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Learning dynamical systems with side information

• Goal is to learn a dynamical system

ሶ𝑥(𝑡) = 𝑓 𝑥(𝑡) (where 𝑓:ℝ𝑛 → ℝ𝑛)

from a limited number of noisy
measurements of its trajectories.

Examples of “side information”:
• Equilibrium points (and their stability)
• Invariance of certain sets
• Decrease of certain energy functions
• Sign conditions on derivatives of states
• Monotonicity conditions
• Having gradient/Hamiltonian structure
• (Non)reachability of a set B from a set A
• …

• How can side information (physical 
laws/contextual knowledge) be 
leveraged to help with learning? 



Learning dynamical systems with side information

Our approach:

How to impose side information on a candidate polynomial vector field?

Let’s see a refresher on “SOS” & dynamical systems…
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Optimization over nonnegative polynomials

Basic semialgebraic set:

-This problem is fundamental to many areas of applied/computational mathematics.
-It is the problem that “SOS optimization” is designed to solve.

Definition by example: How to pick 𝑐1, 𝑐2, 𝑐3 so to make

nonnegative over a given basic semialgebraic set?

𝑥 ∈ ℝ𝑛 𝑔𝑖 𝑥 ≥ 0, 𝑖 = 1,… ,𝑚}

Ex: 𝑥1
3 − 2𝑥1𝑥2

4 ≥ 0
𝑥1
4 + 3𝑥1𝑥2 − 𝑥2

6 ≥ 0
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How to prove nonnegativity 
over a basic semialgebraic set?

Putinar’s Psatz (1993):

under positivity + the “Archimedean condition”

Search for 𝝈𝒊 of bounded degree is an SDP!

⇓

∃SOS polynomials 𝜎0(𝑥), … , 𝜎𝑚(𝑥) such that

𝒑 𝒙 = 𝝈𝟎 𝒙 + σ𝒊𝝈𝒊 𝒙 𝒈𝒊 𝒙 .
⇓

easy direction

𝒑 𝒙 ≥ 𝟎 𝐨𝐧 𝑲 = 𝒙 ∈ ℝ𝒏 𝒈𝒊 𝒙 ≥ 𝟎}

This approach can be put to great use for analysis of dynamical systems! 
[Parrilo,PhD thesis], [Henrion, Garulli, Positive polynomials in control],… 
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Certifying collision avoidance

needs safety verification

unsafe (or forbidden) set

Safety guaranteed if we find a “Lyapunov function” such that:

(vector valued polynomial)

(both sets basic semialgebraic)

[Prajna, Jadbabaie, Pappas] 



Example: certifying stability

Ex.

Locally asymptotic stability (LAS) of 
equilibrium points

𝑉 𝑥 > 0
𝑉 𝑥 ≤ 𝛽 ⇒ ሶ𝑉(𝑥) = 𝛻𝑉 𝑥 𝑇𝑓 𝑥 < 0

Lyapunov’s theorem (and its converse):

The origin is LAS if and only if there exists a 
𝐶1 function 𝑉:ℝ𝑛 → ℝ that vanishes at the 
origin and a scalar 𝛽 > 0 such that

Let SOS optimization find a polynomial V and certify its inequalities.
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Complexity of testing LAS for ሶ𝒙 = 𝒇(𝒙)

Thm: Deciding local asymptotic stability of cubic vector fields is 
strongly NP-hard.

[AAA, American Control Conference]

▪If deg(f)=1, LAS ⇔ quadratic Lyapunov fn. Poly-time checkable.

▪Conjecture of Arnol’d (1976): LAS is undecidable when deg(f)>1.

Existence of a polynomial Lyapunov function, together with a 
computable upper bound on its degree would imply decidability (e.g., 
by quantifier elimination).

[AAA, El Khadir, Systems & Control Letters]

Thm: The origin of the following vector field is LAS 
but the there is no polynomial Lyapunov function 
(of any degree):



Proof:
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Stability does not imply polynomial Lyapunov function

System is GAS.Claim 1:

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!

[AAA, El Khadir, Systems & Control Letters’18]



Proof idea:
Suppose we had one:
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Proof outline

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!

➔

➔

➔ A polynomial must be constant on the unit 
level set of 𝑊 𝑥, 𝑦 = 𝑥4 + 𝑦4 / 𝑥2 + 𝑦2
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In practice however…

The nonlinear control community has had 
great success with low-degree polynomial 
Lyapunov functions and SOS 
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SOS for stabilizing a humanoid robot on one foot

(w/ Majumdar and Tedrake)

ሶ𝑥 = 𝑓 𝑥, 𝑢 ,  30 states, cubic dynamics



Back to learning dynamical systems with side information

• Goal is to learn a dynamical system

ሶ𝑥 = 𝑓 𝑥 (where 𝑓:ℝ𝑛 → ℝ𝑛)

from a limited number of noisy
measurements of its trajectories.

• Parametrize a polynomial vector field 
𝑝:ℝ𝑛 → ℝ𝑛.

• Use SOS optimization to impose side 
information as constraints on 𝑝.

• Pick the 𝑝 that best explains the data.

Examples of “side information”:
• Equilibrium points (and their 

stability)
• Invariance of certain sets
• Decrease of certain energy functions
• Sign conditions on derivatives of 

states
• Having gradient structure
• Monotonicity conditions
• (Non)reachability of a set B from a 

set A
• …



An epidemiology example

ሶ𝑥 = 𝑓1 𝑥, 𝑦 = −𝑎1𝑥 + 𝑏1 1 − 𝑥 𝑦

ሶ𝑦 = 𝑓2 𝑥, 𝑦 = −𝑎2𝑦 + 𝑏2 1 − 𝑦 𝑥

A model from the epidemiology 
literature for spread of Gonorrhea in 
a heterosexual population:  

𝑥(𝑡): fraction of infected males at time 𝑡

𝑦 𝑡 : fraction of infected females at time 𝑡

𝑎1: recovery rate of males

𝑎2: recovery rate of females

𝑏1: infection rate of males

𝑏2: infection rate of females

For our experiments:
𝑎1 = 𝑎2 = .1; 𝑏1 = 𝑏2 = .05.

This is taken to be “the ground truth”.

• The dynamics (both its parameters and 
its special structure) is unknown to us.

• We only get to observe noisy trajectories 
of this dynamical system.



The setup

• The true dynamics 𝑓 is unknown

• What we observe:
Noisy measurements of the 
vector field on 20 points from a 
single trajectory starting from 
[0.7;0.3]

• Goal:
• Learn a polynomial vector 

field 𝑝 (of degree 2 or 3) that 
best agrees with the 
observed trajectory

• Incorporate side information 
to generalize better to 
unobserved trajectories



Learning 𝒑 of degree 2

The true dynamics 𝑓 (unknown) Least squares solution

• Good performance on the observed 
trajectory. Horrible elsewhere.

• What side information can you think of 
in the context of this problem?

𝒇 𝟎 = 𝟎 ‼



Learning 𝒑 of degree 2

The true dynamics 𝑓 (unknown) Least squares solution subject to 
𝑝 0 = 0

• Already gets the qualitative behavior on unobserved state space correctly!

Let’s try higher degree 𝑝 to assume a richer model than the truth.
Maybe we are helping ourselves by taking 𝑝 to have degree 2 (same as 𝑓)?



Learning 𝒑 of degree 3

The true dynamics 𝑓 (unknown) Least squares solution

• Good performance on the observed 
trajectory. Again horrible elsewhere.



Learning 𝒑 of degree 3

The true dynamics 𝑓 (unknown) Least squares solution subject to 
𝑝 0 = 0

• Still pretty bad. What other side information can you think of?

Fraction of infected individuals cannot go negative or more than one!

The unit square must be an invariant set!!



Learning 𝒑 of degree 3

The true dynamics 𝑓 (unknown) Least squares solution subject to 
𝑝 0 = 0, unit square invariant

• Better, but not perfect. What other side information can you think of?

More infected females should imply higher infection rate for males!
(and vice versa)



Side information: directional monotonicity

The true dynamics 𝑓 (unknown)

𝜕𝑓1 𝑥, 𝑦

𝜕𝑦
≥ 0, ∀ 𝑥, 𝑦 ∈ 0,1 2

𝜕𝑓2 𝑥, 𝑦

𝜕𝑥
≥ 0, ∀ 𝑥, 𝑦 ∈ 0,1 2

We want 𝑝 to satisfy the same 
constraints!



Learning 𝒑 of degree 3

The true dynamics 𝑓 (unknown)
Least squares solution subject to 
𝑝 0 = 0, unit square invariant, 

directional monotonicity 

• Now we are getting the qualitative behavior correct everywhere!



Let’s learn 𝒑 of degree 2 again just for fun

The true dynamics 𝑓 (unknown)
Least squares solution subject to 
𝑝 0 = 0, unit square invariant, 

directional monotonicity 

• 𝑝 is pretty much dead on everywhere even though it was trained on a 
single trajectory!



The SDP that is being solved in the background

Output of SDP solver:
p1=0.2681*x^3 - 0.0361*x^2*y - 0.095*x*y^2 + 0.1409*y^3 - 0.4399*x^2 + 0.0956*x*y - 0.0805*y^2 + 0.1232*x + 0.0201*y
p2=0.1188*x^3 + 0.2606*x^2*y + 0.2070*x*y^2 + 0.0005*y^3 - 0.3037*x^2 - 0.4809*x*y -0.099*y^2+ 0.2794*x+0.01689*y 



Following learning with optimal control

As before: 𝑓 is unknown; we only see 20 points from a 
single trajectory starting from 0.7,0.3 𝑇

The true dynamics 𝑓 (unknown)

𝒖𝟏: fraction of males to test
𝒖𝟐: fraction of females to test

Goal is to choose 𝒖𝟏, 𝒖𝟐 to minimize:

𝑐(𝑢1, 𝑢2) if we knew 𝑓



Applying optimal control to dynamics learned from data



Side information useful in many other domains

See paper for an example in cell biology, or for learning a chaotic system.

ሶ𝜃1
ሶ𝜃2

= 𝑓 𝜃1, 𝜃2 =
𝜃2

−
𝑔
𝑙
sin 𝜃1

𝜃1, 𝜃2 = (𝜃, ሶ𝜃)

A physical example: the simple pendulum

The true dynamics 𝒇 (unknown)

• What we observe: Noisy 
measurements of the vector 
field on two trajectories (5 
noisy points from each)

• Goal: Learn a polynomial 
vector field 𝑝 that is close to 
𝑓 over −𝜋, 𝜋 × [−𝜋, 𝜋]



Quantity of side info

The true 
dynamics 𝑓
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The learned 
polynomial 
dynamics 𝑝

No side info +symmetry: 𝑝 −𝜃,− ሶ𝜃 = −𝑝 𝜃, ሶ𝜃

+Hamiltonian +pull of gravity: 𝜃 ≥ 0 ⇒ ሷ𝜃 ≤ 0



Density of polynomial vector fields satisfying side information

Thm [AAA, El Khadir]. For time horizon 𝑇 > 0, desired accuracy 𝜖 > 0, 
compact set Ω ⊆ ℝ𝑛, and any 𝐶1 vector field 𝑓:ℝ𝑛 → ℝ𝑛 that satisfies one 
of the following side information constraints:

i. equilibria at a given finite set of points (𝑓 𝑣𝑖 = 0),
ii. group symmetry (𝑓 𝜎 𝑔 𝑥 = 𝜌 𝑔 𝑓 𝑥 ∀𝑥 ∈ Ω, ∀𝑔 ∈ G),
iii. invariance of a (full-dimensional) convex set,
iv. directional monotonicity (

𝜕𝑓 𝑥

𝜕𝑥𝑗
≥ 0, ∀𝑥 ∈ 𝑃𝑖𝑗),

v. nonnegativity (𝑓𝑖 𝑥 ≥ 0, ∀𝑥 ∈ 𝑃𝑖),
vi. gradient or Hamiltonian structure (e.g., 𝑓 𝑥 = −𝛻𝑉(𝑥) ∀𝑥 ∈ Ω ),

there exists a polynomial vector field 𝑝:ℝ𝑛 → ℝ𝑛 such that

1) trajectories of 𝒇 and 𝒑 starting from any initial conditions 𝒙𝟎 ∈ 𝛀
remain within 𝝐 for all time 𝒕 ∈ 𝟎, 𝑻 (while they stay in Ω),

2) 𝒑 satisfies the same side information as 𝒇.



What about multiple side information constraints?

Are polynomial vector fields still dense in the space of 𝐶1 vector fields?

In general, no!

Ω = [−1,1]

𝑓 0 = 𝑓 1 = 0

𝑓 nondecreasing over [−1,1]

Side information:



Density with approximate satisfaction of side information 

Thm [AAA, El Khadir]. For any continuously differentiable vector field 
𝑓:ℝ𝑛 → ℝ𝑛, any 𝑇 > 0, 𝜖 > 0, 𝜹 > 𝟎, and any compact set Ω ⊆ ℝ𝑛,

there exists a polynomial vector field 𝑝:ℝ𝑛 → ℝ𝑛 such that

1) trajectories of 𝒇 and 𝒑 starting from any initial conditions 𝒙𝟎 ∈ 𝛀
remain within 𝝐 for all time 𝒕 ∈ 𝟎, 𝑻 (while they stay in Ω),

2) 𝒑 𝜹-satisfies* any combination of the constraints that 𝒇 satisfies.

Moreover, all such properties of 𝑝 come with an SOS certificate (and such 
polynomial vector field can be found by semidefinite programming). 

*𝜹-satisfies: 𝑓 𝑣𝑖 = 0 ||𝑝 𝑣𝑖 || ≤ 𝛿

𝑛 𝑥 , 𝑓 𝑥 ≤ 0 𝑛 𝑥 , 𝑝 𝑥 ≤ 𝛿
Invariance: 
(n(x) is the outgoing normal
at the boundary point x)

𝜕𝑓 𝑥

𝜕𝑥𝑗
≥ 0

𝜕𝑝 𝑥

𝜕𝑥𝑗
≥ −𝛿

𝑓 𝑥 = −𝛻𝑉(𝑥) p 𝑥 + 𝛻𝑊 𝑥 ≤ 𝛿 etc.



Takeaways

• When data is limited, side information can help you learn better models.

• SOS is a powerful method for imposing side information on polynomial 
vector fields.

the true dynamics
(not polynomial) 

the polynomial dynamics 
learned by exploiting side info 
using SOS techniques



Safely Learning 
Dynamical Systems
with Abraar Chaudhry (Princeton), Vikas Sindhwani (Google), Stephen Tu (Google)



Problem setup

• Our goal is to safely learn a dynamical system

by querying appropriate trajectories

• There is a safety region 𝑆 ⊆ ℝ𝑛; the state should never go outside of 𝑆
during our learning process

• The map      is known to be in some initial uncertainty set: 𝑓⋆ ∈ 𝑈0

• When we query a point 𝑥 ∈ 𝑆, we observe the trajectory of the true 
dynamics starting from 𝑥 for 𝑻 time steps

• The “𝑇-step safety region”: 

• As we (safely) gather more data, the uncertainty over     can shrink
35



Safe Learning
• Let                    represent the trajectory of length 𝑇 starting from 𝑥

under the dynamics 𝑓
• Suppose we have already queried 
• Then we can update out uncertainty set of      as follows:

• With this information, we know that 𝑇-step safety is guaranteed 
for points in the following set:

• In our learning process we want to accomplish two goals:

• For which S, U0, and T is this possible?
• If safe learning is possible, may also be concerned with learning 

with low “query cost”
36



Conic optimization for safe learning

Safe Learning of
1. Linear Systems, One-Step Safety (focus of today)

2. Nonlinear Systems, One-Step Safety→ SOCP (exact)

3. Linear Systems, Two-Step Safety→ SDP (exact) 

4. Linear Systems, Infinite-Step Safety→ SDP (approximation)

5. Nonlinear Systems, Infinite-Step Safety→ SDP (approximation)

37

Content of our paper:



Linear dynamics, polytopic uncertainty set, 1-step safety

• Safety region is a polytope:

• We want safety for one time step, i.e. 𝑇 = 1

• Dynamics linear, i.e.

• Polytopic initial uncertainty set:

• Linear query cost: 𝑐𝑇𝑥

38



Definition of Safe Learning for this specific case

Can we devise an algorithm to safely learn whenever possible and 
otherwise certify the impossibility of safe learning?

39

Recall:



Searching over one-step safe region

• We need a way to search over

• Suppose we have thus far collected pairs                 with

• The next cheapest one-step safe point is a solution to the 
following program:

• Can we solve this problem?

40



Duality

• Let us take the dual of the inner problems:

• We can proceed by taking the dual of all the inner problems

• Turns min/max into a min/min → overall problem becomes an LP

LP formulation for searching over the set        :

41



Naïve Algorithm

• Now that we can search over        , can we just solve this LP 
iteratively?

• The algorithm can go like this:

• Problem: this may “stall” i.e. the optimal 𝑥 from the LP may not 
add information

• This happens when the optimal 𝑥 is in the linear span of our 
previous 𝑥’s

1. Initialize Data = []
2. If 𝑈𝑘 is a singleton, return
3. Solve LP with Data, get optimal 𝑥𝑘
4. Query 𝑥𝑘 and observe 
5. Add (𝑥𝑘, 𝑦𝑘) to data
6. Goto 2

42



Revised Algorithm

• Perturbation is “valid” if it maintains one-step safety and lowers dim(𝑈𝑘)
• Can test whether there is a valid perturbation by finding a basis

for                   that is inside      ; this can be done with some LPs

1. Initialize Data = []
2. If 𝑈𝑘 is a singleton, return
3. Solve LP with Data, get optimal 𝑥𝑘
4. If 𝑥𝑘 is in the linear span of previous 𝑥’s, add 

a “valid” perturbation to 𝑥𝑘, if there is no 
valid perturbation, return safe learning 
impossible

5. Query 𝑥𝑘 and observe 
6. Add (𝑥𝑘, 𝑦𝑘) to data
7. Goto 2

43

Theorem: Safe Learning is possible iff the above algorithm succeeds.

Corollary: If safe learning is possible, then it is possible with at most 𝑛 queries.



One-step safety – a numerical experiment

•

•

• It takes 4 steps to learn          exactly

• The (projection of) optimal query  
points are marked

• The last (largest) set is the  
“true 1-step safety region”,  i.e.

• Cost of safe learning : -1.6385

• Cost of safe learning without exploiting information on the fly: -1.0000

• This comes from optimizing over 

• Lower bound: -2.2264 

• This comes from optimizing over 44



Uncertainty shrinks over time, safety sets grow

45



In summary…

Want to know more? http://aaa.princeton.edu 

Thank you for listening.

• There are interesting optimization 
problems at the interface of 
learning and dynamical systems!

• Conic programming (especially 
semidefinite optimization) proves 
to be a powerful tool in this area.

• We saw two examples of this 
today for handling safety 
constraints or exploiting side 
information.

OPTIMIZATION
DYNAMICAL 

SYSTEMS

LEARNING


