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Moment-SOS aka Lasserre hierarchy

Data science problems formulated as infinite-dimensional

linear optimization problem on measures

Solved approximately with a family of convex (semidefinite)

relaxations of increasing size indexed by relaxation order r ∈ N

Based on the duality between the cone of positive polynomials

and moments and their sum of squares (SOS) and semidefinite

programming (SDP) approximations

Approximate solutions can be extracted from the solutions of

the convex relaxations, with convergence guarantees
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1. POP and the moment-SOS hierarchy



POP = Polynomial Optimization Problem

Given multivariate real polynomials p, p1, . . . , pk, solve globally

p∗ := minx p(x)
s.t. x ∈ X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m}

where X is bounded and p ∈ R[x]d has degree d

In general POP can be very challenging:

• p can be nonconvex

• X can be nonconvex and/or disconnected and/or discrete

• there can be several global optimizers, maybe infinitely many



Suppose we can generate samples xk ∈ X for k = 1, . . . , N

Consider the linear optimization problem

min
w

N∑
k=1

p(xk)wk s.t.
N∑
k=1

wk = 1, wk ≥ 0

so that weight wk should be large whenever p(xk) is small

Passing to the limit

min
µ

∫
X
p(x)dµ(x) s.t.

∫
X
dµ(x) = 1, µ ≥ 0

the unknown µ is now a probability measure on X



Let (ai(x))i∈Nnd
denote a basis of the vector space R[x]d

indexed in Nnd := {i ∈ Nn :
∑n
k=1 ik ≤ d} of dimension nd :=

(
n+d
n

)
The polynomial p can then be written as

p(x) =
∑
i∈Nnd

piai(x)

and the objective function can be written as∫
X
p(x)dµ(x) =

∑
i∈Nnd

piyi

which is a linear function of the moments of measure µ

yi =
∫
X
ai(x)dµ(x)



The nonlinear POP

p∗ = min
x
p(x) s.t. x ∈ X

becomes a linear problem on moments

p∗ = min
y

∑
i

piyi s.t. y0 = 1, y ∈M (X)d

where M (X)d is the cone of moments on X of degree up to d



We have reformulated a nonlinear nonconvex problem

as a linear problem in a finite-dimensional convex cone

However, just testing whether y ∈M (X)d is difficult

Not much is known about the geometry of this cone

No efficient barrier function is known

... so we will content ourselves with approximations



The cone of moments M (X)d is dual to the cone P(X)d of
polynomials of degree up to d which are positive on X, we denote
this by M (X)d = P(X)′d

Let us construct a family of inner approximations to P(X)d

Since X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m} is bounded,
we can assume that p1(x) = R2 −

∑n
i=1 x

2
i for R large enough

Let p0(x) := 1 and for r ≥ d define the convex cone

Q(X)r := {q ∈ R[x]d : q =
m∑
k=0

skpk︸ ︷︷ ︸
∈R[x]r

, sk SOS}

where SOS stands for sum of squares

Lemma: By construction Q(X)r ⊂ Q(X)r+1 ⊂P(X)d



Polynomial SOS

Lemma: Deciding whether a polynomial is SOS reduces to

semidefinite programming (SDP) i.e. optimization over linear

matrix inequalities (LMI)

Solved approximately efficiently with primal-dual interior-point



SOS and positivity

Theorem (Hilbert 1888): Q(Rn)2d = P(Rn)2d if and only

if n = 1 or d = 1 or n = d = 2

Hilbert’s 17th problem at ICM Paris 1900

Motzkin’s 1965 example
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Theorem (Putinar 1993): Q(X)∞ = P(X)d

In words, every positive polynomial on a compact semialgebraic

set can be approximated arbitrary well by SOS polynomials

For the moment cone we have the dual statement

Theorem : Q(X)′r ⊃ Q(X)′r+1 ⊃ Q(X)′∞ = M (X)d

and hence we can approximate elements of the moment cone as

closely as desired with SDP outer approximations



Moment hierarchy

For our POP

p∗ = min
x
p(x) s.t. x ∈ X

formulated as a moment problem

p∗ = min
y

∑
i

piyi s.t. y0 = 1, y ∈M (X)d

we now have a hierarchy of SDP problems of increasing size

p∗r = min
y

∑
i

piyi s.t. y0 = 1, y ∈ Q(X)′r

Since Q(X)′r ⊃M (X)d the value p∗r is a lower bound on p∗, we say
that the SDP problem is a relaxation of the moment problem,
and it yields a vector of pseudo-moments, i.e. not necessarily
coming from a measure



SOS hierarchy

And hence for the dual POP

d∗ = max
plow

plow s.t. p(x) ≥ plow ∀x ∈ X

formulated as a polynomial positivity problem

d∗ = max
plow

plow s.t. p(x)− plow ∈P(X)d

we have a hierarchy of SDP problems of increasing size

d∗r = max
plow

plow s.t. p(x)− plow ∈ Q(X)r

The SOS constraint implies positivity on X

Theorem (Lasserre 2001): p∗r = d∗r ≤ p∗r+1 ≤ · · · ≤ p
∗
∞ = p∗



Finite convergence

Theorem (Nie 2014): Generically ∃r <∞ such that p∗r = p∗

In other words, a vanishing small random perturbation of the

input data of a given POP ensures finite convergence of the

Lasserre hierarchy

We have linear algebra conditions on the moments to ensure

finite convergence and extract global minimizers

We can also use the Christoffel-Darboux kernel to approximate

the variety of global minimizers from the moments



Define the moment matrix of degree 2d

Md(y) :=
∫
X
a(x)a(x)>dµ(x)

as a symmetric matrix linear function of the moments y of µ

Theorem (Flat Extension, Curto & Fialkow 1991): If

the rank of Mr(y) does not increase when r increases, then

the moment relaxation is exact

Global solutions extracted by linear algebra, as implemented in

our Matlab interface GloptiPoly (2002)

homepages.laas.fr/henrion
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2. Volume Approximation



Given a polynomial p, we want to compute the volume or Lebesgue

measure of the compact basic semialgebraic set

X := {x ∈ Rn : p(x) ≥ 0}

included in the unit Euclidean ball B.

Existing algorithmic approaches include:

• sampling (for convex sets),

• computer algebra (real algebraic geometry, symbolic

integration, numerical analytic continuation),

• moment-SOS hierarchy (convex optimization)



Linear optimization problems in duality:

supµ

∫
X
µ = µ(X)

s.t. 1− µ ≥ 0 onB
µ ≥ 0 onX

infv
∫
B
v = ‖v‖L 1(B)

s.t. v ≥ 0 onB
v − 1 ≥ 0 onX

Theorem: Primal and dual values are volX

[D. Henrion, J. B. Lasserre, C. Savorgnan. Approximate volume and

integration for basic semialgebraic sets. SIAM Review 51(4), 2009]



Primal

supµ

∫
X
µ

s.t. 1− µ ≥ 0 onB
µ ≥ 0 onX

µ = measure on X

Optimal solution µ∗ = IX



Dual

infv
∫
B
v

s.t. v ≥ 0 onB
v − 1 ≥ 0 onX

v = function on B

Optimal solution v∗ = IX
(however discontinuous)



The primal problem on measures

supµ
∫
X µ

s.t. 1− µ ≥ 0 onB
µ ≥ 0 onX

can be written as

supµ,ν
∫
X µ

s.t. µ+ ν = IB
µ ≥ 0 onX
ν ≥ 0 onB

or equivalently as a primal problem on moments

supy,z y0

s.t. yi + zi =
∫
B
ai(x)dx, i ∈ Nn

y ∈M (X), z ∈M (B)

upon denoting yi :=
∫
X
ai(x)dµ(x) and zi :=

∫
X
ai(x)dν(x)



The dual problem on functions

infv
∫
B
v

s.t. v ≥ 0 onB
v − 1 ≥ 0 onX

can be written as a dual problem on positive polynomials

infv
∑
i

vi

∫
B
ai(x)dx

s.t. v :=
∑
i

viai(x) ∈P(B)

v − 1 ∈P(X)



Linear optimization problems in duality:

p∗ = supy,z y0

s.t. yi + zi =
∫
B
ai(x)dx, i ∈ Nn

y ∈M (X), z ∈M (B)

d∗ = infv
∑
i∈Nn

vi

∫
B
ai(x)dx

s.t. v ∈P(B), v − 1 ∈P(X)

can be solved with the moment-SOS hierarchy:

p∗r = supy,z y0

s.t. yi + zi =
∫
B
ai(x)dx, i ∈ Nnr

y ∈ Q(X)′r, z ∈ Q(B)′r

d∗r = infv
∑
i∈Nnr

vi

∫
B
ai(x)dx

s.t. v ∈ Q(B)r, v − 1 ∈ Q(X)r

Thm: p∗r = d∗r ≥ p∗r+1 = d∗r+1 ≥ p
∗
∞ = d∗∞ = p∗ = d∗ = volX



Dual polynomial SOS approximation suffers from the Gibbs effect




