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Workshop on Solving Polynomial Equations and Applications

CWI Amsterdam, October 7, 2022



Lie Algebras

Fix the vector space V = C4 with standard basis {e1, e2, e3, e4}.
A Lie algebra structure is a bilinear operation V × V → V
that is skew-symmetric and satisfies the Jacobi identity:

For all u, v ,w ∈ V , we have [v , u] = −[u, v ] and

[ u, [v ,w ] ] + [ v , [w , u] ] + [w , [u, v ] ] = 0.

Define a Lie algebra on the basis vectors:

[ei , ej ] = aij1e1 + aij2e2 + aij3e3 + aij4e4.

Since [ei , ej ] = −[ej , ei ], we have aiik = 0 and ajik = −aijk .

Thus a Lie algebra structure on V is encoded by the

24 structure constants aijk

where 1 ≤ i < j ≤ 4 and k = 1, 2, 3, 4.
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Our Variety

Fix the projective space P23 with coordinates

A =




a121 a131 a141 a231 a241 a341
a122 a132 a142 a232 a242 a342
a123 a133 a143 a233 a243 a343
a124 a134 a144 a234 a244 a344


 .

Let Lie4 be the subvariety whose points are the Lie algebra
structures on C4. This is defined by 16 quadratic equations.

The 16 quadrics in the aijk are found by substituting

[ei , ej ] = aij1e1 + aij2e2 + aij3e3 + aij4e4.

into the Jacobi identify

[ ei , [ej , ek ] ] + [ ej , [ek , ei ] ] + [ ek , [ei , ej ] ] = 0.



16 Quadrics

The variety Lie4 ⊂ P23 is defined by 16 quadrics in 24 unknowns.

Here are the equations we wish to solve:

Last login: Fri Sep 23 18:14:16 on ttys000
bernd@C02FP03CML87 ~ % cd
bernd@C02FP03CML87 ~ % cd Desktop
bernd@C02FP03CML87 Desktop % cd 2022
bernd@C02FP03CML87 2022 % cp talk.tex ~/Desktop/dada
cp: talk.tex: No such file or directory
bernd@C02FP03CML87 2022 % cd svala
bernd@C02FP03CML87 svala % cp talk.tex ~/Desktop/dada
bernd@C02FP03CML87 svala % cd
bernd@C02FP03CML87 ~ % cd Desktop
bernd@C02FP03CML87 Desktop % emacs dada

bernd@C02FP03CML87 Desktop % !e
emacs dada
bernd@C02FP03CML87 Desktop % !e
emacs dada

File Edit Options Buffers Tools Help                                                                         

 I = ideal(
  -a121*a133-a122*a233+a123*a131+a123*a232+a124*a343-a134*a243+a143*a234,
  -a121*a144-a122*a244-a123*a344+a124*a141+a124*a242+a134*a243-a143*a234,
  a121*a242-a122*a241-a123*a341+a131*a243+a141*a244-a143*a231-a144*a241,
  -a121*a142+a122*a141-a123*a342+a132*a243+a142*a244-a143*a232-a144*a242,
  -a121*a132+a122*a131+a124*a342+a132*a233-a133*a232-a134*a242+a142*a234,
   a121*a232-a122*a231+a124*a341+a131*a233-a133*a231-a134*a241+a141*a234,
   a121*a342+a131*a343-a132*a241-a133*a341+a141*a344+a142*a231-a144*a341,
   -a122*a341+a132*a241-a142*a231+a232*a343-a233*a342+a242*a344-a244*a342,
   a123*a342-a131*a143-a132*a243+a133*a141+a142*a233+a143*a344-a144*a343,
   -a123*a341+a133*a241-a143*a231-a232*a243+a233*a242+a243*a344-a244*a343,
   a124*a342-a131*a144-a132*a244-a133*a344+a134*a141+a134*a343+a142*a234,
  -a124*a341+a134*a241-a144*a231-a232*a244-a233*a344+a234*a242+a234*a343,
  -a121*a143-a122*a243+a123*a141+a123*a242-a123*a343+a133*a243-a143*a233+a143*a244-a144*a243,
  -a121*a134-a122*a234+a124*a131+a124*a232+a124*a344-a133*a234+a134*a233-a134*a244+a144*a234,
  -a121*a341+a131*a241-a141*a231+a231*a242+a231*a343-a232*a241-a233*a341+a241*a344-a244*a341,
  a122*a342-a131*a142+a132*a141-a132*a242+a132*a343-a133*a342+a142*a232+a142*a344-a144*a342);

-UU-:----F1  dada           All L1     (Fundamental) --------------------------------------------------------

Each solution is one Lie algebra.



Theoretical Mathematics

Dimension 11, Degree 1033, Four Components
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ON THE VARIETY OF FOUR DIMENSIONAL LIE ALGEBRAS

LAURENT MANIVEL

Abstract. Lie algebras of dimension n are defined by their structure con-
stants, which can be seen as sets of N = n2(n − 1)/2 scalars (if we take into
account the skew-symmetry condition) to which the Jacobi identity imposes
certain quadratic conditions. Up to rescaling, we can consider such a set as
a point in the projective space PN−1. Suppose n =4, hence N = 24. Take
a random subspace of dimension 12 in P23, over the complex numbers. We
prove that this subspace will contain exactly 1033 points giving the structure
constants of some four dimensional Lie algebras. Among those, 660 will be
isomorphic to gl2, 195 will be the sum of two copies of the Lie algebra of one
dimensional affine transformations, 121 will have an abelian, three-dimensional
derived algebra, and 57 will have for derived algebra the three dimensional
Heisenberg algebra. This answers a question of Kirillov and Neretin.

1. The variety of Lie algebras

A Lie algebra structure on a k-vector space Vn of finite dimension n is given by
a Lie bracket, which can be considered as a linear map from ∧2Vn to Vn, that we
will denote by ω:

ω(X ∧ Y ) = [X, Y ] ∀X, Y ∈ Vn.

A Lie bracket needs to verify the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X ] + [[Z, X ], Y ] = 0 ∀X, Y, Z ∈ Vn.

The left hand side of this identity is skew-symmetric in the three arguments, and
what is required in terms of ω is the vanishing of the map Jacobi(ω) from ∧3Vn

obtained as the composition

∧3Vn ↪→ ∧2Vn ⊗ Vn
ω⊗id−→ Vn ⊗ Vn −→ ∧2Vn

ω−→ Vn.

The variety of n-dimensional Lie algebras is

Lien = {ω ∈ Hom(∧2Vn, Vn), Jacobi(ω) = 0}.

Of course this is a cone, with vertex the point defining the abelian Lie algebra abn.
So we do not loose much information by considering instead the projective variety
PLien. This is a projective variety defined by a collection of quadratic equations,
invariant under the natural action of GL(Vn). So it is natural to ask:

(1) What are the irreducible components of PLien?
(2) What is the dimension, the degree, more generally the geometry of each

component?
(3) What is the Lie algebra parametrized by the generic point of each compo-

nent?

Date: February 2015.
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Svala Sverrisdóttir

My name is Svala Sverrisdóttir and I will be starting as a
first-year PhD student at UC Berkeley in the fall. My current
mathematical interests lie in the realms of combinatorics and
algebraic geometry and even though my PhD research topic
is not yet decided I am hoping my work will lie at the
interface of these two areas. This summer, I am visiting the
nonlinear algebra group at the MPI and working on a project
about nilpotent 7-dimensional Lie algebras.
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Svala’s First Experiment

Last login: Fri Sep 23 18:14:16 on ttys000
bernd@C02FP03CML87 ~ % cd
bernd@C02FP03CML87 ~ % cd Desktop
bernd@C02FP03CML87 Desktop % cd 2022
bernd@C02FP03CML87 2022 % cp talk.tex ~/Desktop/dada
cp: talk.tex: No such file or directory
bernd@C02FP03CML87 2022 % cd svala
bernd@C02FP03CML87 svala % cp talk.tex ~/Desktop/dada
bernd@C02FP03CML87 svala % cd
bernd@C02FP03CML87 ~ % cd Desktop
bernd@C02FP03CML87 Desktop % emacs dada

bernd@C02FP03CML87 Desktop % !e
emacs dada
bernd@C02FP03CML87 Desktop % !e
emacs dada

File Edit Options Buffers Tools Help                                                                         

 I = ideal(
  -a121*a133-a122*a233+a123*a131+a123*a232+a124*a343-a134*a243+a143*a234,
  -a121*a144-a122*a244-a123*a344+a124*a141+a124*a242+a134*a243-a143*a234,
  a121*a242-a122*a241-a123*a341+a131*a243+a141*a244-a143*a231-a144*a241,
  -a121*a142+a122*a141-a123*a342+a132*a243+a142*a244-a143*a232-a144*a242,
  -a121*a132+a122*a131+a124*a342+a132*a233-a133*a232-a134*a242+a142*a234,
   a121*a232-a122*a231+a124*a341+a131*a233-a133*a231-a134*a241+a141*a234,
   a121*a342+a131*a343-a132*a241-a133*a341+a141*a344+a142*a231-a144*a341,
   -a122*a341+a132*a241-a142*a231+a232*a343-a233*a342+a242*a344-a244*a342,
   a123*a342-a131*a143-a132*a243+a133*a141+a142*a233+a143*a344-a144*a343,
   -a123*a341+a133*a241-a143*a231-a232*a243+a233*a242+a243*a344-a244*a343,
   a124*a342-a131*a144-a132*a244-a133*a344+a134*a141+a134*a343+a142*a234,
  -a124*a341+a134*a241-a144*a231-a232*a244-a233*a344+a234*a242+a234*a343,
  -a121*a143-a122*a243+a123*a141+a123*a242-a123*a343+a133*a243-a143*a233+a143*a244-a144*a243,
  -a121*a134-a122*a234+a124*a131+a124*a232+a124*a344-a133*a234+a134*a233-a134*a244+a144*a234,
  -a121*a341+a131*a241-a141*a231+a231*a242+a231*a343-a232*a241-a233*a341+a241*a344-a244*a341,
  a122*a342-a131*a142+a132*a141-a132*a242+a132*a343-a133*a342+a142*a232+a142*a344-a144*a342);

-UU-:----F1  dada           All L1     (Fundamental) --------------------------------------------------------

She ran HomotopyContinuation.jl on the 16 quadrics,
augmented by some random linear equations, and she found

Dimension 11, Degree 832

Manivel had proved Degree 1033.
How to explain this?



Why Do We Care?

A. Kirillov and Y. Neretin:
The variety An of structures of n-dimensional Lie algebras,
American Mathematical Society Translations 137 (1987).



Our Results

Theorem
The variety Lie4 has four irreducible components C1,C2,C3,C4

in the ambient space P23. Each of these components has
dimension 11. Their degrees are 55, 361, 121, 295.

[Manivel ’16] had reported 660, 57, 121, 195.

Theorem
The ideal IC1 is generated by 4 linear forms, 10 quadrics, 20 cubics.
The ideal IC2 is generated by 16 quadrics and 44 cubics, IC3 is
generated by 26 quadrics and 40 cubics, and IC4 is generated by 16
quadrics, 60 cubics. The Hilbert polynomials of the varieties are

HilbC1 = 55 [P11] − 120 [P10] + 86 [P9] − 20 [P8],
HilbC2 = 361 [P11] − 1184 [P10] + 1526 [P9] − 964 [P8] + 298 [P7]− 36 [P6],
HilbC3 = 121 [P11] − 284 [P10] + 220 [P9] − 56 [P8],
HilbC4 = |!295 [P11] − 920 [P10] + 1114 [P9] − 652 [P8] + 184 [P7]− 20 [P6].

Here [Pd ] is the polynomial n 7→
(
n+d
d

)
.
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Changing Bases
Two Lie algebra structures on C4 are isomorphic if they
are in the same orbit under the action of G = GL(4,C).
We write the G -action by matrix multiplication:

G × C[A] → C[A], (g ,A) 7→ g−1 · A · ∧2(g).

The entries of the 6×6 matrix ∧2(g) are the 2×2 minors of g .

The induced Z4-grading of the polynomial ring C[A] equals

deg(aijk) = ei + ej − ek .

Space of linear forms decomposes into two irreducible representations:

C[A]1 = S(1,0,0,0)(C4) ⊕ S(1,1,0,−1)(C4) ≃ C4 ⊕ C20.

The two G -invariant subspaces are

C
{
a122 + a133 + a144,−a121+a233+a244,−a131−a232+a344,−a141−a242−a343

}
,

C
{
a124, a123, a132, a134, a142, a143, a231, a234, a241, a243, a341, a342, a122−a133,

a133−a144, a121+a233, a233−a244, a131−a232, a232+a344, a141−a242, a242−a343
}
.
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Sixteen Quadrics
The 16 Jacobi quadrics form a 4× 4 matrix Θ = (θij). The
columns are labeled e4, e3, e2, e1, and the rows are labeled
123,−124, 134,−234. For instance, the second row of Θ is

− [e1, [e2, e4]]− [e2, [e4, e1]]− [e4, [e1, e2]] = θ21e4+θ22e3+θ23e2+θ24e1

θ21 = a121a144−a124a141+a143a234−a124a242−a134a243+a122a244+a123a344.

Our matrix represents

Θ : ∧3C4 ↪→ ∧2C4 ⊗ C4 → C4 ⊗ C4 → ∧2C4 → C4.

Second and fourth map are Lie algebra multiplication, given by
our 4× 6 matrix A. The Jacobi identity states that Θ = 0.

The space C[A]2 ≃ C300 breaks into eight irreducibles, including

S(1,1,1,−1)(C4) = C{entries of Θ + ΘT} ≃ C10 and

S(1,1,0,0)(C4) = C{entries of Θ−ΘT} ≃ C6.

Highest weight vectors are θ11 and θ12 − θ21.

G = GL(4,C) acts by congruence: Θ 7→ gTΘg .
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Lie Theory

The four components of Lie4:

C1 : The Lie algebra gl2 of the general linear group GL(2,C).
Its derived algebra is sl2.

C2 : Lie algebras whose derived algebra is the
Heisenberg algebra he3, of dimension 3.

C3 : Lie algebras whose derived algebra
is abelian and 3-dimensional.

C4 : The Lie algebra 2aff2. Its derived algebra
is abelian and 2-dimensional.

The derived algebra of a Lie algebra is generated by all
commutators. As a subspace of C4, the derived algebra is the
image of our 4× 6 matrix A. Hence the 4× 4-minors of A vanish
on all components, while the 3× 3-minors of A vanish only on C4.



Parametrization

Representatives for the four components:

A1 =




0 0 0 0 0 0
1 0 0 0 −2 0
0 −1 0 0 0 2
0 0 0 1 0 0


 , A2 =




0 0 0 0 0 0
2 0 0 0 0 1
0 1 1 0 0 0
0 x 1 0 0 0


 ,

A3 =




0 0 0 0 0 0
1 0 0 0 0 0
0 x 0 0 0 0
0 0 y 0 0 0


 , A4 =




1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


 .

Each variety Ci is rational. Namely, Ci is the closure of the
G -orbit of Ai where x and y range over C. For instance,

C2 = closure of
{
g−1 · A2(x) · ∧2(g) : x ∈ C, g ∈ G

}
⊂ P23.

Can’t we just use implicitization to compute the prime ideal ICi
?
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 ,

A3 =




0 0 0 0 0 0
1 0 0 0 0 0
0 x 0 0 0 0
0 0 y 0 0 0


 , A4 =




1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


 .

Each variety Ci is rational. Namely, Ci is the closure of the
G -orbit of Ai where x and y range over C. For instance,

C2 = closure of
{
g−1 · A2(x) · ∧2(g) : x ∈ C, g ∈ G

}
⊂ P23.

Can’t we just use implicitization to compute the prime ideal ICi
?
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Resolution of Singularities

The key idea (also in Manivel ’16) is to linearize the Jacobi identity.

[R. Basili: Resolutions of singularities of varieties of Lie algebras

of dimensions 3 and 4, Journal of Lie Theory 12 (2002)]

Example: For C2 we use A = ∧2g · B · det(g) · g−1, where

g =



1 f1 f2 f3
0 1 0 f4
0 0 1 f5
0 0 0 1


 and B =



0 0 0 0 0 0
k1 k2 0 0 0 0
k3 k4 0 0 0 0
k5 k6 k1+k4 m 0 0


.



Algebraic Geometry

The key idea (also in Manivel ’16) is to linearize the Jacobi identity.

Example: For C2 we use A = ∧2g · B · det(g) · g−1, where

g =



1 f1 f2 f3
0 1 0 f4
0 0 1 f5
0 0 0 1


 and B =



0 0 0 0 0 0
k1 k2 0 0 0 0
k3 k4 0 0 0 0
k5 k6 k1+k4 m 0 0


.

The fi are local coordinates on the flag variety Fl(1, 3,C4). The
flag amounts to inclusion of the second derived algebra, spanned by
the last column of g , into the derived algebra, which is spanned by
the last three columns of g . The matrix B is linear in k1, . . . , k6,m.
It defines a rank seven vector bundle F over Fl(1, 3,C4), and we
have image(B) ≃ h3. The projective bundle P(F ) is a nonsingular
variety of dimension 11 = 6 + 5 that maps birationally onto C2.

[R. Basili: Resolutions of singularities of varieties of Lie algebras

of dimensions 3 and 4, Journal of Lie Theory 12 (2002)]



Say it again for Macaulay2

“The projective bundle P(F ) ... maps birationally onto C2”

Last login: Sat Sep 24 09:08:47 on ttys000
bernd@C02FP03CML87 ~ % cd Desktop
bernd@C02FP03CML87 Desktop % cat dodo

R = QQ[f1,f2,f3,f4,f5,k1,k2,k3,k4,k5,k6,m, a121,a122,a123,a124,
   a131,a132,a133,a134,a141,a142,a143,a144,a231,a232,a233,a234,
   a241,a242,a243,a244,a341,a342,a343,a344, MonomialOrder => Eliminate 12];
I = ideal(a121-f1*f4*k5-f2*f5*k5+f1*k1+f2*k3+f3*k5, a122+f4*k5-k1, a132+f4*k6-k2, 
a142+f4^2*k5+f4*f5*k6+f4*k4-f5*k2, a232+f1*f4*k6-f2*f4*k5-f1*k2+f2*k1+f4*m, 
a242+f1*f4^2*k5+f1*f4*f5*k6+f1*f4*k4-f1*f5*k2-f3*f4*k5+f4*f5*m+f3*k1,
a342+f2*f4^2*k5+f2*f4*f5*k6+f2*f4*k4-f2*f5*k2-f3*f4*k6-f4^2*m+f3*k2,
a123+f5*k5-k3,  a133+f5*k6-k4, a143+f4*f5*k5+f5^2*k6-f4*k3+f5*k1,
a131-f1*f4*k6-f2*f5*k6+f1*k2+f2*k4+f3*k6, a233+f1*f5*k6-f2*f5*k5-f1*k4+f2*k3+f5*m,
a243+f1*f4*f5*k5+f1*f5^2*k6-f1*f4*k3+f1*f5*k1-f3*f5*k5+f5^2*m+f3*k3,
a343+f2*f4*f5*k5+f2*f5^2*k6-f2*f4*k3+f2*f5*k1-f3*f5*k6-f4*f5*m+f3*k4,
a144-f4*k5-f5*k6-k1-k4, a244-f1*f4*k5-f1*f5*k6-f1*k1-f1*k4+f3*k5-f5*m,  
a234-f1*k6+f2*k5-m, a344-f2*f4*k5-f2*f5*k6-f2*k1-f2*k4+f3*k6+f4*m,
a141-f1*f4^2*k5-f1*f4*f5*k6-f2*f4*f5*k5-f2*f5^2*k6 -f1*f4*k4+f1*f5*k2+f2*f4*k3
        -f2*f5*k1+f3*f4*k5+f3*f5*k6+f3*k1+f3*k4,
a231-f1^2*f4*k6+f1*f2*f4*k5-f1*f2*f5*k6+f2^2*f5*k5+f1^2*k2-f1*f2*k1
    +f1*f2*k4+f1*f3*k6-f1*f4*m-f2^2*k3-f2*f3*k5-f2*f5*m+f3*m, a124-k5, a134-k6,
a241-f1^2*f4^2*k5-f1^2*f4*f5*k6-f1*f2*f4*f5*k5-f1*f2*f5^2*k6-f1^2*f4*k4+f1^2*f5*k2
    +f1*f2*f4*k3-f1*f2*f5*k1+2*f1*f3*f4*k5+f1*f3*f5*k6-f1*f4*f5*m+f2*f3*f5*k5
    -f2*f5^2*m+f1*f3*k4-f2*f3*k3-f3^2*k5+f3*f5*m,
a341-f1*f2*f4^2*k5-f1*f2*f4*f5*k6-f2^2*f4*f5*k5-f2^2*f5^2*k6-f1*f2*f4*k4
    +f1*f2*f5*k2+f1*f3*f4*k6+f1*f4^2*m+f2^2*f4*k3-f2^2*f5*k1+f2*f3*f4*k5
    +2*f2*f3*f5*k6+f2*f4*f5*m-f1*f3*k2+f2*f3*k1-f3^2*k6-f3*f4*m);
C2 = ideal selectInSubring( 1, gens gb(I) )
codim C2, degree C2, betti mingens C2

bernd@C02FP03CML87 Desktop % 



Not Radical

Corollary

The radical ideal of Lie4 is minimally generated by 16 quadrics
and 15 quartics. The quadrics are the entries of the matrix Θ,
and the quartics are the 4× 4 minors of the matrix A.
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Laurent Manivel, Bernd Sturmfels and Svala Sverrisdó!r: Four-Dimensional Lie Algebras Revisited
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four irreducible components of dimension 11. We compute their prime ideals in the polynomial ring
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Verifications of Theorems 1 and 2

We used Macaulay2"  (version 1.20) to verify Theorems 1 and 2 from the paper.
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# minimalPrimes C4;
radical C4 == C4

Since we get the output 1 and true we see that  is prime. Finally we take the intersec#on of
these components to get the radical ideal of  and calculate its dimension, degree and Be!
numbers.

In the file # C2 prime we verify that our ideal for  is prime. We do this by represen#ng the
bira#onal parametriza#on of  men#oned in Sec#on 5 of our paper.
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What is a Polynomial?

4 Polynomials: Explicit versus Invariant

We now examine our ideal generators through the lens of the G-action. We identify the Schur
modules S�(C4) that generate the ideals ICi

, and we identify polynomials that serve as highest
weight vectors. The space C[A]2 ' C300 decomposes into five isotypical components:

� (3, 1,�1,�1) (2, 1, 0,�1) (2, 0, 0, 0) (1, 1, 1,�1) (1, 1, 0, 0)
dim 126 64 10 10 6
mult 1 2 2 2 1

The last two columns were seen already in (5). The space of cubics C[A]3 ' C2600 decomposes
into 11 isotypical components. We display the four components that are relevant for us:

� (2, 1, 1,�1) (3, 0, 0, 0) (2, 1, 0, 0) (1, 1, 1, 0) · · ·
dim 36 20 20 4 · · ·
mult 5 3 4 3 · · ·

One ingredient in an invariant description of these G-modules is the adjoint ad(u) of an
element u in our Lie algebra. This is the endomorphism C4 ! C4 given by v 7! [u, v]. For
any index i 2 {1, 2, 3, 4}, the adjoint of ei is represented by the 4 ⇥ 4 matrix (aijk)1j,k4.
The traces of the matrices ad(ei) are the four linear forms that span S(1,0,0,0)(C4) ⇢ IC1 . To
be explicit, ad(e1) is obtained by prepending a zero column to the left three columns of A.

We begin with the module S(3,0,0,0)(C4). This has dimension 20 and occurs with multi-
plicity three in the space of cubics C[A]3. A highest weight vector for one embedding is

f3000 = a3
122 � a2

122a133 � a2
122a144 + 4a122a123a132 + 4a122a124a142 � a122a

2
133 + 2a122a133a144

�4a122a134a143 � a122a
2
144 + 4a123a132a133 � 4a123a132a144 + 8a123a134a142 + 8a124a132a143

�4a124a133a142+4a124a142a144+a3
133�a2

133a144+4a133a134a143 � a133a
2
144+4a134a143a144+a3

144.

This module generates the ideal IC1 , together with the linear forms and quadrics seen in
Theorem 2. The module Gf3000 is also contained in IC2 . But this ideal has 24 additional
cubic generators. These additional cubics for C2 are given by two irreducible G-modules:

S(2,1,0,0)(C4) � S(1,1,1,0)(C4) ' C20 � C4.

The highest weight vectors for these two irreducible G-modules in C[A]3 are

trace
�
ad(e1) · ad(e2) · ad(e3)

�
� trace

�
ad(e2) · ad(e1) · ad(e3)

�

and trace
�
ad(e1)

�
· trace

�
ad(e1) · ad(e2)

�
� trace

�
ad(e2)

�
· trace

�
ad(e1)

2
�
.

These are cubic polynomials in the 24 unknowns aijk, having 51 and 39 terms respectively.
We also consider the trace of the third power of the adjoint of e1. This is the cubic

g3000 = trace
�
ad(e1)

3
�

= a3
122 + a3

133 + a3
144 + 3(a122a123a132 + a122a124a142 + a123a132a133

+ a123a134a142 + a124a132a143 + a124a142a144 + a133a134a143 + a134a143a144).

This is the highest weight vector of another embedding of S(3,0,0,0)(C4) into IC1 . This G-
module can also serve to generate IC1 . We note that g3000 � f3000 lies in the ideal generated
by the four linear forms in IC1 . However, unlike f3000, the cubic g3000 does not lie in IC2 .
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Intersection Theory

5 From Vector Bundles to Degrees

The approach in [7] is based on desingularization of each component Ci, following Basili [1].
The key idea is to linearize the Jacobi identity, i.e. to express (2) by linear equations in A
over a variety derived from GL(4, C). This yields alternative parametrizations which allow
for the computation of degrees using Chern classes. We now correctly derive the numbers
in Theorem 1 by this method. In what follows we present this for C2 and then for C1. The
derivation for C4 is similar to that for C2, and that for C3 was correct in [7, Section 3.3].

The linearized parametrization for C2 was shown in the Macaulay2 code in the proof of
Theorem 2. It is given by a vector bundle F of rank 7 over the 5-dimensional flag variety
Fl(1, 3, C4). The degree of C2 in P23 is computed using Chern classes and Segre classes:

deg(C2) =

Z

C2

c1(O(1))11 =

Z

P(F )

c1(OF (1))11 =

Z

Fl(1,3,V )

s5(F ). (9)

From now set V = C4. The pair (L, U) 2 Fl(1, 3, V ) gives the second and first derived alge-
bra. We compute the Segre class in (9), as in [7, Section 3.2]. This uses the exact sequence

0 �! K ' Hom(V/U, End0
L(U)) �! F �! M = Hom(^2(U/L), L) �! 0.

Here, M is a line bundle and K is a rank six vector bundle. Note the matching parameters m
and k1, k2, k3, k4, k5, k6 in the proof of Theorem 2. The kernel K fits into the exact sequence

0 �! K �! Hom
�
V/U, End(U)

�
�! Hom

�
V/U, Hom(L, U)

�
�! 0.

From the convention that the Segre class and Chern class are inverse to each other we get

s(F ) = s(M) · s(K) = s(M) · s
�
Hom(V/U, End(U)) · c(Hom(V/U, Hom(L, U)

�
. (10)

This is a rational generating function s(x, y) in x = �c1(L) and y = �c1(U) = c1(V/U).
These classes satisfy x4 = y4 = 0 because they are induced from P(V ) and P(V _) respectively.

Let s5(x, y) denote the component of degree 5 in s(x, y). We need to integrate it on the
flag variety. Since Fl(1, 3, V ) is a divisor of type (1, 1) in P(V ) ⇥ P(V _), we can write

deg(C2) =

Z

F (1,3,V )

s5(F ) =

Z

P(V )⇥P(V _)

(x + y)s5(x, y).

This says that the desired degree is the coe�cient of x3y3 in the polynomial (x + y)s5(x, y).
To find s(x, y) we compute the three factors on the right of (10). Since M is a line bundle,

we have s(M) = 1/(1 + y � 2x). The second factor is pulled back from P(V _). We obtain

s
�
Hom(V/U, End(U))

�
=

(1 � 2y)4

(1 � y)17
.

A twist of the tautological sequence from P(V _) finally gives

c
�
Hom(V/U, Hom(L, U))

�
=

(1 + x � y)4

1 + x
.
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Conclusion: 55+361+121+295 = 832

Read the math literature !!!

Never trust anything just because it’s published

Check carefully using computational tools

.... like HomotopyContinuation.jl


