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1) Learning Dynamical Systems W|th
Side Information —

To appear in SIAM Review, 2022

with Bachir El Khadir (Two Sigma)

2) Learning Dynamical Systems with
Safety Constraints

In preparation;
shorter version in Learning for Dynamics and Control, 2021

with Abraar Chaudhry (Princeton), Vikas Sindhwani (Google), Stephen Tu (Google)
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Learning dynamical systems with side information

* Goalisto learn a dynamical system SNV ;7
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* How can side information (physical  Examples of “side information”:
laws/contextual knowledge) be Equilibrium points (and their stability)
leveraged to help with learning? Invariance of certain sets

* Decrease of certain energy functions

e Sign conditions on derivatives of states
* Monotonicity conditions

* Having gradient/Hamiltonian structure
* (Non)reachability of a set B from a set A
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Learning dynamical systems with side information

f : R"™ — R™  (unknown)

Learn f on a compact set ) from trajectories

D={(z; eR",2; e R™}}s10 ... N

Our approach:

ZHP z;) — &

Take p to be a polynomial
(1133‘11 - (13333 == QladE 85 =F 5o e >|

p:R" —» R"

/)(x17$2) — < ]

)1 :Cil - l)gsc;l + byx10 + . ..

How to impose side information on a candidate polynomial vector field?

pRmcmN ma Let’s see a refresher on “SOS” & dynamical systems...
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Optimization over nonnegative polynomials

Definition by example: How to pick ¢4, ¢,, ¢35 so to make

p(x1, %) = cixf — 6x3x, — 4x3 + c,x¥x5 + 10x7 + 12x,x5 + c3x5

nonnegative over a given basic semialgebraic set?

Basic semialgebraicset: {x € R"| g;(x) = 0,i =1, ..., m}

Ex: x3 —2x,x5 =0
xi + 3xx, — x5 >0

-This problem is fundamental to many areas of applied/computational mathematics.

-It is the problem that “SOS optimization” is designed to solve. :
PRINCETON mm
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How to prove nonnegativity
over a basic semialgebraic set?

3

p(x) >0onK = {x € R"*| g;(x) = 0}

easy direction ﬂ U under positivity + the “Archimedean condition”

AS0S polynomials g (x), ..., 0;,,(x) such that
p(x) = 09(x) +2;0;(x)g;(x).

Search for o; of bounded degree is an SDP!

This approach can be put to great use for analysis of dynamical systems!
[Parrilo,PhD thesis], [Henrion, Garulli, Positive polynomials in control],...
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______________________________________________________________________________________________________________

P=fl)

(vector valued polynomial) ... n

S . needs safety verification ™

Z/{ * unsafe (or forbidden) set

(both sets basic semialgebraic)

Safety guaranteed if we find a “Lyapunov function” such that:

B(S)<0 5
B 5o B (VB@.f@) <0

PRINCETON ma [Prajna, Jadbabaie, Pappas] 7
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Example: certlfymg stablllty
= f(z) f:R" =R [117::001XQ
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Locally asymptotic stability (LAS) of
equilibrium points
Lyapunov’s theorem (and its converse):

The origin is LAS if and only if there exists a
C! function V: R"™ — R that vanishes at the
origin and a scalar § > 0 such that

V(ix) >0

Let SOS optimization find a polynomial V and certify its inequalities.
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Complexity of testing LAS for x = f (x)

“If deg(f)=1, LAS < quadratic Lyapunov fn. Poly-time checkable.
=Conjecture of Arnol’d (1976): LAS is undecidable when deg(f)>1.

Existence of a polynomial Lyapunov function, together with a
computable upper bound on its degree would imply decidability (e.g.,
by quantifier elimination).

Thm: Deciding local asymptotic stability of cubic vector fields is
strongly NP-hard.

[AAA, American Control Conference]

Thm: The origin of the following vector field is LAS | | 1/
but the there is no polynomial Lyapunov function W\ ===
(of any degree):
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Stability does not imply polynomial Lyapunov function

[ 2y(—a* + 2%y 4+ ) o o [ 2x(x* +227%y° — y*)
flz,y) = ( — (=% +y7) 2 (—xt + 22292 + 9

2x(zt + 22%y* — y?)

Claim 1: System is GAS.

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!

Proof: -

% +y

72 + 2

mmcmN == [AAA, El Khadir, Systems & Control Letters108]
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Proof outline

£ (1) £ (09
0 —k__,//\/_, ‘/v\

.
—2y(—z* + 22%y* + y*) o o [ 2x(z* +22%y% — y?)
f(lT., y) — ( 2;1“-(174 1 21,23/2 B y4) — (I + 7 ) 2y(—r4 + 21,23/2 + y4)

Claim 2: No polynomial Lyapunov
function (of any degree) even locally! e

Proof idea:
O
Suppose we had one: P = Zkzo PE .

-> <vpk70($:'y)af0(xay)> < 0

2> <vpk7o(m7y)7f0(l‘,y)> — ().

=>» A polynomial must be constant on the unit | | x
level set of W(x, y) — (x4' + y4‘)/(x2 + yZ)
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In practice however...

The nonlinear control community has had
great success with low-degree polynomial
Lyapunov functions and SOS
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SOS for stabilizing a humanoid robot on one foot

x = f(x,u), 30 states, cubic dynamics
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Back to learning dynamical systems with s

 Goalistolearn a dynamical system

x = f(x) (where f:R" - R")

from a limited number of noisy
measurements of its trajectories.

Examples of “side information”:

e Equilibrium points (and their
stability)

* Invariance of certain sets

* Decrease of certain energy functions

* Sign conditions on derivatives of
states

* Having gradient structure

* Monotonicity conditions

* (Non)reachability of a set B from a
set A
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Parametrize a polynomial vector field
p: R" - R™.

Use SOS optimization to impose side
information as constraints on p.

Pick the p that best explains the data.



An epidemiology example

A model from the epidemiology
literature for spread of Gonorrhea in
a heterosexual population:

x(t): fraction of infected males at time t
y(t): fraction of infected females at time t

a.: recovery rate of males

[y

x=filx,y) =—ayx + b (1 —x)y

a,: recovery rate of females

y = fo(x,y) = —a,y + b,(1 — y)x | b;:infection rate of males

b,: infection rate of females

For our experiments:

This is taken to be “the ground truth”. .\ [ L

e The dynamics (both its parameters and AN SN
its special structure) is unknown to us. i N AN
 We only get to observe noisy trajectories | 7L
of this dynamical system. o] NN
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The setup

* The true dynamics f is unknown

* What we observe:
Noisy measurements of the
vector field on 20 points from a
single trajectory starting from
[0.7;0.3]

e Goal:

e Learn a polynomial vector
field p (of degree 2 or 3) that
best agrees with the
observed trajectory

* Incorporate side information
to generalize better to
unobserved trajectories
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Learning p of degree 2

The true dynamics f (unknown) Least squares solution subject to
p(0) =0

Nl M\\\\\\\\\\\Q

* Already gets the qualitative behavior on unobserved state space cor

7/

@

7

Maybe we are helping ourselves by taking p to have degree 2 (same as f)?
Let’s try higher degree p to assume a richer model than the truth.







Learning p of degree 3

The true dynamics f (unknown) Least squares solution subject to
p(O) =0

* Still pretty bad. What other side information can you thmk of?

Fraction of infected individuals cannot go negative or more than one!

. 1]
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Learning p of degree 3

The true dynamics f (unknown) Least squares solution subject to
p(0) = 0, unit square invariant

. 1]
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Side information: directional monotonicity

The true dynamics f (unknown)

> 0,V(x,y) € [0,1]%

We want p to satisfy the same
constraints!

. 1]
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Learning p of degree 3

Least squares n subject to

The true dynamics f (unknown) p(0) = 0, unit square invariant,
directional monoton icity

S
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Let’s learn p of degree 2 again just for fun

Least squares solution subject to
The true dynamics f (unknown) p(0) = 0, unit square invariant,




The SDP that is being solved in the background

20
. .. A . e
min Z (F(%”:;‘)-:E('x";;))
1=
/O'( )“’f}(f’)@
d,,0 Jdgj_(of')<1 s.t. ﬁ(u,a): o, Fh (o,o):p 4
gug’.!a;.
46152 f )= 30 6)+ -0 %
0o, 0, 303 [?i:f’;“x?j-slﬁ?:"-?("l
(+ three Similar Cons-!-m.«l-:'ff)
S A A
};" g = 000 )+ G0t 6 (7% )9
+ C?: 305, o“z,o,:z
(Slm.iar'; for }Pl () b[ <AL, °<~‘}<l*‘7h?‘ ()“i‘j)‘?}]
Output of SDP solver:

p1=0.2681*x"3 - 0.0361*x"2*y - 0.095*x*y"2 + 0.1409*y”3 - 0.4399*x"2 + 0.0956*x*y - 0.0805*y"2 + 0.1232*x + 0.0201*y
p2=0.1188*x"3 + 0.2606*x"2*y + 0.2070*x*y"2 + 0.0005*y”3 - 0.3037*x"2 - 0.4809*x*y -0.099*y"2+ 0.2794*x+0.01689*y
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Following learning with optimal control
The true dynamics f (unknown)
Uix

T 20 =1w0) - {4,

<\\\ uq: fraction of males to test

I \
\i\yﬂ(( A
\/

\s U, : fraction of females to test

\
A\
\\ As before: f is unknown; we only see 20 points from a

: WA\
ol'i\‘\;\’ / < | \ \ M . . T
\/ \ \ \ single trajectory starting from (0.7,0.3)

\

Goal is to choose u{, u, to minimize:

c(ur,uz) == 21 (T, Zinie) + 22T, Tinit) + (u1 + u2)
j}init — (05, 04)T T =20, =04 \ C(}\tl,uz) if we knew f
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Applying optimal control to dynamics learned from data

0.5 | *
o
S
é S
Q
0k
: Interp Interp
0.5 Interp NInv NInv B
N Mon

Uo 0 'O
uy
Side information 1 (T, Tinit) | @2(T, Tinit)
None 0.45 0.40
Interp 0.41 0.29
Interp NlInv 0.31 0.12
Interp N Inv N Mon 0.01 0.01
mmcmN - True vector field 0.00 0.00
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Side information useful in many other domains

See paper for an example in cell biology, or for learning a chaotic system.

A physical example: the simple pendulum

(61,62) = (6,0) The true dynamics f (unknown)

6.\ ([ 47
<92> = f(61,0;) = <_%sin(91)>

* What we observe: Noisy
measurements of the vector
field on two trajectories (5
noisy points from each) y

* Goal: Learn a polynomial
vector field p that is close to
f over [—m, | X [—m, ]

(.-l PRINCETON -
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-]
W%%%/)} e :k H\\\ch

| Z /;
R M

. 9+Ham||'2ton|an +pUII ;)f gr_aVIt;/' 9 é O = é S 6

|
mm

== — == =\\\\I\
The learne d\(\\(\ Q (9))/ }) E C S}
polynomiallv _l\ N \/

dynamics PM \\ \ \\\w /%/

/
|

UNIVERSITY mms



Density of polynomial vector fields satisfying side information

|[AAA, El Khadir]. For time horizon T > 0, desired accuracy € > 0,
compact set ) € R", and any C?! vector field f R™ — R™ that satisfies one
of the following side information constraints:

i. equilibria at a given finite set of points (f (v;) = 0),

ii. group symmetry (f (a(g)x) = p(g)f(x) Vx € Q,Vg € Q),
iii. invariance of a (full-dimensional) convex set,

iv. directional monotonicity (aaf—i) 0,Vx € Pjj),

v. nonnegativity (f;(x) = 0,Vx € p;),
vi. gradient or Hamiltonian structure (e.g., f(x) = =VV(x) Vx € Q),

there exists a polynomial vector field p: R™ — R" such that

1) trajectories of f and p starting from any initial conditions xy € ()
remain within € for all time t € [0, T| (while they stay in ),

2) p satisfies the same side information as f.

(.-l PRINCETON —
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What about multiple side information constraints?

Are polynomial vector fields still dense in the space of C! vector fields?

In general, no!

0 x>0 Q= [-11]
fl):=9 3
—e 2 <0 Side information:
| : s fO=f1)=0

L f nondecreasing over [—1,1]
0145 F

-0.25 -

03

-0.35

0.4

I I I | | I I | |
-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
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Density with approximate satisfaction of side information

[AAA, El Khadir]. For any continuously differentiable vector field
fR* > R", anyT >0, >0, § > 0, and any compact set ) € R",

there exists a polynomial vector field p: R™ — R" such that

1) trajectories of f and p starting from any initial conditions xy € ()
remain within € for all time t € [0, T](while they stay in (),

2) p 6-satisfies* any combination of the constraints that f satisfies.

Moreover, all such properties of p come with an SOS certificate (and such
polynomial vector field can be found by semidefinite programming).

*§-satisfies: f(v) =0 llp(w)|| <6
Invariance:
(n(x) is the outgoing normal (n(x),f(x)) <0 (n(x), p(x)> <é
at the boundary point x) af(x) ap(x)
>0 > -0

(.-l PRINCETON

UNIVERSITY EE f(x) = —VV(X) ||p(x) + VW(X)H <0 etc.




Takeaways

* When data is limited, side information can help you learn better models.

* SOS is a powerful method for imposing side information on polynomial
vector fields.
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Problem setup

Our goal is to safely learn a dynamical system

Tiy1 — f*(xt), f* R — R"

by querying appropriate trajectories

There is a safety region § € R"; the state should never go outside of S
during our learning process

The map f, is known to be in some initial uncertainty set: f, € U,

When we query a point x € S, we observe the trajectory of the true
dynamics starting from x for T time steps

The “T-step safety region”: |
ST(f={zesS|fOz)eSi=1,...,T}

* As we (safely) gather more data, the uncertainty over Jf« can shrink

-3 PRINCETON == 35
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Safe Learning
Let ¢r7(x) represent the trajectory of length T starting from x
under the dynamics f
Suppose we have already queried ¢¢, 7(z;) j=1,...,k
Then we can update out uncertainty set of f, as follows:

Uk ‘= {f S UO ‘ ¢f,T($J) — ¢f*,T(xj) 7j — 17 .- 7k}

With this information, we know that T-step safety is guaranteed
. . . . T . T
for points in the following set: Sy = ﬂ S*(f)
feUx
In our learning process we want to accomplish two goals:

1. (Safety) for each k=1,...,m, x) € S,f_l,

2. (Learning) U,, — {f«}

For which S, U,, and T is this possible?
If safe learning is possible, may also be concerned with learning
with low “query cost”

[ PRINCETON ==
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Conic optimization for safe learning

Content of our paper:

Safe Learning of
1. Linear Systems, One-Step Safety (focus of today)

2. Nonlinear Systems, One-Step Safety—=> SOCP (exact)
3. Linear Systems, Two-Step Safety = SDP (exact)
4. Linear Systems, Infinite-Step Safety - SDP (approximation)

5. Nonlinear Systems, Infinite-Step Safety - SDP (approximation)

M PRINCETON ==7 37
@Y UNIVERSITY mm




Linear dynamics, polytopic uncertainty set, 1-step safety

Safety region is a polytope:
S = {:BER” | hlx <b; izl,...,fr}

We want safety for one time step,i.e. T = 1

Dynamics linear, i.e. f(x) = A,z (A, € R™™"™ unknown)

Polytopic initial uncertainty set:
A elUp={AeR" | Tx(VIA) <v; j=1,...,s}

Linear query cost: ¢Tx

PRINCETON == 38
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Definition of Safe Learning for this specific case

Can we devise an algorithm to safely learn whenever possible and
otherwise certify the impossibility of safe learning?

Recall: Uk:{AGUOIAZBl:yl lzl,...,k}
St={zeS|Ax e S,VA U}

We say that one-step safe learning is possible if for some nonnegative integer
m, we can sequentially choose vectors xp € S, for £ = 1,...,m, and observe
measurements yr = A,x; such that:

1. (Safety) for k=1,...,m, we have Az, € § VA€ Ug_q,

2. (Learning) the set of matrices U, is a singleton.

39



Searching over one-step safe region

* We need a way to search over S;

* Suppose we have thus far collected pairs (z;,y;) with y = A2y

 The next cheapest one-step safe point is a solution to the
following program:

min ¢’
€T
st. hix<b, i=1,...,r
max 4 hl Ax
s.t. Tr(V;PA) <wv; j=1,...,5] <b i=1,...

A:Ul:yl lZl,...,k

 (Can we solve this problem?

M PRINCETON =&~
UNIVERSITY =
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Duality

* Let us take the dual of the inner problems:

hiTAm

max 4

s.t. Tr(VjTA) <wvjj=1,...,8
Axl:yllzl,...,

k

* We can proceed by taking the dual of all the inner problems

* Turns min/max into a min/min = overall problem becomes an LP

LP formulation for searching over the set S,i ;

min
TRy

S.t. hraz' < b;

CTLIZ'

1=1,....r

Zle )+Zu v; <b 1=1,...,7

=1

M(’i) > 0

(“¥ PRINCETON ==
M UNIVERSITY =
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Naive Algorithm

* Now that we can search over S,i , can we just solve this LP

iteratively?

* The algorithm can go like this:

1.

o vk wnN

Initialize Data =[]

If U, is a singleton, return A,
Solve LP with Data, get optimal x,
Query x, and observe y; := A,z
Add (x,, y,) to data

Goto 2

* Problem: this may “stall” i.e. the optimal x from the LP may not

add information

* This happens when the optimal x is in the linear span of our

previous x’s

M PRINCETON ==
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B wnN e

5.
6.
7.

Revised Algorithm

Initialize Data =[]

If U, is a singleton, return

Solve LP with Data, get optimal x,

If x, is in the linear span of previous x’s, add
a “valid” perturbation to x,, if there is no
valid perturbation, return safe learning
impossible

Query x, and observe

Add (x,, y,) to data

Goto 2

* Perturbation is “valid” if it maintains one-step safety and lowers dim(Uy},)
* Can test whether there is a valid perturbation by finding a basis
for span(S; ) that is inside S}, ; this can be done with some LPs

Theorem: Safe Learning is possible iff the above algorithm succeeds.

Corollary: If safe learning is possible, then it is possible with at most n queries.

(“¥ PRINCETON ==
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One-step safety — a numerical experiment

S={zeR||z]s <1}
Uy = {A e R4 | Al <4 Vi, 5}
* |t takes 4 stepstolearn A, exactly

* The (projection of) optimal query
points are marked

* The last (largest) set is the
“true 1-step safety region”, i.e.

St A)={zrecS|AxecS}
4

e Cost of safe learning ZCTil?k :-1.6385
k=1

nd Coordinate of =

2 1 4 2
2 -3 -1 =2

-2 -3 1 0
2 0 =2 2

—3
—s|

— s}
S'(4)] ]

-04 -0.2 0 0.2 0.4 0.6
First Coordinate of x

* Cost of safe learning without exploiting information on the fly: -1.0000

* This comes from optimizing over Sé

* Lower bound:-2.2264

pRmcmN may * This comes from optimizing over S (A*)

UNIVERSITY =
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Uncertainty shrinks over time, safety sets grow

80 + Tol
L U]
60 v
40 t Us|]
s Uy

20 -

Sum of Entries of A
o
Second Coordinate of =

20 +
-40 /
60 -
_1|0 0 1 0 26 04 02 0 0.2 0.4 0.6
Trace(A) First Coordinate of «
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In summary...

e There are interesting optimization
problems at the interface of
learning and dynamical systems!

DYNAMICAL
SYSTEMS

OPTIMIZATION

e Conic programming (especially
semidefinite optimization) proves

to be a powerful tool in this area. LEARNING

: w*% o
e \We saw two examples of this ME RS
today for handling safety 0“‘(‘)80‘3
constraints or exploiting side o®

information.

Thank you for listening.

8 PRINCETON =7 Want to know more?
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