Understanding Power Flow Solutions: History, Practice, Theory, Progress

John W. Simpson-Porco
https://www.control.utoronto.ca/~jwsimpson/

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

Centrum Wiskunde & Informatica

November 18, 2022
Nonlinear Systems

\[\Sigma_1 \]

\[v_1 \quad \Sigma_1 \quad y_1 \]

\[y_2 \]

\[\Sigma_2 \]

\[v_2 \]

Feedback-Based Optimization

\[\text{Inputs} \rightarrow \text{Process} \rightarrow \text{Measurements} \]

Optimization Alg.

\[u_{k+1} = \text{Proj}_C (u_k - \alpha \nabla f(u_k, y_k)) \]

Network Dynamics & Control

3.3. Paths and connectivity in digraphs

(a) A periodic digraph with period 2

(b) An aperiodic digraph with cycles of length 1 and 2.

(c) An aperiodic digraph with cycles of length 2 and 3.

Figure 3.6: Example periodic and aperiodic digraphs.

3.3.3 Condensation digraphs

[Strongly connected components]

A subgraph \(H \) is a strongly connected component of \(G \) if \(H \) is strongly connected and any other subgraph of \(G \) strictly containing \(H \) is not strongly connected.

[Condensation digraph]

The condensation digraph of a digraph \(G \), denoted by \(C(G) \), is defined as follows: the nodes of \(C(G) \) are the strongly connected components of \(G \), and there exists a directed edge in \(C(G) \) from node \(H_1 \) to node \(H_2 \) if and only if there exists a directed edge in \(G \) from a node of \(H_1 \) to a node of \(H_2 \). The condensation digraph has no self-loops. This construction is illustrated in Figure 3.7.

(a) An example digraph \(G \)

(b) The strongly connected components of the digraph \(G \)

(c) The condensation digraph \(C(G) \)

Figure 3.7: An example digraph, its strongly connected components and its condensation digraph.

Lemma 3.2 (Properties of the condensation digraph).

For a digraph \(G \) and its condensation digraph \(C(G) \),

(i) \(C(G) \) is acyclic,

(ii) \(G \) is weakly connected if and only if \(C(G) \) is weakly connected, and

(iii) the following statements are equivalent:

a) \(G \) contains a globally reachable node,

b) \(C(G) \) contains a globally reachable node, and

c) \(C(G) \) contains a unique sink.
Prof. J. W. Simpson-Porco: energy systems

jwsimpson@ece.utoronto.ca

Power Flow Analysis & Algorithms

Renewable Energy Integration

Microgrid Control & Optimization

Next-Generation Hierarchical Control
Problems in power system operations

Power Flow Analysis

Contingency Analysis [Hines et al.]

Optimal Power Flow [Molzahn et al.]

Transient Stability [Overbye et al.]
Modeling AC power flow

1. **Network Graph:** \((\mathcal{N}, \mathcal{E})\), complex weights \(y_{ij} = g_{ij} + jb_{ij}\)

2. **Nodal Variables:** voltage \(V_i e^{j\theta_i}\), power \(S_i = P_i + jQ_i\)

3. **Coupling Laws:** Kirchhoff & Ohm

4. **Admittance Matrix:** \(Y = G + jB = \text{Laplacian-like w/ weights } y_{ij}\)

5. **Lossless Lines:** \(G_{ij} = 0\)
Modeling AC power flow

1. **Network Graph**: \((\mathcal{N}, \mathcal{E})\), complex weights \(y_{ij} = g_{ij} + j b_{ij}\)

2. **Nodal Variables**: voltage \(V_i e^{j \theta_i}\), power \(S_i = P_i + j Q_i\)

3. **Coupling Laws**: Kirchhoff & Ohm

4. **Admittance Matrix**: \(Y = G + jB = \) Laplacian-like w/ weights \(y_{ij}\)

5. **Lossless Lines**: \(G_{ij} = 0\)
Modeling AC power flow

1. **Network Graph**: \((\mathcal{N}, \mathcal{E})\), complex weights \(y_{ij} = g_{ij} + j b_{ij}\)

2. **Nodal Variables**: voltage \(V_i e^{j\theta_i}\), power \(S_i = P_i + j Q_i\)

3. **Coupling Laws**: Kirchhoff & Ohm

\[
\begin{align*}
P_i + j Q_i & \rightarrow Y_{ij} \rightarrow P_j + j Q_j \\
V_i e^{j\theta_i} & \quad y_{ij} \quad V_j e^{j\theta_j}
\end{align*}
\]

4. **Admittance Matrix**: \(Y = G + jB = \text{Laplacian-like w/ weights } y_{ij}\)

5. **Lossless Lines**: \(G_{ij} = 0\)
Modeling AC power flow

1. **Network Graph:** $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + j b_{ij}$

2. **Nodal Variables:** voltage $V_i e^{j \theta_i}$, power $S_i = P_i + j Q_i$

3. **Coupling Laws:** Kirchhoff & Ohm

 \[
 \begin{align*}
 P_i + j Q_i & \rightarrow \quad y_{ij} \quad \rightarrow \quad V_j e^{j \theta_j} \\
 V_i e^{j \theta_i} & \rightarrow \quad y_{ij} \quad \rightarrow \quad V_j e^{j \theta_j} \leftarrow P_j + j Q_j
 \end{align*}
 \]

4. **Admittance Matrix:** $Y = G + j B = \text{Laplacian-like w/ weights } y_{ij}$

5. **Lossless Lines:** $G_{ij} = 0$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) + V_i V_j G_{ij} \cos(\theta_i - \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) + V_i V_j G_{ij} \sin(\theta_i - \theta_j)$
Modeling AC power flow

1. **Network Graph:** $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + jb_{ij}$

2. **Nodal Variables:** voltage $V_i e^{j\theta_i}$, power $S_i = P_i + jQ_i$

3. **Coupling Laws:** Kirchhoff & Ohm

 \[V_i e^{j\theta_i} \quad y_{ij} \quad V_j e^{j\theta_j} \]

 \[P_i + j Q_i \rightarrow \quad \rightarrow \quad P_j + j Q_j \]

4. **Admittance Matrix:** $Y = G + jB = \text{Laplacian-like w/ weights } y_{ij}$

5. **Lossless Lines:** $G_{ij} = 0$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) + V_i V_j G_{ij} \cos(\theta_i - \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) + V_i V_j G_{ij} \sin(\theta_i - \theta_j)$
Modeling AC power flow

1. **Network Graph:** \((\mathcal{N}, \mathcal{E})\), complex weights \(y_{ij} = g_{ij} + jb_{ij}\)

2. **Nodal Variables:** voltage \(V_i e^{j\theta_i}\), power \(S_i = P_i + jQ_i\)

3. **Coupling Laws:** Kirchhoff & Ohm

![Diagram](image)

4. **Admittance Matrix:** \(Y = G + jB\) = Laplacian-like w/ weights \(y_{ij}\)

5. **Lossless Lines:** \(G_{ij} = 0\)

- active power: \(P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)\)
- reactive power: \(Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j)\)
Modeling AC power flow

- active power: \[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \]
- reactive power: \[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \]

6 Loads (●) and m Generators (□) \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \)

7 Load Model: PQ bus constant \(P_i \) constant \(Q_i \)

8 Generator Model: PV bus constant \(P_i \) constant \(V_i \),

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]
\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

2n + m equations in variables \(\theta \in \mathbb{T}^{n+m} \) and \(V_L \in \mathbb{R}^n_{>0} \).
Modeling AC power flow

- active power: \(P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \)
- reactive power: \(Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \)

6. **n Loads (●) and m Generators (□)**

\[\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \]

7. **Load Model:** PQ bus constant \(P_i \) constant \(Q_i \)

8. **Generator Model:** PV bus constant \(P_i \) constant \(V_i \),

\[
\begin{align*}
P_i &= \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), & i \in \mathcal{N}_L \cup \mathcal{N}_G \\
Q_i &= -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), & i \in \mathcal{N}_L
\end{align*}
\]

2n + m equations in variables \(\theta \in \mathbb{T}^{n+m} \) and \(V_L \in \mathbb{R}^n_{>0} \).
Modeling AC power flow

- active power: \[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \]
- reactive power: \[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \]

6 n Loads (○) and m Generators (□) \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \)

7 Load Model: PQ bus constant \(P_i \) constant \(Q_i \)

8 Generator Model: PV bus constant \(P_i \) constant \(V_i \),

\[\begin{align*}
P_i &= \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), & i \in \mathcal{N}_L \cup \mathcal{N}_G \\
Q_i &= -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), & i \in \mathcal{N}_L \\
\end{align*} \]

2n + m equations in variables \(\theta \in \mathbb{T}^{n+m} \) and \(V_L \in \mathbb{R}^n_{>0} \).
Modeling AC power flow

- active power: \(P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \)
- reactive power: \(Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \)

6 n Loads (●) and m Generators (□) \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \)

7 Load Model: PQ bus constant \(P_i \) constant \(Q_i \)

8 Generator Model: PV bus constant \(P_i \) constant \(V_i \),

\[
P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G
\]
\[
Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L
\]

2n + m equations in variables \(\theta \in \mathbb{T}^{n+m} \) and \(V_L \in \mathbb{R}^{n}_{>0} \).
Modeling AC power flow

- active power: \(P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \)
- reactive power: \(Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \)

6. **n Loads (●) and m Generators (■)** \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \)

7. **Load Model:** PQ bus constant \(P_i \) constant \(Q_i \)

8. **Generator Model:** PV bus constant \(P_i \) constant \(V_i \),

\[
\begin{align*}
P_i &= \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), & i & \in \mathcal{N}_L \cup \mathcal{N}_G \\
Q_i &= -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), & i & \in \mathcal{N}_L
\end{align*}
\]

2n + m equations in variables \(\theta \in \mathbb{T}^{n+m} \) and \(V_L \in \mathbb{R}^n_{>0} \).
Why study solvability of power flow problems?

1. Because it is interesting to do so

2. Numerical methods
 - understand convergence, divergence, and initialization issues

 - State vector: \(x = (\theta, V) \)

 - Newton iteration:
 \[
 x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)
 \]

3. Optimal power flow

4. Transient stability
Why study solvability of power flow problems?

1. Because it is interesting to do so

2. Numerical methods
 - understand convergence, divergence, and initialization issues

 - State vector: \(x = (\theta, V) \)

 - Newton iteration:
 \[
 x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)
 \]

3. Optimal power flow

4. Transient stability
Why study solvability of power flow problems?

1. Because it is interesting to do so

2. Numerical methods
 - understand convergence, divergence, and initialization issues

 - **State vector:** \(x = (\theta, V) \)

 - **Newton iteration:**
 \[
 x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)
 \]

3. Optimal power flow

4. Transient stability
Why study solvability of power flow problems?

1. **Because it is interesting to do so**

2. **Numerical methods**
 - understand convergence, divergence, and initialization issues

 - **State vector:** $x = (\theta, V)$

 - **Newton iteration:**
 \[x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k) \]

3. **Optimal power flow**

4. **Transient stability**
Why study solvability of power flow problems?

1. **Because it is interesting to do so**

2. **Numerical methods**
 - understand convergence, divergence, and initialization issues
 - **State vector:** \(x = (\theta, V) \)
 - **Newton iteration:**
 \[x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k) \]

3. **Optimal power flow**

4. **Transient stability**
Motivation I: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = (\theta \ V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1} f(x^k). \]

- If **convergent**, may converge to “wrong” solution
- If **non-convergent**, several possibilities:
 1. No power flow solution exists
 2. Numerical instability (conditioning)
 3. \(x^0 \) not in any region of convergence
Motivation 1: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = (\theta \quad V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1}f(x^k). \]

- If **convergent**, may converge to “wrong” solution

- If **non-convergent**, several possibilities:
 (a) No power flow solution exists
 (b) Numerical instability (conditioning)
 (c) \(x^0 \) not in any region of convergence

[Deng et al.]
Motivation I: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = (\theta \ V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1}f(x^k). \]

- If **convergent**, may converge to “wrong” solution

- If **non-convergent**, several possibilities:

 (a) No power flow solution exists

 (b) Numerical instability (conditioning)

 (c) \(x^0 \) not in any region of convergence

[Deng et al.]
Motivation 1: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = (\theta \ V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1} f(x^k). \]

- If **convergent**, may converge to “wrong” solution
- If **non-convergent**, several possibilities:
 1. No power flow solution exists
 2. Numerical instability (conditioning)
 3. \(x^0 \) not in any **region of convergence**

[Deng et al.]
Motivation 1: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = (\theta \ V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1}f(x^k). \]

- If **convergent**, may converge to “wrong” solution

- If **non-convergent**, several possibilities:
 (a) No power flow solution exists
 (b) Numerical instability (conditioning)
 (c) \(x^0 \) not in any region of convergence

[Deng et al.]
Motivation I: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = (\theta, V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1}f(x^k). \]

- **If convergent**, may converge to “wrong” solution
- **If non-convergent**, several possibilities:
 1. No power flow solution exists
 2. Numerical instability (conditioning)
 3. \(x^0 \) not in any region of convergence

[Deng et al.]
Motivation 1: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[x = \left(\begin{array}{c} \theta \\ V_L \end{array} \right)^T, \quad x^{k+1} = x^k - J(x^k)^{-1}f(x^k). \]

- If **convergent**, may converge to “wrong” solution
- If **non-convergent**, several possibilities:
 (a) No power flow solution exists
 (b) Numerical instability (conditioning)
 (c) \(x^0 \) not in any **region of convergence**

[Deng et al.]
Motivation I: numerical methods for power flow

Power flow always solved with variant of Newton iteration

\[
x = (\theta \ V_L)^T, \quad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).
\]

- **If convergent**, may converge to “wrong” solution
- **If non-convergent**, several possibilities:
 - (a) No power flow solution exists
 - (b) Numerical instability (conditioning)
 - (c) \(x^0\) not in any **region of convergence**

To differentiate, need theory of power flow solvability
Motivation II: multimachine transient stability

Constrained Swing Dynamics

\[
\begin{align*}
\dot{\theta}_i &= \omega_i \\
M_i \dot{\omega}_i &= -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)
\end{align*}
\]

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.O.S., …
Motivation II: multimachine transient stability

Constrained Swing Dynamics

\begin{align*}
\text{Gen:} \quad & \dot{\theta}_i = \omega_i \\
& M_i \ddot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\
\text{Load:} \quad & D_i \dot{\theta}_i = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\
& Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j)
\end{align*}

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.O.S., ...
Motivation II: multimachine transient stability

Constrained Swing Dynamics

Gen: \[
\begin{align*}
\dot{\theta}_i &= \omega_i \\
M_i \dot{\omega}_i &= -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)
\end{align*}
\]

Load: \[
\begin{align*}
D_i \dot{\theta}_i &= P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\
Q_i &= -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j)
\end{align*}
\]

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.O.S., ...
Motivation II: multimachine transient stability

Constrained Swing Dynamics

Gen:
\[
\begin{align*}
\dot{\theta}_i &= \omega_i \\
M_i \dot{\omega}_i &= -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)
\end{align*}
\]

Load:
\[
\begin{align*}
D_i \dot{\theta}_i &= P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\
Q_i &= -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j)
\end{align*}
\]

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.O.S., . . .
Motivation II: multimachine transient stability

Constrained Swing Dynamics

Gen: \[
\begin{align*}
\dot{\theta}_i &= \omega_i \\
M_i \dot{\omega}_i &= -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)
\end{align*}
\]

Load: \[
\begin{align*}
D_i \dot{\theta}_i &= P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\
Q_i &= - \sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j)
\end{align*}
\]

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.O.S., . . .

\{Equilibria\} = \{Power Flow Solutions\}
Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

\[
\text{minimize} \quad \theta, \ V, \ P_G, \ X_i \in \mathcal{N} \\
\text{subject to} \quad P_i = X_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\
Q_i = -X_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \\
V_{\text{min}} \leq V_i \leq V_{\text{max}} \\
S_{\text{min}} \leq |P_i + jQ_i| \leq S_{\text{max}} \\
s_{\text{min}} \leq |p_{i \rightarrow j} + jq_{i \rightarrow j}| \leq s_{\text{max}} \quad (i, j) \in \mathcal{E}, \\
\text{non-convex, solved every 5-15 min. via linearization,} \quad (\quad)
\]

"Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF." — Richard P. O'Neill (Chief Economic Advisor, FERC, 2016)
Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

$$\text{minimize} \quad \sum_{i \in \mathcal{N}_G} f_i(P_i)$$

subject to

$$P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G,$$

$$Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \quad i \in \mathcal{N}_L,$$

$$V_{i \min} \leq V_i \leq V_{i \max} \quad i \in \mathcal{N}_L,$$

$$S_{i \min} \leq |P_i + jQ_i| \leq S_{i \max} \quad i \in \mathcal{N}_G,$$

$$s_{ij \min} \leq |p_{i \to j} + jq_{i \to j}| \leq s_{ij \max} \quad (i, j) \in \mathcal{E},$$
Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in \mathcal{N}_G} f_i(P_i) \\
\text{subject to} & \quad P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G, \\
& \quad Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \quad i \in \mathcal{N}_L, \\
& \quad V_i^{\min} \leq V_i \leq V_i^{\max} \quad i \in \mathcal{N}_L, \\
& \quad S_i^{\min} \leq |P_i + jQ_i| \leq S_i^{\max} \quad i \in \mathcal{N}_G, \\
& \quad s_{ij}^{\min} \leq |p_{i\to j} + jq_{i\to j}| \leq s_{ij}^{\max} \quad (i, j) \in \mathcal{E},
\end{align*}
\]

- non-convex, solved every 5-15 min. via linearization, (**$$**)

"Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF." — Richard P. O’Neill (Chief Economic Advisor, FERC, 2016)
Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in \mathcal{N}_G} f_i(P_i) \\
\text{subject to} & \quad P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G, \\
& \quad Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \quad i \in \mathcal{N}_L, \\
& \quad V_i^{\min} \leq V_i \leq V_i^{\max} \quad i \in \mathcal{N}_L, \\
& \quad S_i^{\min} \leq |P_i + jQ_i| \leq S_i^{\max} \quad i \in \mathcal{N}_G, \\
& \quad s_{ij}^{\min} \leq |p_{i \rightarrow j} + jq_{i \rightarrow j}| \leq s_{ij}^{\max} \quad (i, j) \in \mathcal{E},
\end{align*}
\]

- non-convex, solved every 5-15 min. via linearization, (\\$\\$

“Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF.”

— Richard P. O’Neill (Chief Economic Advisor, FERC, 2016)
Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

\[
\text{minimize} \quad \sum_{i \in \mathcal{N}_G} f_i(P_i)
\]

subject to

\[
P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G,
\]

\[
Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \quad i \in \mathcal{N}_L,
\]

\[
V_i^{\text{min}} \leq V_i \leq V_i^{\text{max}} \quad i \in \mathcal{N}_L,
\]

\[
S_i^{\text{min}} \leq |P_i + jQ_i| \leq S_i^{\text{max}} \quad i \in \mathcal{N}_G,
\]

\[
s_{ij}^{\text{min}} \leq |p_{i \rightarrow j} + jq_{i \rightarrow j}| \leq s_{ij}^{\text{max}} \quad (i, j) \in \mathcal{E},
\]

- non-convex, solved every 5-15 min. via linearization, (\\$\\$\\$\))

“Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF.”

— Richard P. O’Neill (Chief Economic Advisor, FERC, 2016)
Intuition on power flow solutions

1. ‘Normally’, exists unique high-voltage soln:
 - voltage magnitude $V_i \approx 1$
 - phase diff $|\theta_i - \theta_j| \ll 1$
 - current flows from high V to low V!

2. Lightly loaded systems: many low-voltage solutions

3. Heavily loaded systems: Few solutions or infeasible
 - saddle node bifurcations
 - maximum power transfer limit
 - non-convex feasible set in (P, Q)-space

[Josz et al.]
Intuition on power flow solutions

1. ‘Normally’, exists unique **high-voltage** soln:
 - voltage magnitude $V_i \simeq 1$
 - phase diff $|\theta_i - \theta_j| \ll 1$
 - current flows from high V to low V!

2. **Lightly loaded systems:** many **low-voltage** solutions

3. **Heavily loaded systems:** Few solutions or infeasible
 - saddle node bifurcations
 - maximum power transfer limit
 - non-convex feasible set in (P, Q)-space

[Josz et al.]
Intuition on power flow solutions

1. ‘Normally’, exists unique **high-voltage** soln:
 - voltage magnitude \(V_i \approx 1 \)
 - phase diff \(|\theta_i - \theta_j| \ll 1 \)
 - current flows from high \(V \) to low \(V \)

2. **Lightly loaded systems**: many **low-voltage** solutions

3. **Heavily loaded systems**: Few solutions or **infeasible**
 - saddle node bifurcations
 - maximum power transfer limit
 - non-convex feasible set in \((P, Q)\)-space
Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads

Q: ∃ “stable high-voltage” solution? unique? properties?

Many approaches over \(45+\) years of literature:

- [Weedy '67]: Jacobian singularity
- [Korsak '72]: Multiple “stable” solutions
- [Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence
- [Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis
- [Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis
- [Illic '86, '92]: “no-gain” results, nonlinear resistive networks
- [Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
- [Dörfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless \(P/\theta\) problem
- [JWSP, Dörfler & Bullo '15]: Existence/uniqueness for lossless \(Q/V\) problem
- [Bolognani & Zampieri '16, Nguyen et al. '17, Wang et al. '17, . . .]: Distribution networks
- [JWSP '16, '17]: Lossy \(P/\theta\), coupled power flow conditions
- [Delabays, Jafarpour, Bullo '21]: Effect of cycles in \(P/\theta\) problem
- . . .
Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads

Q: \(\exists \) “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

- [Weedy '67]: Jacobian singularity
- [Korsak '72]: Multiple “stable” solutions
- [Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence
- [Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis
- [Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis
- [Illic '86, '92]: “no-gain” results, nonlinear resistive networks
- [Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
- [Dörfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless \(P/\theta \) problem
- [JWSP, Dörfler & Bullo '15]: Existence/uniqueness for lossless \(Q/V \) problem
- [Bolognani & Zampieri '16, Nguyen *et al.*, '17, Wang *et al.*, '17, ...]: Distribution networks
- [JWSP '16, '17]: Lossy \(P/\theta \), coupled power flow conditions
- [Delabays, Jafarpour, Bullo '21]: Effect of cycles in \(P/\theta \) problem
- ...

Given data: network topology, impedances, generation & loads

Q: \exists “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading

1. Stiff network + light loading \Rightarrow feasible
2. Weak network + heavy loading \Rightarrow infeasible

Q: How to quantify network stiffness vs. loading?
Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads

Q: ∃ “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading

1. Stiff network + light loading \(\Rightarrow\) feasible
2. Weak network + heavy loading \(\Rightarrow\) infeasible

Q: How to quantify network stiffness vs. loading?
Solution of two-bus system

\[P_L = b V_G V_L \sin(-\eta) \]
\[P_G = b V_G V_L \sin(\eta) \]
\[Q_L = b V_L^2 - b V_L V_G \cos(\eta) \]

Figure 2.6 Voltage as a function of load active and reactive powers
Solution of two-bus system

\[p = bV_G V_L \sin(\eta) \]
\[Q_L = bV_L^2 - bV_L V_G \cos(\eta) \]

1 Change Variables

\[\nu := \frac{V_L}{V_G} \quad \Gamma := \frac{p}{bV_G^2} \quad \Delta := \frac{Q_L}{-\frac{1}{4} bV_G^2} \]

2 Square equations, add, and solve quadratic in \(\nu^2 \)

\[\nu_{\pm} = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \pm \sqrt{1 - (4\Gamma^2 + \Delta)} \right)} \]

3 Nec. & Suff. Condition

\[4\Gamma^2 + \Delta < 1 \]
Solution of two-bus system

\[p = bV_G V_L \sin(\eta) \]
\[Q_L = bV_L^2 - bV_L V_G \cos(\eta) \]

1. Change Variables

\[v := \frac{V_L}{V_G} \quad \Gamma := \frac{p}{bV_G^2} \quad \Delta := \frac{Q_L}{-\frac{1}{4} bV_G^2} \]

2. Square equations, add, and solve quadratic in \(v^2 \)

\[v_{\pm} = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \pm \sqrt{1 - (4\Gamma^2 + \Delta)} \right)} \]

3. Nec. & Suff. Condition

\[4\Gamma^2 + \Delta < 1 \]
Solution of two-bus system

\[
p = bV_G V_L \sin(\eta) \\
Q_L = bV_L^2 - bV_L V_G \cos(\eta)
\]

1. Change Variables

\[
v := \frac{V_L}{V_G} \quad \Gamma := \frac{p}{bV_G^2} \quad \Delta := \frac{Q_L}{-\frac{1}{4}bV_G^2}
\]

2. Square equations, add, and solve quadratic in \(v^2\)

\[
v \pm = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \right) \pm \sqrt{1 - (4\Gamma^2 + \Delta)}}
\]

3. Nec. & Suff. Condition

\[
4\Gamma^2 + \Delta < 1
\]
Solution of two-bus system

\[\Gamma = v \sin(\eta) \]
\[\Delta = -4v^2 + 4v \cos(\eta) \]

\[v := \frac{V_L}{V_G} \quad \Gamma := \frac{p}{bV^2_G} \quad \Delta := \frac{Q_L}{-\frac{1}{4} bV^2_G} \]
\[4\Gamma^2 + \Delta < 1 \]

1. **High-voltage** solution
 \[v_+ \in \left[\frac{1}{2}, 1 \right) \]

2. **Low-voltage** solution
 \[v_- \in \left[0, \frac{1}{\sqrt{2}} \right) \]

Angle: \(\sin(\eta_\pm) = \frac{\Gamma}{v_\pm} \)

1. **Small-angle** solution
 \[\eta_- \in \left[0, \frac{\pi}{4} \right) \]

2. **Large-angle** solution
 \[\eta_+ \in \left[0, \frac{\pi}{2} \right) \]
Solution of two-bus system

\[\Gamma = v \sin(\eta) \]
\[\Delta = -4v^2 + 4v \cos(\eta) \]

\[
\begin{align*}
v & := \frac{V_L}{V_G} & \Gamma & := \frac{p}{bV_G^2} & \Delta & := -\frac{1}{4}bV_G^2 \\
4\Gamma^2 + \Delta & < 1
\end{align*}
\]

1. **High-voltage** solution
 \(v_+ \in \left[\frac{1}{2}, 1\right) \)

2. **Low-voltage** solution
 \(v_- \in \left[0, \frac{1}{\sqrt{2}}\right) \)

Angle: \(\sin(\eta_-) = \Gamma / v_- \)

1. **Small-angle** solution
 \(\eta_- \in \left[0, \pi/4\right) \)

2. **Large-angle** solution
 \(\eta_+ \in \left[0, \pi/2\right) \)
Solution of two-bus system

\[\Gamma = v \sin(\eta) \]
\[\Delta = -4v^2 + 4v \cos(\eta) \]

1. **High-voltage** solution
 \[v_+ \in \left[\frac{1}{2}, 1 \right) \]

2. **Low-voltage** solution
 \[v_- \in \left[0, \frac{1}{\sqrt{2}} \right) \]

Angle: \(\sin(\eta \mp) = \Gamma / v_\pm \)

1. **Small-angle** solution
 \[\eta_- \in \left[0, \pi/4 \right) \]

2. **Large-angle** solution
 \[\eta_+ \in \left[0, \pi/2 \right) \]

\[v := \frac{V_L}{V_G} \quad \Gamma := \frac{p}{bV_G^2} \quad \Delta := -\frac{1}{4}bV_G^2 \]

\[4\Gamma^2 + \Delta < 1 \]
Solution of two-bus system

\[
\Gamma = v \sin(\eta) \\
\Delta = -4v^2 + 4v \cos(\eta)
\]

\[
v := \frac{V_L}{V_G} \quad \Gamma := \frac{p}{bV_G^2} \quad \Delta := \frac{Q_L}{-\frac{1}{4} bV_G^2}
\]

\[
4\Gamma^2 + \Delta < 1
\]

1. **High-voltage** solution
 \[v_+ \in \left[\frac{1}{2}, 1\right]\]

2. **Low-voltage** solution
 \[v_- \in \left[0, \frac{1}{\sqrt{2}}\right)\]

Angle: \(\sin(\eta_\pm) = \Gamma / v_\pm\)

1. **Small-angle** solution
 \[\eta_- \in \left[0, \frac{\pi}{4}\right)\]

2. **Large-angle** solution
 \[\eta_+ \in \left[0, \frac{\pi}{2}\right)\]
Solution of two-bus system

\[\Gamma = v \sin(\eta) \]
\[\Delta = -4v^2 + 4v \cos(\eta) \]

\[
\begin{align*}
\nu & := \frac{V_L}{V_G} \\
\Gamma & := \frac{p}{bV_G^2} \\
\Delta & := -\frac{1}{4} bV_G^2 \\
4\Gamma^2 + \Delta & < 1
\end{align*}
\]

1. **High-voltage** solution
\[\nu_+ \in \left[\frac{1}{2}, 1 \right) \]

2. **Low-voltage** solution
\[\nu_- \in \left[0, \frac{1}{\sqrt{2}} \right) \]

Angle: \(\sin(\eta_{\pm}) = \Gamma / \nu_{\pm} \)

1. **Small-angle** solution
\[\eta_- \in \left[0, \frac{\pi}{4} \right) \]

2. **Large-angle** solution
\[\eta_+ \in \left[0, \frac{\pi}{2} \right) \]
Solution of two-bus system

- Squaring and adding equations does not generalize to networks.
- Is there any hope then?

\[\Gamma = v \sin(\eta) \]
\[\Delta = -4v^2 + 4v \cos(\eta) \]

- Use \(\cos(\eta) = \sqrt{1 - \sin^2(\eta)} \) \[\Rightarrow \quad \Delta = -4v^2 + 4v \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2} \]
- Rearrange to get fixed-point equation

\[v = f(v) := -\frac{1}{4} \frac{\Delta}{v} + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2} \]

This generalizes! Leverage intuition.
Solution of two-bus system

- Squaring and adding equations **does not generalize** to networks.
- Is there any hope then?

\[
\Gamma = v \sin(\eta) \\
\Delta = -4v^2 + 4v \cos(\eta)
\]

- Use \(\cos(\eta) = \sqrt{1 - \sin^2(\eta)} \) \(\Rightarrow \) \(\Delta = -4v^2 + 4v \sqrt{1 - (\Gamma/v)^2} \)
- Rearrange to get **fixed-point equation**

\[
v = f(v) := -\frac{1}{4} \frac{\Delta}{v} + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2}
\]

This generalizes! Leverage intuition.
Solution of two-bus system

- Squaring and adding equations **does not generalize** to networks.
- Is there any hope then?

\[\Gamma = v \sin(\eta) \]
\[\Delta = -4v^2 + 4v \cos(\eta) \]

- Use \(\cos(\eta) = \sqrt{1 - \sin^2(\eta)} \) \(\Rightarrow \) \(\Delta = -4v^2 + 4v \sqrt{1 - (\Gamma/v)^2} \)

- Rearrange to get **fixed-point equation**

\[v = f(v) := -\frac{1}{4} \frac{\Delta}{v} + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2} \]

This generalizes! Leverage intuition.
Solution of two-bus system

- Squaring and adding equations **does not generalize** to networks.
- Is there any hope then?

\[
\Gamma = v \sin(\eta) \\
\Delta = -4v^2 + 4v \cos(\eta)
\]

- Use \(\cos(\eta) = \sqrt{1 - \sin^2(\eta)}\) \(\Rightarrow\) \(\Delta = -4v^2 + 4v \sqrt{1 - (\Gamma/v)^2}\)

- Rearrange to get **fixed-point equation**

\[
v = f(v) := -\frac{1}{4v} \Delta + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2}
\]

This generalizes! Leverage intuition.
Notation I: branches and bus types

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]

\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

Bus partitioning \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \) induces **branch partitioning**

\[\mathcal{E} = \mathcal{E}^{ll} \cup \mathcal{E}^{gl} \cup \mathcal{E}^{gg}, \quad A = \begin{pmatrix} A_L \\ A_G \end{pmatrix} = \begin{pmatrix} A_L^{ll} & A_L^{gl} & 0 \\ 0 & A_G^{gl} & A_G^{gg} \end{pmatrix} \]
Notation I: branches and bus types

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]
\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- Bus partitioning \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \) induces branch partitioning

\[\mathcal{E} = \mathcal{E}^{\ell\ell} \cup \mathcal{E}^{g\ell} \cup \mathcal{E}^{gg}, \quad A = \begin{pmatrix} A_L \\ A_G \end{pmatrix} = \begin{pmatrix} A^{\ell\ell}_L & A^{g\ell}_L & 0 \\ 0 & A^{g\ell}_G & A^{gg}_G \end{pmatrix} \]
Notation I: branches and bus types

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]
\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- Bus partitioning \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \) induces branch partitioning

\[\mathcal{E} = \mathcal{E}^{\ell\ell} \cup \mathcal{E}^{g\ell} \cup \mathcal{E}^{gg}, \quad A = \begin{pmatrix} A_L \\ A_G \end{pmatrix} = \begin{pmatrix} A_L^{\ell\ell} & A_L^{g\ell} & 0 \\ 0 & A_G^{g\ell} & A_G^{gg} \end{pmatrix}. \]
Notation I: branches and bus types

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]

\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- Bus partitioning \(\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \) induces branch partitioning

\[\mathcal{E} = \mathcal{E}^{\ell \ell} \cup \mathcal{E}^{g \ell} \cup \mathcal{E}^{g g}, \quad A = \begin{pmatrix} A_L \\ A_G \end{pmatrix} = \begin{pmatrix} A^{\ell \ell}_L & A^{g \ell}_L & 0 \\ 0 & A^{g \ell}_L & A^{g g}_G \end{pmatrix}. \]
Notation II: open-circuit voltages

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]

\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- **Generators** \(\mathcal{N}_G \): \(V_i \) fixed
- **Loads** \(\mathcal{N}_L \): \(V_i \) free

Partitioned Variables

\[V = \begin{pmatrix} V_L \\ V_G \end{pmatrix}, \quad B = \begin{pmatrix} B_{LL} & B_{LG} \\ B_{GL} & B_{GG} \end{pmatrix} \]
Notation II: open-circuit voltages

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]

\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- **Generators** \(\mathcal{N}_G \): \(V_i \) fixed
- **Loads** \(\mathcal{N}_L \): \(V_i \) free

Partitioned Variables

\[V = \left(\begin{array}{c} \frac{V_L}{V_G} \end{array} \right), \quad B = \left(\begin{array}{c|c} B_{LL} & B_{LG} \\ \hline B_{GL} & B_{GG} \end{array} \right) \]
Notation II: open-circuit voltages

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]

\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- **Generators** \(\mathcal{N}_G \): \(V_i \) fixed
- **Loads** \(\mathcal{N}_L \): \(V_i \) free

Partitioned Variables

\[V = \begin{pmatrix} V_L \\ V_G \end{pmatrix}, \quad B = \begin{pmatrix} B_{LL} & B_{LG} \\ B_{GL} & B_{GG} \end{pmatrix} \]

Open-circuit voltages

\[V_L^* \triangleq -B_{LL}^{-1} B_{LG} \cdot V_G \]

"Generators → Loads"
Notation II: open-circuit voltages

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \]

\[Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), \quad i \in \mathcal{N}_L \]

- **Generators** \(\mathcal{N}_G \): \(V_i \) fixed
- **Loads** \(\mathcal{N}_L \): \(V_i \) free

Partitioned Variables

\[V = \begin{pmatrix} V_L \\ V_G \end{pmatrix}, \quad B = \begin{pmatrix} B_{LL} & B_{LG} \\ B_{GL} & B_{GG} \end{pmatrix} \]

Open-circuit voltages

\[V_L^* \triangleq -B_{LL}^{-1} B_{LG} \cdot V_G \]

\[v_i \triangleq \frac{V_i}{V_i^*} \]
Notation III: stiffness matrices

\[V = \left(\begin{array}{c} V_L \\ V_G \end{array} \right), \quad B = \left(\begin{array}{c|c} B_{LL} & B_{LG} \\ \hline B_{GL} & B_{GG} \end{array} \right), \quad V_L^* = -B_{LL}^{-1} B_{LG} V_G \]

- Need to non-dimensionalize power flow equations
- Stiffness matrices quantify grid strength in units of power

1. **Nodal** stiffness matrix

 \[S \triangleq \frac{1}{4} [V_L^*] \cdot B_{LL} \cdot [V_L^*] \]

2. **Branch** stiffness matrix

 \[D \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in E} \]

3. **Laplacian** stiffness matrix

 \[L \triangleq ADA^T \]
Notation III: stiffness matrices

\[V = \left(\begin{array}{c} V_L \\ V_G \end{array} \right), \quad B = \left(\begin{array}{c|c} B_{LL} & B_{LG} \\ \hline B_{GL} & B_{GG} \end{array} \right), \quad V_L^* = -B_{LL}^{-1}B_{LG}V_G \]

- Need to **non-dimensionalize** power flow equations
- **Stiffness matrices** quantify **grid strength** in **units of power**

1. **Nodal** stiffness matrix
 \[S \triangleq \frac{1}{4} [V_L^*] \cdot B_{LL} \cdot [V_L^*] \]

2. **Branch** stiffness matrix
 \[D \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in \mathcal{E}} \]

3. **Laplacian** stiffness matrix
 \[L \triangleq ADA^T \]
Notation III: stiffness matrices

\[V = \begin{pmatrix} \frac{V_L}{V_G} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{B_{LL}}{B_{GL}} & B_{LG} \\ B_{GL} & B_{GG} \end{pmatrix}, \quad V_L^* = -B_{LL}^{-1}B_{LG}V_G \]

- Need to **non-dimensionalize** power flow equations
- **Stiffness matrices** quantify **grid strength** in **units of power**

1. **Nodal** stiffness matrix
 \[S \triangleq \frac{1}{4} [V_L^*] \cdot B_{LL} \cdot [V_L^*] \]

2. **Branch** stiffness matrix
 \[D \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in E} \]

3. **Laplacian** stiffness matrix
 \[L \triangleq ADA^T \]
Notation III: stiffness matrices

\[V = \begin{pmatrix} V_L \\ V_G \end{pmatrix}, \quad B = \begin{pmatrix} B_{LL} & B_{LG} \\ B_{GL} & B_{GG} \end{pmatrix}, \quad V_L^* = -B_{LL}^{-1}B_{LG}V_G \]

- Need to **non-dimensionalize** power flow equations
- **Stiffness matrices** quantify **grid strength** in **units of power**

1. **Nodal** stiffness matrix

\[S \triangleq \frac{1}{4} [V_L^*] \cdot B_{LL} \cdot [V_L^*] \]

2. **Branch** stiffness matrix

\[D \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in \mathcal{E}} \]

3. **Laplacian** stiffness matrix

\[L \triangleq ADA^T \]
Notation III: stiffness matrices

\[V = \left(\begin{array}{c} V_L \\ V_G \end{array} \right), \quad B = \left(\begin{array}{c|c} B_{LL} & B_{LG} \\ \hline B_{GL} & B_{GG} \end{array} \right), \quad V_L^* = -B_{LL}^{-1} B_{LG} V_G \]

- Need to **non-dimensionalize** power flow equations
- **Stiffness matrices** quantify grid strength in units of power

1. **Nodal** stiffness matrix

\[S \triangleq \frac{1}{4} \left[V_L^* \right] \cdot B_{LL} \cdot \left[V_L^* \right] \]

2. **Branch** stiffness matrix

\[D \triangleq [V_i^* V_j^* B_{ij}]_{(i,j)\in \mathcal{E}} \]

3. **Laplacian** stiffness matrix

\[L \triangleq ADA^T \]
Active power flow reformulation

Notation:

\[
h_e(v) = \begin{cases}
 v_i v_j & \text{if } e = (i, j) \in \mathcal{E}^{\ell}\ell \\
 v_j & \text{if } e = (i, j) \in \mathcal{E}^g\ell \\
 1 & \text{if } e = (i, j) \in \mathcal{E}^{gg}
\end{cases}
\]

Active Power:

\[
P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)
\]

\[
P = \underbrace{A}_{\text{Incidence}} \underbrace{D}_{\text{Branch Stiff.}} \begin{bmatrix} h(v) \end{bmatrix} \begin{bmatrix} \sin(A^T \theta) \end{bmatrix}
\]

- Let columns of \(C \) be a basis for \(\ker(A) \), let \(p_c \in \mathbb{R}^c \)

Semi-Explicit Solution

\[
\sin(A^T \theta) = \psi(v, p_c) \triangleq \begin{bmatrix} h(v) \end{bmatrix}^{-1} \left(A^T L^+ P + D^{-1} C p_c \right)
\]

\[
\emptyset = C^T \text{arcsin}(\psi)
\]
Active power flow reformulation

Notation:

\[h_e(v) = \begin{cases}
 v_i v_j & \text{if } e = (i, j) \in \mathcal{E}^\ell\ell \\
 v_j & \text{if } e = (i, j) \in \mathcal{E}^g\ell \\
 1 & \text{if } e = (i, j) \in \mathcal{E}^{gg}
\end{cases} \]

Active Power:

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \]

\[P = \underbrace{A}_{\text{Incidence}} \underbrace{D}_{\text{Branch Stiff.}} \underbrace{[h(v)] \sin(A^T \theta)}_{\text{Voltages sin(\theta_i - \theta_j)}} \]

- Let columns of \(C \) be a basis for \(\ker(A) \), let \(p_c \in \mathbb{R}^c \)

Semi-Explicit Solution

\[\sin(A^T \theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right) \]

\[\emptyset = C^T \arcsin(\psi) \]
Active power flow reformulation

Notation:
\[h_e(v) = \begin{cases}
 v_i v_j & \text{if } e = (i, j) \in E_{\ell \ell} \\
 v_j & \text{if } e = (i, j) \in E_{g \ell} \\
 1 & \text{if } e = (i, j) \in E_{gg}
\end{cases} \]

Active Power:
\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \]

\[P = \begin{bmatrix} A & D \end{bmatrix} \begin{bmatrix} [h(v)] \sin(A^T \theta) \end{bmatrix} \]

- Let columns of \(C \) be a basis for \(\ker(A) \), let \(p_c \in \mathbb{R}^c \)

Semi-Explicit Solution
\[\sin(A^T \theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^T L^+ P + D^{-1} C p_c \right) \]
\[\emptyset = C^T \arcsin(\psi) \]
Active power flow reformulation

Notation:

\[h_e(v) = \begin{cases}
v_i v_j & \text{if } e = (i, j) \in \mathcal{E}^{ll} \\
v_j & \text{if } e = (i, j) \in \mathcal{E}^{gl} \\
1 & \text{if } e = (i, j) \in \mathcal{E}^{gg}
\end{cases} \]

Active Power:

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \]

\[
P = \underbrace{A}_{\text{Incidence}} \underbrace{D}_{\text{Branch Stiff.}} \begin{bmatrix} h(v) \end{bmatrix} \begin{bmatrix} \sin(A^T \theta) \end{bmatrix}
\]

- Let columns of \(C \) be a basis for \(\ker(A) \), let \(p_c \in \mathbb{R}^c \)

Semi-Explicit Solution

\[
\sin(A^T \theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right)
\]

\[\Theta = C^T \arcsin(\psi) \]
Active power flow reformulation

Notation:

\[h_e(v) = \begin{cases}
 v_i v_j & \text{if } e = (i, j) \in \mathcal{E}^{\ell \ell} \\
 v_j & \text{if } e = (i, j) \in \mathcal{E}^{g \ell} \\
 1 & \text{if } e = (i, j) \in \mathcal{E}^{gg}
\end{cases} \]

Active Power:

\[P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \]

\[P = \underbrace{A}_{\text{Incidence}} \underbrace{D}_{\text{Branch Stiff.}} \left[\begin{bmatrix} h(v) \end{bmatrix} \sin(A^T \theta) \right] \]

- Let columns of \(C \) be a basis for \(\ker(A) \), let \(p_c \in \mathbb{R}^c \)

Semi-Explicit Solution

\[\sin(A^T \theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right) \]

\[\emptyset = C^T \arcsin(\psi) \]
Reactive power flow reformulation
Skipping some details . . .

\[Q_L = -4[v]S(v - 1_n) + |A|_LD [h(v)] (1|\varepsilon| - \cos(A^T \theta)). \]

- Rearrange for \(v \)

\[
v = f(v, \theta) = 1_n - \frac{1}{4}S^{-1}[Q_L][v]^{-1}1_n + \frac{1}{4}S^{-1}[v]^{-1}|A|_LD [h(v)] (1|\varepsilon| - \cos(A^T \theta)),
\]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation
Skipping some details . . .

\[Q_L = -4[v]S (v - 1_n) + |A|_L D[h(v)](1_{|E|} - \cos(A^T \theta)). \]

- Rearrange for \(v \)

\[v = f(v, \theta) = 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n \]
\[+ \frac{1}{4} S^{-1}[v]^{-1}|A|_L D[h(v)] (1_{|E|} - \cos(A^T \theta)), \]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation
Skipping some details . . .

\[Q_L = -4[v]S(v - \mathbb{1}_n) + |A|_L D [h(v)](\mathbb{1}_{|\mathcal{E}|} - \cos(A^T \theta)). \]

- Rearrange for \(v \)

\[v = f(v, \theta) = \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1}\mathbb{1}_n \]
\[+ \frac{1}{4} S^{-1}[v]^{-1}|A|_L D [h(v)](\mathbb{1}_{|\mathcal{E}|} - \cos(A^T \theta)), \]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation

Skipping some details . . .

\[Q_L = -4[v]S(v - \mathbb{1}_n) + |A|_L \begin{bmatrix} h(v) \end{bmatrix} (|\mathbb{1}|_E - \cos(A^T \theta)) \text{ Branch Stiff.} \]

- Rearrange for \(v \)

\[v = f(v, \theta) = \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n \]

\[+ \frac{1}{4} S^{-1}[v]^{-1} |A|_L D [h(v)] (|\mathbb{1}|_E - \cos(A^T \theta)) , \]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation

Skipping some details . . .

\[Q_L = -4[v]S(v - 1_n) + |A|_L D[h(v)](1_{|E|} - \cos(A^T \theta)). \]

- Rearrange for \(v \)

\[
 v = f(v, \theta) = 1_n - \frac{1}{4}S^{-1}[Q_L][v]^{-1}1_n
 + \frac{1}{4}S^{-1}[v]^{-1}|A|_L D[h(v)](1_{|E|} - \cos(A^T \theta)),
\]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation

Skipping some details . . .

\[Q_L = -4[v]S(v - \mathbb{1}_n) + |A|_L D [h(v)](\mathbb{1}_n|e| - \cos(A^T \theta)). \]

- Rearrange for \(v \)

\[
v = f(v, \theta) = \mathbb{1}_n - \frac{1}{4}S^{-1}[Q_L][v]^{-1}\mathbb{1}_n
+ \frac{1}{4}S^{-1}[v]^{-1}|A|_L D [h(v)] (\mathbb{1}_n|e| - \cos(A^T \theta)),
\]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation

Skipping some details . . .

\[Q_L = -4[\nu]S(\nu - 1_n) + |A|_L D [h(\nu)](1|\varepsilon| - \cos(A^T \theta)). \]

- Rearrange for \(\nu \)

\[\nu = f(\nu, \theta) = 1_n - \frac{1}{4}S^{-1}[Q_L][\nu]^{-1}1_n \]

\[+ \frac{1}{4}S^{-1}[\nu]^{-1}|A|_L D [h(\nu)] (1|\varepsilon| - \cos(A^T \theta)). \]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
Reactive power flow reformulation

Skipping some details . . .

\[Q_L = -4[v]S(v - 1_n) + |A|L D [h(v)][1|\varepsilon| - \cos(A^T \theta)]. \]

- Rearrange for \(v \)

\[
v = f(v, \theta) = 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n
\]
\[
+ \frac{1}{4} S^{-1}[v]^{-1}|A|L D [h(v)] (1|\varepsilon| - \cos(A^T \theta)),
\]

- Now plug in \(\cos(z) = \sqrt{1 - \sin^2(z)} \)!
(θ, V_L) is a power flow solution iff (ν, p_c) solves the FPPF

\[ν = f(ν, p_c) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][ν]^{-1} 1_n \]
\[+ \frac{1}{4} S^{-1}[ν]^{-1}|A|_L D [h(ν)] u(ν, p_c), \]

0_c = C^T \text{arcsin}(ψ(ν, p_c)).

where

\[u(ν, p_c) \triangleq 1 - \sqrt{1 - [ψ]ψ} \]
\[ψ(ν, p_c) = [h(ν)]^{-1} \left(A^T L^+ P + D^{-1} C p_c \right), \]

with the phase angles \(A^T θ = \text{arcsin}(ψ) \).
(θ, VL) is a power flow solution iff (v, pc) solves the FPPF

\[v = f(v, pc) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n \]
\[+ \frac{1}{4} S^{-1}[v]^{-1}|A|_L D [h(v)] u(v, pc), \]

0c = C^T \arcsin(ψ(v, pc)).

where

\[u(v, pc) \triangleq 1 - \sqrt{1 - [ψ]ψ} \]
\[ψ(v, pc) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C pc \right), \]

with the phase angles \(A^T \theta = \arcsin(ψ) \).
(θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF

$$v = f(v, p_c) \triangleq 1_n - \frac{1}{4} S^{-1} [Q_L][v]^{-1} 1_n$$
$$+ \frac{1}{4} S^{-1} [v]^{-1} |A|_L D [h(v)] u(v, p_c),$$

$$0_c = C^T \arcsin(\psi(v, p_c)),$$

where

$$u(v, p_c) \triangleq 1 - \sqrt{1 - [\psi] \psi}$$

$$\psi(v, p_c) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right),$$

with the phase angles $A^T \theta = \arcsin(\psi)$.
(θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF

\[
v = f(v, p_c) \triangleq 1_n - \frac{1}{4} S^{-1} [Q_L][v]^{-1} 1_n + \frac{1}{4} S^{-1} [v]^{-1} |A|_L D [h(v)] u(v, p_c),
\]

\[\theta_c = C^T \arcsin(\psi(v, p_c)).\]

where

\[
u(v, p_c) \triangleq 1 - \sqrt{1 - [\psi][\psi]}
\]

\[
\psi(v, p_c) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right),
\]

with the phase angles $A^T \theta = \arcsin(\psi)$.
(θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF

\[
v = f(v, p_c) \triangleq 1_n - \frac{1}{4} S^{-1} [Q_L][v]^{-1} 1_n
\]

\[+ \frac{1}{4} S^{-1} [v]^{-1} |A|_L D [h(v)] u(v, p_c),\]

\[0_c = C^T \arcsin(\psi(v, p_c)).\]

where

\[u(v, p_c) \triangleq 1 - \sqrt{1 - [\psi]\psi}\]

\[\psi(v, p_c) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right),\]

with the phase angles \(A^T \theta = \arcsin(\psi) \).
Fixed-Point Power Flow: Meshed Networks

\((\theta, V_L)\) is a power flow solution iff \((v, p_c)\) solves the FPPF

\[
v = f(v, p_c) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n
\]

\[
+ \frac{1}{4} S^{-1}[v]^{-1}|A|_L \text{D} [h(v)] u(v, p_c),
\]

\[\mathbf{0}_c = C^T \arcsin(\psi(v, p_c)).\]

where

\[
u(v, p_c) \triangleq 1 - \sqrt{1 - [\psi]_\psi}
\]

\[
\psi(v, p_c) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C p_c \right),
\]

with the phase angles \(A^T \theta = \arcsin(\psi).\)
(θ, VL) is a power flow solution iff (v, pc) solves the FPPF

\[
v = f(v, pc) \triangleq 1_n - \frac{1}{4} S^{-1} [QL][v]^{-1} 1_n \\
+ \frac{1}{4} S^{-1} [v]^{-1} |A| L D [h(v)] u(v, pc),
\]

\[\theta_c = C^T \arcsin(\psi(v, pc)).\]

where

\[
u(v, pc) \triangleq 1 - \sqrt{1 - [\psi] \psi}
\]

\[
\psi(v, pc) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C pc \right),
\]

with the phase angles \(A^T \theta = \arcsin(\psi) \).
(θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF
\[
v = f(v, p_c) \triangleq 1_n - \frac{1}{4} S^{-1} [Q_L][v]^{-1} 1_n \]
\[
+ \frac{1}{4} S^{-1} [v]^{-1} |A_L| D [h(v)] u(v, p_c),
\]
\[
0_c = C^T \arcsin(\psi(v, p_c)).
\]

where
\[
u(v, p_c) \triangleq 1 - \sqrt{1 - [\psi]^2}
\]
\[
\psi(v, p_c) = [h(v)]^{-1} \left(A^T L^\dagger P + D^{-1} C_{p_c} \right),
\]
with the phase angles \(A^T \theta = \arcsin(\psi) \).
An approximate power flow solution

- The model says $v = f(v, p_c)$, and $\sin(A^T \theta) = \psi(v, p_c)$.
- By construction, when $P = Q_L = 0$, a solution is
 \[v = 1_n, \quad p_c = 0_c, \quad A^T \theta = 0|_{\varepsilon}. \]

Taylor expand FPPF model around this solution

\[
A^T \theta_{\text{approx}} = A^T L^\dagger P \\
v_{\text{approx}} \approx 1_n - \frac{1}{4} S^{-1} Q_L + \frac{1}{8} S^{-1}|A|_L D [A^T L^\dagger P] A^T L^\dagger P \\
p_{c, \text{approx}} = 0
\]
An approximate power flow solution

- The model says $v = f(v, p_c)$, and $\sin(A^T \theta) = \psi(v, p_c)$.
- By construction, when $P = Q_L = 0$, a solution is

$$v = 1_n, \quad p_c = 0_c, \quad A^T \theta = 0_{|\mathcal{E}|}.$$

- **Taylor expand** FPPF model around this solution

$$A^T \theta_{\text{approx}} = A^T L^\dagger P$$

$$v_{\text{approx}} \approx 1_n - \frac{1}{4} S^{-1} Q_L + \frac{1}{8} S^{-1} |A|_L D [A^T L^\dagger P] A^T L^\dagger P$$

$$p_{c, \text{approx}} = 0$$
An approximate power flow solution

- The model says \(v = f(v, p_c) \), and \(\sin(A^T \theta) = \psi(v, p_c) \).
- By construction, when \(P = Q_L = 0 \), a solution is
 \[
 v = 1_n, \quad p_c = 0_c, \quad A^T \theta = 0_{|\mathcal{E}|}.
 \]

- **Taylor expand** FPPF model around this solution
 \[
 A^T \theta_{\text{approx}} = A^T L^\dagger P
 \]
 \[
 v_{\text{approx}} \approx 1_n - \frac{1}{4} S^{-1} Q_L + \frac{1}{8} S^{-1} |A|_L D [A^T L^\dagger P] A^T L^\dagger P
 \]
 \[
 p_{c,\text{approx}} = 0
 \]
An approximate power flow solution

- The model says \(v = f(v, p_c) \), and \(\sin(A^T \theta) = \psi(v, p_c) \).
- By construction, when \(P = Q_L = 0 \), a solution is

\[
\begin{align*}
 v &= 1_n, \\
 p_c &= 0_c, \\
 A^T \theta &= 0_{|E|}.
\end{align*}
\]

- **Taylor expand** FPPF model around this solution

\[
A^T \theta_{\text{approx}} = A^T L^\dagger P
\]

\[
\nu_{\text{approx}} \simeq 1_n - \frac{1}{4} S^{-1} Q_L + \frac{1}{8} S^{-1} |A|_L D [A^T L^\dagger P] A^T L^\dagger P
\]

\[
p_{c, \text{approx}} = 0
\]
An approximate power flow solution

\[A^T \theta_{\text{approx}} = A^T L^\dagger P \]

\[\nu_{\text{approx}} \simeq 1_n - \frac{1}{4} S^{-1} Q_L + \frac{1}{8} S^{-1} |A|_L D [A^T L^\dagger P] A^T L^\dagger P \]
An approximate power flow solution

\[A^T \theta_{\text{approx}} = A^T L^\dagger P \]

\[v_{\text{approx}} \approx 1_n - \frac{1}{4} S^{-1} Q_L + \frac{1}{8} S^{-1} |A|_L D [A^T L^\dagger P] A^T L^\dagger P \]

![Graph showing voltage magnitude vs. bus number](image-url)
Numerical results I

\[\delta_{\text{max}} = \| \mathbf{v} - \mathbf{v}_{\text{approx}} \|_\infty, \quad \delta_{\text{avg}} = \frac{1}{n} \| \mathbf{v} - \mathbf{v}_{\text{approx}} \|_1 \]

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Base Load</th>
<th>High Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FPPF</td>
<td>(\delta_{\text{max}}) (p.u.)</td>
</tr>
<tr>
<td>New England 39</td>
<td>4</td>
<td>0.006</td>
</tr>
<tr>
<td>57 bus system</td>
<td>5</td>
<td>0.011</td>
</tr>
<tr>
<td>RTS '96 (3 area)</td>
<td>4</td>
<td>0.003</td>
</tr>
<tr>
<td>118 bus system</td>
<td>3</td>
<td>0.001</td>
</tr>
<tr>
<td>300 bus system</td>
<td>6</td>
<td>0.022</td>
</tr>
<tr>
<td>PEGASE 1,354</td>
<td>5</td>
<td>0.011</td>
</tr>
<tr>
<td>Polish 2,383 wp</td>
<td>4</td>
<td>0.003</td>
</tr>
<tr>
<td>PEGASE 2,869</td>
<td>5</td>
<td>0.015</td>
</tr>
<tr>
<td>PEGASE 9,241</td>
<td>6</td>
<td>0.063</td>
</tr>
</tbody>
</table>
Numerical results II – convergence rates

- IEEE 300 bus system under heavy loading

![Graph showing convergence rates](image)

Legend:
- NR
- FDLF (XB)
- FPPF
Numerical results III – sensitivity to initialization

- perturb voltage magnitude initialization randomly
- IEEE 118 bus system, base case

<table>
<thead>
<tr>
<th>IC Spread (α)</th>
<th>NR</th>
<th>FDLF</th>
<th>FPPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.98</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>0.10</td>
<td>0.53</td>
<td>0.53</td>
<td>1.00</td>
</tr>
<tr>
<td>0.15</td>
<td>0.18</td>
<td>0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>0.2</td>
<td>0.03</td>
<td>0.03</td>
<td>1.00</td>
</tr>
<tr>
<td>0.3</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
</tr>
<tr>
<td>0.9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>

- extreme insensitivity to initialization (contraction)
(θ, VL) is a power flow solution iff ν is a fixed point of

\[f(ν) \triangleq 1_n - \frac{1}{4} S^{-1} [QL][ν]^{-1} 1_n + \frac{1}{4} S^{-1} [ν]^{-1} A|_L D [h(ν)] u(ν), \]

where

\[u(ν) \triangleq 1 - \sqrt{1 - [ψ]} \]

\[ψ(ν) = [h(ν)]^{-1} D^{-1} p \]

\[p = (A^T A)^{-1} A^T P \]

with the phase angles \(A^T θ = \arcsin(ψ) \).
(θ, V_L) is a power flow solution iff v is a fixed point of

$$f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1}\mathbb{1}_n + \frac{1}{4} S^{-1}[v]^{-1}|A|_L D [h(v)] u(v),$$

where

$$u(v) \triangleq 1 - \sqrt{1 - [\psi][\psi]}$$

$$\psi(v) = [h(v)]^{-1} D^{-1} p$$

$$p = (A^T A)^{-1} A^T P$$

with the phase angles $A^T \theta = \arcsin(\psi)$.

On what invariant set is f a contraction?
\((\theta, V_L)\) is a power flow solution iff \(v\) is a fixed point of

\[
f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1} [Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} S^{-1} [v]^{-1} [A]_L D [h(v)] u(v),
\]

where

\[
u(v) \triangleq 1 - \sqrt{1 - [\psi][\psi]}
\]

\[
\psi(v) = [h(v)]^{-1} D^{-1} p
\]

\[
p = (A^T A)^{-1} A^T P
\]

with the phase angles \(A^T \theta = \text{arcsin}(\psi)\).
Fixed-Point Power Flow: Radial Networks

\((\theta, V_L)\) is a power flow solution iff \(v\) is a fixed point of

\[
f(v) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D [h(v)] u(v),
\]

where

\[
u(v) \triangleq 1 - \sqrt{1 - [\psi] \psi}
\]

\[
\psi(v) = [h(v)]^{-1}D^{-1}p
\]

\[
p = (A^T A)^{-1} A^T P
\]

with the phase angles \(A^T \theta = \arcsin(\psi)\).
(θ, VL) is a power flow solution iff ν is a fixed point of

\[f(\nu) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][\nu]^{-1} 1_n + \frac{1}{4} S^{-1}[\nu]^{-1} |A|_L D [h(\nu)] u(\nu), \]

where

\[
 u(\nu) \triangleq 1 - \sqrt{1 - [\psi]\psi} \\
 \psi(\nu) = [h(\nu)]^{-1} D^{-1} p \\
 p = (A^T A)^{-1} A^T P
\]

with the phase angles \(A^T \theta = \arcsin(\psi) \).
(θ, V_L) is a power flow solution iff v is a fixed point of

$$f(v) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D [h(v)] u(v),$$

where

$$u(v) \triangleq 1 - \sqrt{1 - [\psi] \psi}$$

$$\psi(v) = [h(v)]^{-1} D^{-1} p$$

$$p = (A^T A)^{-1} A^T P$$

with the phase angles $A^T \theta = \text{arcsin}(\psi)$.
(θ, V_L) is a power flow solution iff v is a fixed point of

$$f(v) \triangleq 1_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} 1_n + \frac{1}{4} S^{-1}[v]^{-1}|A|_L D [h(v)] u(v),$$

where

$$u(v) \triangleq 1 - \sqrt{1 - [\psi] \psi}$$

$$\psi(v) = [h(v)]^{-1} D^{-1} p$$

$$p = (A^T A)^{-1} A^T P$$

with the phase angles $A^T \theta = \text{arcsin}(\psi)$.
(\theta, V_L) is a power flow solution iff \(v \) is a fixed point of

\[
f(v) \triangleq 1_n - \frac{1}{4} S^{-1} [Q_L][v]^{-1} 1_n + \frac{1}{4} S^{-1} [v]^{-1} |A|_{LD} [h(v)] u(v),
\]

where

\[
 u(v) \triangleq 1 - \sqrt{1 - [\psi]^{-1} D^{-1} p}
\]

\[
 \psi(v) = [h(v)]^{-1} D^{-1} p
\]

\[
 p = (A^T A)^{-1} A^T P
\]

with the phase angles \(A^T \theta = \text{arcsin}(\psi) \).

On what invariant set is \(f \) a contraction?
Solvability results for different tree topologies
Solvability results for different tree topologies

PQ buses have one PV bus neighbor

Sufficient + Necessary
Existence + Uniqueness
Solvability results for different tree topologies

PQ buses have one PV bus neighbor

Sufficient + Necessary
Existence + Uniqueness

PQ buses have many PV bus neighbors

Sufficient + Tight
Existence + Uniqueness
Solvability results for different tree topologies

PQ buses have one PV bus neighbor

Sufficient + Necessary
Existence + Uniqueness

PQ buses have many PV bus neighbors

Sufficient + Tight
Existence + Uniqueness

General interconnections

Sufficient
Existence
Partitioning of voltage space

\[\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 < 1 \]

\[\max_{(i,j) \in \mathcal{E}^{gg}} \Gamma_{ij} < 1, \]

\[v_{i,\pm} \triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \right) \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}} \]

\[v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}. \]
Partitioning of voltage space

\[
\begin{align*}
\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 &< 1 \\
\max_{(i,j) \in \mathcal{E}^{gg}} \Gamma_{ij} &< 1,
\end{align*}
\]

\[
v_{i,\pm} \triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}\right)}
\]

\[
v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}.
\]
Partitioning of voltage space

\[\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 < 1 \]

\[\max_{(i,j) \in \mathcal{E}_{gg}} \Gamma_{ij} < 1, \]

\[v_{i,\pm} \triangleq \sqrt{\frac{1}{2}} \left(1 - \frac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)} \right) \]

\[v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}. \]
Partitioning of voltage space

\[\max_{i \in \mathcal{N}_L} \Delta_i + 4 \Gamma_i^2 < 1 \]

\[\max_{(i,j) \in \mathcal{E}_{gg}} \Gamma_{ij} < 1, \]

\[v_{i, \pm} = \Delta \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4 \Gamma_i^2)} \right)} \]

\[v_{i, +}^2 - v_{i, -}^2 = \sqrt{1 - (\Delta_i + 4 \Gamma_i^2)}. \]
Partitioning of voltage space

\[
\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 < 1
\]
\[
\max_{(i,j) \in \mathcal{E}_{gg}} \Gamma_{ij} < 1,
\]

\[
v_{i,\pm} \triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \right) \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}}
\]

\[
v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}.
\]
Partitioning of voltage space

\[
\begin{align*}
\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 &< 1 \\
\max_{(i,j) \in \mathcal{E}^{gg}} \Gamma_{ij} &< 1, \\
n_{i,\pm} &\triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \right) \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}} \\
n_{i,+}^2 - n_{i,-}^2 &= \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}.
\end{align*}
\]
Partitioning of voltage space

\[\max_{i \in N_L} \Delta_i + 4 \Gamma_i^2 < 1 \]
\[\max_{(i,j) \in \mathcal{E}_{gg}} \Gamma_{ij} < 1, \]

\[v_{i,\pm} \triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \right) \pm \sqrt{1 - (\Delta_i + 4 \Gamma_i^2)}} \]

\[v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4 \Gamma_i^2)}. \]
Partitioning of voltage space

\[\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 < 1 \]
\[\max_{(i,j) \in \mathcal{E}_{gg}} \Gamma_{ij} < 1, \]

\[v_{i,\pm} \triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)} \right)} \]

\[v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}. \]
Partitioning of voltage space

\[
\max_{i \in \mathcal{N}_L} \Delta_i + 4\Gamma_i^2 < 1
\]

\[
\max_{(i,j) \in \mathcal{E}_g} \Gamma_{ij} < 1,
\]

\[
v_{i,\pm} \triangleq \sqrt{\frac{1}{2} \left(1 - \frac{\Delta_i}{2} \pm \sqrt{1 - \left(\Delta_i + 4\Gamma_i^2 \right)} \right)}
\]

\[
v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - \left(\Delta_i + 4\Gamma_i^2 \right)}.
\]
Summary
Framework for studying **Lossless Power Flow**:

1. Fixed-Point Power Flow
2. Approximate solution

New **conditions for power flow solvability**:

3. Contractive iteration
4. Existence/uniqueness
5. Generalizes known results

What’s unresolved?

1. **Lossless meshed** case
2. **Lossy meshed** case; algorithms in Chen & JWSP 2022, but theory is hard
Summary

Framework for studying **Lossless Power Flow:**

1. Fixed-Point Power Flow
2. Approximate solution

New **conditions for power flow solvability:**

3. Contractive iteration
4. Existence/uniqueness
5. Generalizes known results

What’s unresolved?

1. **Lossless meshed** case
2. **Lossy meshed** case; algorithms in Chen & JWSP 2022, but theory is hard
Summary
Framework for studying **Lossless Power Flow**:

1. Fixed-Point Power Flow
2. Approximate solution

New **conditions for power flow solvability**:

3. Contractive iteration
4. Existence/uniqueness
5. Generalizes known results

What’s unresolved?

1. **Lossless meshed** case
2. **Lossy meshed** case; algorithms in Chen & JWSP 2022, but theory is hard
Final Thoughts

1. Power engineers have incredible intuitive insight into how the grid works; *put in the effort to work with them.*

2. Opportunity to embed practitioner knowledge and intuition within advanced optimization methods like moment-SOS hierarchy.

3. Decades of literature on power flow theory, lots of important insights, still many poorly understood aspects.
Final Thoughts

1. Power engineers have incredible intuitive insight into how the grid works; *put in the effort to work with them.*

2. Opportunity to embed practitioner knowledge and intuition within advanced optimization methods like moment-SOS hierarchy

3. Decades of literature on power flow theory, lots of important insights, still many poorly understood aspects
Final Thoughts

1 Power engineers have incredible intuitive insight into how the grid works; *put in the effort to work with them.*

2 Opportunity to embed practitioner knowledge and intuition within advanced optimization methods like moment-SOS hierarchy

3 Decades of literature on power flow theory, lots of important insights, still many poorly understood aspects
Questions

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

https://www.control.utoronto.ca/~jwsimpson/
jwsimpson@ece.utoronto.ca