29 %  POSTERIOR  



  

Enrico Camporeale www.mlspaceweather.org

Bayes formula at work
(example from Nate Silver's The Signal and the Noise)

● The 9/11 problem:

P(terrorists would crash planes into twin towers) = 0.005%
             PRIOR

● P(plane hitting | terrorists are attacking twin towers) = 100%  
LIKELIHOOD

● P(plane hitting | terrorists are NOT attacking twin towers) = 
0.008%

● P(terrorist attack | first plane hits) = 38 %  POSTERIOR  
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Bayes formula at work
(example from Nate Silver's The Signal and the Noise)

● The 9/11 problem:

P(terrorists would crash planes into twin towers) = 0.005%
             PRIOR

● P(plane hitting | terrorists are attacking twin towers) = 100%  
LIKELIHOOD

● P(plane hitting | terrorists are NOT attacking twin towers) = 
0.008%

● P(terrorist attack | first plane hits) = 38 %  POSTERIOR  PRIOR

● P(terrorist attack | second plane hits) = 99.99 %
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Bayesian inference

Let's assume to have a model that depends on 
unknown parameters M that we want to use to 
describe observations (data) d

POSTERIOR  ~  LIKELIHOOD   *   PRIOR

      P(M|d)      ~    P(d|M)            *     P(M)        
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Bayesian inference

Let's assume to have a model that depends on 
unknown parameters M that we want to use to 
describe observations (data) d

POSTERIOR  ~  LIKELIHOOD   *   PRIOR

      P(M|d)      ~    P(d|M)            *     P(M)        

Probability of 
parameters 
BEFORE seeing the 
data

Probability that the 
data is generated by 
a given set of 
parameters

Probability of 
parameters AFTER 
seeing the data 
(conditioned on 
data)
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Ensemble simulations in hazard prediction

… this is not yet a routine in space weather forecasting
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Physics-based forecast of 
radiation belt electron flux

● Run in real-time 
24/7-ish

● One deterministic 
simulation!

● This is the 
ground truth 

http://rbm.epss.ucla.edu/realtime-forecast/
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Ensemble simulations of RB electron flux 
via importance sampling

Three input parameters assumed independent 
and normally distributed.

● 225 simulations in total
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Ensemble simulations of RB electron flux 
via importance sampling

Ref: Camporeale et al. (2016) On the propagation of uncertainties in radiation belt 
simulations, Space Weather, 14, 982 
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Ensemble simulations of RB electron flux 
via importance sampling

Two orders of magnitude uncertainty!
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Sampling problem in UQ

● How to sample ensemble 
members in highly-dimensional 
parameter space?

● How to beat MC?

Suggested strategy: adaptive, 
mesh-free approach (RBF)

Proof-of-principle in 

Camporeale et al. (2017) Adaptive 
selection of sampling points for 
uncertainty quantification, Int. J. 
Uncertainty Quant.
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Bayesian parameter estimation

● Radial diffusion (quasi-linear theory)
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Bayesian parameter estimation

● Parametrize Diff coeff. and loss term

● Quantify likelihood of observed data 
conditioned on parameters

● Perform MCMC sampling to construct posterior 
distribution
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Bayesian parameter estimation
● Tested on synthetic data (work in progress...)
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Gaussian Process
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Gaussian Process Regression
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Gaussian Process Regression

The output of GP regression is a Gaussian distribution (i.e. a mean value 
and a standard deviation) → probabilistic forecast 
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GP regression for one-hour ahead 
DST prediction

Ref: Chandorkar et al. Space Weather (2017) 
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GP regression for one-hour ahead DST prediction

Ref: Chandorkar et al. Space Weather (2017)
63 storms from Ji et al. JGR (2012) 
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GP regression for one-hour ahead DST prediction

Ref: Chandorkar et al. Space Weather (2017)
63 storms from Ji et al. JGR (2012) 



  

Enrico Camporeale www.mlspaceweather.org

GP for solar wind classification

Xu & Borovsky, JGR (2014)
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GP for solar wind classification
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GP for solar wind classification
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GP for solar wind classification

● More statistics available: ROC curves, 
Reliability diagram, transition probability, etc.

● 200k+ hours of OMNI database (1965-2017 
classified)

● Database available on mlspaceweather.org (not 
yet...)

● Paper under review...
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Conclusions

● Need for probabilistic forecasts
● Bayesian framework can help for:

– Parameter estimation

– Probabilistic regression

– Probabilistic classification

● Data-driven (ML informed) ensemble 
simulations
– Open problem for Uncertainty 

Quantification/Propagation
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