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Lie Algebras

Fix the vector space V = C* with standard basis {e;, €, e3, 1 }.

A Lie algebra structure is a bilinear operation V x V — V
that is skew-symmetric and satisfies the Jacobi identity:

For all u,v,w € V, we have [v,u] = —[u,v] and
[u,[viw]] + [v,[w,u]] + [w,[u,v]] = 0.



Lie Algebras

Fix the vector space V = C* with standard basis {e;, €, e3, 1 }.

A Lie algebra structure is a bilinear operation V x V — V
that is skew-symmetric and satisfies the Jacobi identity:

For all u,v,w € V, we have [v,u] = —[u,v] and
[u,[viw]] + [v,[w,u]] + [w,[u,v]] = 0.

Define a Lie algebra on the basis vectors:
[e,-, ej] = ajj1€e1 + ajjpe + ajjze3 + ajjses.

Since [e;, ¢j] = —[ej, ei], we have aj = 0 and ajix = —ajjk.

Thus a Lie algebra structure on V is encoded by the
24 structure constants ajj

wherel <i<j<4andk=1,234.



Our Variety

Fix the projective space P>> with coordinates

4121 4131 4141 4231 d241 4341
A 4122 8132 4142 4232 d242 4342
4123 d133 d143 4233 d243 4343
d124 4134 4144 dA234 4244 d344

Let Lieg be the subvariety whose points are the Lie algebra
structures on C*. This is defined by 16 quadratic equations.

The 16 quadrics in the ajj are found by substituting
ler, )] = ajier +ajpoer + ajzes + ajjaes.
into the Jacobi identify

[ei[ej, ex]] + [e[ex,e]] + [ex[ei,g]] = 0.



16 Quadrics

The variety Lieg C P?3 is defined by 16 quadrics in 24 unknowns.

Here are the equations we wish to solve:

I = ideal(
—al2lxal33-al22xa233+al23*al31l+al23*a232+al24*xa343—-al34xa243+ald3*a234,
—-al21xald4-al22xa244-al23*a344+al24xaldl+al24xa242+al34*a243-al43xa234,
al21xa242-al22*a241-al23*a341+al31*a243+ald1l*xa244-ald3+xa231-ald4xa241,
—-al21xald2+al22xaldl-al23+*a342+al32xa243+ald2xa244-ald3xa232-alddxa242,
—al21xal32+al22+*al3l+al24xa342+al32*a233-al33*a232-al34xa242+ald2*a234,
al21xa232-al22xa231+al24*a341+al31*a233-al33*a231-al34*xa241+aldl*a234,
al21xa342+al31*a343-al32*a241-al33*a341+ald1xa344+ald2*xa231-ald4xa341,
—al22xa341+al32xa241-ald2*a231+a232xa343-a233*a342+a242*a344-a244xa342,
al23xa342-al31xald3-al32xa243+al33*aldl+ald2xa233+ald3*a344-aldd*a343,
—al23xa341+al33*a241-ald3*a231-a232xa243+a233*a242+a243*a344-a244xa343,
al24xa342-al31+aldd-al32xa244-al33*xa344+al34*aldl+all4xa343+ald2*a234,
—al24xa341+all34xa241-aldd*a231-a232xa244-a233*a344+a234*a242+a234xa343,
—al21xald3-al22xa243+al23*aldl+al23*a242-al23xa343+al33*a243-ald3*a233+ald3xa244-ald4xa243,
—-al21xal34-al22xa234+al24*al3l+al24xa232+al24*a344-al33*a234+al34xa233-al34*xa244+aldd*a234,
—al21xa341+al31*a241-aldlxa231+a231*xa242+a231*a343-a232xa241-a233*a341+a241+xa344-a244xa341,
al22xa342-al31xald2+al32xaldl-al32*a242+al32xa343-al33*a342+ald2*a232+ald2xa344-ald4xa342) ;

Each solution is one Lie algebra.



Theoretical Mathematics
Dimension 11, Degree 1033, Four Components
ON THE VARIETY OF FOUR DIMENSIONAL LIE ALGEBRAS

LAURENT MANIVEL

ABSTRACT. Lie algebras of dimension n are defined by their structure con-
stants, which can be seen as sets of N = n?(n — 1)/2 scalars (if we take into
account the skew-symmetry condition) to which the Jacobi identity imposes
certain quadratic conditions. Up to rescaling, we can consider such a set as
a point in the projective space PN ~1. Suppose n =4, hence N = 24. Take
a random subspace of dimension 12 in P23, over the complex numbers. We
prove that this subspace will contain exactly 1033 points giving the structure
constants of some four dimensional Lie algebras. Among those, 660 will be
isomorphic to gly, 195 will be the sum of two copies of the Lie algebra of one
dimensional affine transformations, 121 will have an abelian, three-dimensional
derived algebra, and 57 will have for derived algebra the three dimensional
Heisenberg algebra. This answers a question of Kirillov and Neretin.

Journal of Lie Theory 26 (2016) 1-10



Nonlinear Algebra People

My name is Svala Sverrisdéttir and | will be starting as a
first-year PhD student at UC Berkeley in the fall. My current
mathematical interests lie in the realms of combinatorics and
algebraic geometry and even though my PhD research topic
is not yet decided | am hoping my work will lie at the
interface of these two areas. This summer, | am visiting the
nonlinear algebra group at the MPI and working on a project
about nilpotent 7-dimensional Lie algebras.

Svala Sverrisdottir

July 14, 2022



Svala’s First Experiment

I = ideal(
-al21*al33-al22+a233+al23xal3l+al23+«a232+al24*a343-al34*a243+ald3*a234,
-al21*al44-al22xa244-al23*a344+al24xaldl+al24+a242+al34*a243-al43+a234,
al2lxa242-al22+a241-al23+a341+al31*a243+al41xa244-ald3*a231-al44xa241,
—al2l*ald2+al22xal4l-al23*a342+al32+a243+ald2xa244-ald3+a232-ald44xa242,
—al2l*al32+al22xal3l+al24*a342+al32+a233-al33*a232-al34+a242+ald2+«a234,
al21xa232-al22+a231+al24*xa341+al31+a233-al33*a231-al34xa241+ald1*a234,
al2lxa342+al3lxa343-al32+xa241-al33+a341+aldl¥a344+ald2«a231-ald4+a341,
—-al22+a341+al32+a241-ald2+a231+a232+a343-a233+a342+a242*a344-a244xa342,
al23*xa342-al31xald3-al32*xa243+al33+aldl+ald2*+a233+ald3+a344-aldd*a343,
-al23*a341+al33+«a241-ald3+a231-a232+a243+a233*a242+a243*a344-a244*a343,
al24xa342-al31+al4d-al32*xa244-al33*a344+al34+aldl+al34+a343+ald2+«a234,
-al24*a341+al34+a241-ald4xa231-a232+a244-a233*a344+a234*a242+a234*a343,
—-al2l*ald3-al22xa243+al23*aldl+al23+a242-al23*a343+al33+a243-al43xa233+ald3*a244-al44xa243,
—al2l*al34-al22xa234+al24*al3l+al24+a232+al24*a344-al33+a234+al34xa233-al34+a244+aldd+a234,
-al21*xa341+al31xa241-al41*xa231+a231xa242+a231*a343-a232xa241-a233+a341+a241xa344-a244+a341,
al22¥a342-al3lxald2+al32+aldl-al32+a242+al32+a343-al33+a342+al42+a232+ald2+a344-ald4*a342) ;

She ran HomotopyContinuation.jl on the 16 quadrics,
augmented by some random linear equations, and she found

Dimension 11, Degree 832

Manivel had proved Degree 1033.
How to explain this?



Why Do We Care?

A. Kirillov and Y. Neretin:
The variety A, of structures of n-dimensional Lie algebras,
American Mathematical Society Translations 137 (1987).

A description of the variety of these structures even for small dimensions would
be of great interest, since the Lie superalgebras are more and more frequently
finding applications in current research, both in mathematics and in mathemat-
ical physics. Only the very first steps have been made in this direction.(*)

The problem remains unsolved of computing the degrees of the irreducible
components slk) for n > 4. For example, for n = 4 all four components Aslk)
have the same dimension. Therefore the answer to the question of what is the
“typical” 4-dimensional Lie algebra depends on the degrees of these components.

Attempts to compute the Hilbert polynomial for these varieties by the meth-
ods of representation theory have so far not produced any result.



Our Results

Theorem

The variety Liegq has four irreducible components C1, G, C3, (4
in the ambient space P?3. Each of these components has
dimension 11. Their degrees are 55,361,121, 295.

[Manivel '16] had reported 660, 57,121, 195.



Our Results

Theorem

The variety Lies has four irreducible components Cy, G, C3, (4
in the ambient space P?3. Each of these components has
dimension 11. Their degrees are 55,361,121, 295.

Theorem

[Manivel '16] had reported 660, 57,121, 195.

The ideal Ic, is generated by 4 linear forms, 10 quadrics, 20 cubics.
The ideal Ic, is generated by 16 quadrics and 44 cubics, Ic, is
generated by 26 quadrics and 40 cubics, and Ic, is generated by 16
quadrics,

Hilbc,
Hilbg,
Hilbg,
Hilbe,

60 cubics. The Hilbert polynomials of the varieties are

55 [P] — 120 [P'°] + 86 [P?] — 20 [P?],
361 [P!!] — 1184 [P'0] + 1526 [P°] — 964 [P8] + 298 [P7] — 36 [P9],
121 [P'] — 284 [P*0] + 220 [P°] — 56 [P?],

295 [P1] — 920 [P10] + 1114[P°] — 652 [P®] + 184 [P7] — 20 [P°].

Here [P9] is the polynomial n <,7;d)'
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Four-Dimensional Lie Algebras Revisited

This page contains auxiliary files to the paper:
Laurent Manivel, Bernd Sturmfels and Svala Sverrisdéttir: Four-Dimensional Lie Algebras Revisited
ARXIV: http:/arxiv.org/abs/2208.14631 CODE: https:/mathrepo.mis.mpg.de/Lie4

ABSTRACT: The projective variety of Lie algebra structures on a 4-dimensional vector space has
four irreducible components of dimension 11. We compute their prime ideals in the polynomial ring
in 24 variables. By listing their degrees and Hilbert polynomials, we correct an earlier publication
and we answer a 1987 question by Kirillov and Neretin.

Verifications of Theorems 1 and 2

We used Macaulay2  (version 1.20) to verify Theorems 1 and 2 from the paper.

The file & Lie 4 Component includes the explicit generators of the irreducible components
C1, Cs, C3, Cy which are explained in Section 3 of our paper. We calculate the dimension, degree,
Betti numbers and the Hilbert polynomial of each of these component. We also verify that our idels
for C1, C3, C4 are prime. To show that C'; and Cj are prime it is enough to run the isPrime



Changing Bases
Two Lie algebra structures on C* are isomorphic if they
are in the same orbit under the action of G = GL(4,C).
We write the G-action by matrix multiplication:

G x C[A] = C[A], (g,A) — g 1 -A-Aa(g).

The induced Z*-grading of the polynomial ring C[A] equals

deg(a,-jk) = e +te — ek



Changing Bases
Two Lie algebra structures on C* are isomorphic if they
are in the same orbit under the action of G = GL(4,C).
We write the G-action by matrix multiplication:

G x C[A] = C[A], (g,A) — g 1 -A-Aa(g).

The induced Z*-grading of the polynomial ring C[A] equals
deg(a,-jk) = e +te — ek
Space of linear forms decomposes into two irreducible representations:
ClAl: = S1000)(C* & Su10-1)(C* =~ C* & C*.
The two G-invariant subspaces are

C{3122 + 3133 + 3144, —a121+3a233+a244, —3a131—a232+3344, *3141*3242*8343}a

C { d124, d123, 4132, 4134, 9142, d143, d231, 4234, d241, 9243, 4341, 9342, d122—4d133,
a133—a144, a121+a233, 32333244, A131— 3232, 323213344, 3141 — 3242, 3242 —a343 } .



Sixteen Quadrics

The 16 Jacobi quadrics form a 4 x 4 matrix © = (0;;). The
columns are labeled ¢4, €3, e, €1, and the rows are labeled
123, —124,134, —234. For instance, the second row of © is

— [e1, [e2, ea]] — [e2, [ea, e1]] — [es, [e1, e2]] = Or1€a+020e3+02362+024€1

021 = a1213144 — 31243141+ 31433234 — 31243242 — 31343243+ 1223244+ 3123 3344.



Sixteen Quadrics
The 16 Jacobi quadrics form a 4 x 4 matrix © = (0;;). The

columns are labeled ¢4, €3, e, €1, and the rows are labeled
123, —124,134, —234. For instance, the second row of © is

— [e1, [e2, ea]] — [e2, [ea, e1]] — [es, [e1, e2]] = Or1€a+020e3+02362+024€1

021 = a1213144 — 31243141+ 31433234 — 31243242 — 31343243+ 1223244+ 3123 3344.

Our matrix represents
O : A3C* o AC* @ CH > CH e C* = ACH — .

Second and fourth map are Lie algebra multiplication, given by
our 4 x 6 matrix A. The Jacobi identity states that © = 0.



Sixteen Quadrics
The 16 Jacobi quadrics form a 4 x 4 matrix © = (0;;). The
columns are labeled ¢4, €3, e, €1, and the rows are labeled
123, —124,134, —234. For instance, the second row of © is
— [e1,[e2, ea]] — [e2, [es, e1]] — [ea, [e1, &2]] = Oo1e4+02e3+023e2+024€1

021 = a1213144 — 31243141+ 31433234 — 31243242 — 31343243+ 1223244+ 3123 3344.

Our matrix represents

O : A3C* o AC* @ CH > CH e C* = ACH — .
Second and fourth map are Lie algebra multiplication, given by
our 4 x 6 matrix A. The Jacobi identity states that © = 0.

The space C[A]> ~ C3% breaks into eight irreducibles, including
Sa11,-1)(C* = Centriesof ©+©7} ~ C¥  and
S11,00(C*) = Clentriesof ® —07} ~ C°.

Highest weight vectors are 617 and 61, — 02;.
G = GL(4,C) acts by congruence: © — g’0Og.



Lie Theory

The four components of Lies:

G

G

G

Cy

The Lie algebra gl, of the general linear group GL(2, C).
Its derived algebra is sls.

Lie algebras whose derived algebra is the
Heisenberg algebra he;, of dimension 3.
Lie algebras whose derived algebra

is abelian and 3-dimensional.

The Lie algebra 2aff,. Its derived algebra
is abelian and 2-dimensional.

The derived algebra of a Lie algebra is generated by all
commutators. As a subspace of C*#, the derived algebra is the
image of our 4 X 6 matrix A. Hence the 4 X 4-minors of A vanish
on all components, while the 3 x 3-minors of A vanish only on (4.



Parametrization

Representatives for the four components:

0 00 0 0 O]

2 00 0 01

011000
0 x 1 000
100 00O
0 00 O0O0TO
0 00 O0O0TO

0 00 O0O01

0 0 O

1
0

0

-1 0 0

Aq

o O O o

o O O o

o O oo

O O O >

o O X O

o - O o



Parametrization

Representatives for the four components:

0 0 00 0 O 000000
4 — |1 0 00 20 0 1200001
0 -1 00 0 2| 01100 0"
0 0 01 0 0 0 x 1 0 0 0
000000 1 0 0 0 0 0]
gy~ |1 00000 a_ 000000
0 x 000 Of 000000
00y 000 0 0000 1]

Each variety C; is rational. Namely, C; is the closure of the
G-orbit of A; where x and y range over C. For instance,

G = closure of { g7! - Ax(x) - N2(g) : x€C,ge G} C P&,
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GRADUATE STUDIES
IN MATHEMATICS

Invitation to
Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels

Section 1.3: Degree, Hilbert Polynomial
Section 3.2: Primary Decomposition
Section 4.2: Implicitization

Chapter 9: Tensors
Chapter 10: Representation Theory



Resolution of Singularities

The key idea (also in Manivel '16) is to linearize the Jacobi identity.

[R. Basili: Resolutions of singularities of varieties of Lie algebras
of dimensions 3 and 4, Journal of Lie Theory 12 (2002)]

Example: For C; we use A= Apg - B -det(g) - g1, where

O O O o

1 f K £ 00 0 0 0
_lo1 0 # |k kk 0 0 0
§=1o 0 1 | B=1, 4 0o 0 0

0 0 0 1 ks ks kit+ks m O



Algebraic Geometry
The key idea (also in Manivel '16) is to linearize the Jacobi identity.

Example: For C, we use A= Apg - B -det(g) - g1, where

1 i 6 £ 0 0 0 0 00
o1 0 £ |k k 0 0 00
8=1o 0 1 £ ®™B=1| 0 4 0o o0 0 0|

00 0 1 ks ks kitka m 0 0O

The f; are local coordinates on the flag variety FI(1,3,C*). The
flag amounts to inclusion of the second derived algebra, spanned by
the last column of g, into the derived algebra, which is spanned by
the last three columns of g. The matrix B is linear in kq,..., kg, m.
It defines a rank seven vector bundle F over FI(1,3,C#), and we
have image(B) ~ h3. The projective bundle P(F) is a nonsingular
variety of dimension 11 = 6 + 5 that maps birationally onto .

[R. Basili: Resolutions of singularities of varieties of Lie algebras
of dimensions 3 and 4, Journal of Lie Theory 12 (2002)]



Say it again for Macaulay?2

R = QQ[f1,f2,f3,f4,f5,k1,k2,k3,k4,k5,k6,m, al2l,al22,al23,al24,
al3l,al32,al33,al34,al41,al42,al43,al44,a231,a232,a233,a234,
a241,a242,a243,a244,a341,a342,a343,a344, MonomialOrder => Eliminate 12];

I = ideal(al21-flxfaxk5—f2*xf5%xk5+f1kk1+f2xk3+f3%k5, al22+f4xk5-k1, al32+fdxk6-k2,

ald42+f4"2kk5+F4xF5xk6+T4xk4—T5xk2, a232+f1kf4xk6—f2xf4xk5—f1xk2+f2xk1+f4*m,

a242+f 1k f472kk5+ T 1k f Ak F5kk6+T 1k f4kkd—f 1k f5xk2—f 3k f4kk5+F 4k f5xm+13xk1,
a342+12xf472xk5+ 12 f4x F5kk6+T 2k fAkkd—F 2k 5kk2— 3k f4xk6— 4" 2:km+f3%k2,
al123+f5xk5-k3, al33+f5xk6-k4, ald3+f4*xf5xk5+f5°2xk6—T4xk3+f5kxkl,
al131-fLkfaxk6—T2xf5%xk6+T1kk2+12kk4+f3xk6, a233+f1kxf5xk6—T2xf5kk5—f1kk4+f2xk3+f5%m,
a243+f Lk f4xF5kk5+f 1k F5°2kk6—T 1k fAkk3+F Lk 55kk 13 f5%k5+15"2:km+f3%k3,
a343+f2xFAxf5xk5+F 25 2kk6—T 2% f 4k 3+ 2% 5k 1-f 3k F5kk6— T4+ F5xm+T3xk4,
al44—f4xk5-f5xk6-k1-k4, a244—f1xfaxk5—f1xf5xk6—11xk1l-f1xk4+f3xk5—f5%m,
a234-f1xk6+f2xk5-m, a344—f2xfaxk5—F2xf5xk6—f2xk1-f2xk4+f3xk6+f4*m,
al41-f1kfA2kKk5—F Lk f 4k f5kk6— 2% FAxF5kk5-T2xF572kk6 —fLkfaxkkd+f 1k f5xk2+F2xf4xk3
—F2xf5%k1+f3xf4xk5+f 3k f5xk6+3xk1+f3xk4,

a231-F172xFAxk6+T Lk f 2k 4kk5—T 1k F 2 F5kk6+T 272k F 5k 5+ 1 2kk2—f 1x F2xk 1

+f kT 2kkd+T 1k F3xk6—f Lk f4km— 27 2kk3—f 2k 3xk5-F2xf5xm+f3*m, al24-k5, al34-k6,
a241-F172xF472xKk5—F 1" 2% FAx F5kk6—T Lk 2k F 4k F5kk5—F Lk F 2k F5°2kk6—T 172k F4kkd+T 17 2% F5xk2

+ Lk 2k F4kk3—F Lk F 2 F 5okk 1+2:k F Lok f 3k F 4kk 5+ Lk F 3k F5kk6— 1ok f 4ok f Skm+f 2 £ 3 F5¢k5

—f 2k F572km+f Lk f 3kkd— T2k F3xk3—-F372xk5+F3%f5*m,
a341-T L2k F4N2kk5—F Lk 2k F 4k F5xk6— T2 2% F 4+ F5kk5—T 2724 F 57 2kk6—T 1k F 2% F4xk4

+T Lk F 2k F5kk 2+ Lk f 3k F4kk6+T 1k F 4N 2km+ 272k F Akk3—F 272k F 5kk 1+ 2k F 3% F4xk5

+2k T 2k F 3 F5xK6+T 2k F 4 F5km—T 1k F 3kk2+F 2 F3kk 1~ T3 2kk6—- T3 F4*m) ;
C2 = ideal selectInSubring( 1, gens gb(I) )
codim C2, degree C2, betti mingens C2



Not Radical

Corollary

The radical ideal of Lieq is minimally generated by 16 quadrics
and 15 quartics. The quadrics are the entries of the matrix ©,
and the quartics are the 4 x 4 minors of the matrix A.
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for C1, C3, Cy are prime. To show that C and Cs are prime it is enough to run the isPrime
command in Macaulay2. To show C} is prime we run

# minimalPrimes C4;
radical C4 == C4

Since we get the output 1 and true we see that Cy is prime. Finally we take the intersection of
these components to get the radical ideal of Liey and calculate its dimension, degree and Betti
numbers.

In the file & C2 prime we verify that our ideal for C, is prime. We do this by representing the
birational parametrization of Cy mentioned in Section 5 of our paper.



What is a Polynomial?

4 Polynomials: Explicit versus Invariant

‘We now examine our ideal generators through the lens of the G-action. We identify the Schur
modules Sy(C*) that generate the ideals /¢, and we identify polynomials that serve as highest
weight vectors. The space C[A], = C** decomposes into five isotypical components:

A (3,1,-1,—-1) (2,1,0,—1) (2,0,0,0) (1,1,1,—1) (1,1,0,0)
dim 126 64 10 10 6
mult, 1 2 2 2 1

The last two columns were seen already in (5). The space of cubics C[A]3 ~ C?° decomposes
into 11 isotypical components. We display the four components that are relevant for us:
A (21,1.-1) (3,0,0,0) (2,1,0,0) (1.1,1,0)
dim 36 20 20
mult 5 3 4 3

One ingredient in an invariant description of these G-modules is the adjoint ad(u) of an
element u in our Lie algebra. This is the endomorphism C* — C* given by v + [u,v]. For
any index i € {1,2,3,4}, the adjoint of e; is represented by the 4 x 4 matrix (ajr)1<jr<a-
The traces of the matrices ad(e;) are the four linear forms that span S(0,00)(C") C Ic,. To
be explicit, ad(e;) is obtained by prepending a zero column to the left three columns of A.
We begin with the module S(30,0,0)(C*). This has dimension 20 and occurs with multi-
plicity three in the space of cubics C[A]s. A highest weight vector for one embedding is

Fa000 = alyy — alpya133 — adyyaias + daranarnzaiss + da12pa1240142 — 1220343 + 2012201330144

—4a1201340143 — a1220%y + 4412301300133 — 4012301320141 + 8012301340142 + Ba12401320143

*4H124al:i:4ﬂ142+4a124a142ﬂ144+a:f33*ﬂ%ga144+4a133a134a143 - a1111{0%44+4a1340143¢1144+a?g4-

This module generates the ideal Ir,, together with the linear forms and quadrics seen in

Theorem 2. The module G fs000 is also contained in I¢,. But this ideal has 24 additional
cubic generators. These additional cubics for Cy are given by two irreducible G-modules:

S100(CY) @ 5(1,1.1.\1)(01) ~ C* o Ch
The highest weight vectors for these two irreducible G-modules in C[A]5 are

trace(ad(e;) - ad(es) - ad(es)) — trace(ad(e) - ad(e1)+ ad(es))



Intersection Theory

5 From Vector Bundles to Degrees

The approach in [7] is based on desingularization of each component C;, following Basili [1].
The key idea is to linearize the Jacobi identity, i.e. to express (2) by linear equations in A
over a variety derived from GL(4,C). This yields alternative parametrizations which allow
for the computation of degrees using Chern classes. We now correctly derive the numbers
in Theorem 1 by this method. In what follows we present this for C, and then for Cy. The
derivation for Cj is similar to that for Cy, and that for C5 was correct in [7, Section 3.3].
The linearized parametrization for Cy was shown in the Macaulay2 code in the proof of
Theorem 2. It is given by a vector bundle F' of rank 7 over the 5-dimensional flag variety
FI(1,3,C*). The degree of Cy in P?* is computed using Chern classes and Segre classes:

dosCs) = [ a0 = [ e = [ ) o)

From now set V = C*. The pair (L,U) € FI(1,3,V) gives the second and first derived alge-
bra. We compute the Segre class in (9), as in [7, Section 3.2]. This uses the exact sequence

0 — K ~ Hom(V/U,End)(U)) — F — M = Hom(A2(U/L), L) — 0.

Here, M is a line bundle and K is a rank six vector bundle. Note the matching parameters m
and ky, ks, ks, k4, ks, k¢ in the proof of Theorem 2. The kernel K fits into the exact sequence

0 — K — Hom(V/U,End(U)) — Hom(V/U, Hom(L,U)) — 0.
From the convention that the Segre class and Chern class are inverse to each other we get

S(F) = s(M)-s(K) = s(M)- s(Hom(V/U, End(U)) - ¢(Hom(V/U, Hom(L, U)) (10)

This is a rational generating function s(z,y) in & = —¢;(L) and y = —¢;(U) = ¢(V/U).
These classes satisfy 2* = y* = 0 because they are induced from P(V) and P(V") respectively.

Let s3(x,y) denote the component of degree 5 in s(z,y). We need to integrate it on the
flag variety. Since FI1(1,3,V) is a divisor of type (1,1) in P(V) x P(V"), we can write

(@) = [ sP) = [ (@),



Conclusion: 554+361+121+295 = 832
Read the math literature !!!
Never trust anything just because it's published

Check carefully using computational tools

.... like HomotopyContinuation.jl



