Polynomial system solving with Gröbner bases and applications

26 reasons not to be scared

Mohab Safey El Din¹

¹Sorbonne University, CNRS

Solving polynomial equations exactly

Let
$$\mathbb{K}$$
 be a field (e.g. $\mathbb{K} = \mathbb{Q}$ or $\mathbb{K} = \frac{Z}{p\mathbb{Z}}$ with p prime or $\mathbb{K} = \mathbb{F}_q$, $q = p^k$).

 $f_1 = \cdots = f_s = 0$, with $f_i \in \mathbb{K}[x_1, \dots, x_n]$, no restriction on s

Meaning of solving depends on $\ensuremath{\mathbb{K}}$ and geometric properties:

K = Q, solutions in Qⁿ → undecidable solutions in Rⁿ, Cⁿ → decidable how many? Enumerate them? Dimension?
 K is finite, solutions in Kⁿ? one can enumerate them

Exact methods. Compute an algebraic data-structure which

- determines the dimension of the solution set in $\overline{\mathbb{K}}^n$;
- can be exploited to extract global information on solutions (solutions in ℝⁿ when ℝ is finite, otherwise solutions in ℝ, ℂ);
- comes with guarantees.

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$ $f_2 = x_1 - x_2 + 1$

This is **not** a Gröbner basis

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$ $f_2 = x_1 - x_2 + 1$ This is **not** a

Gröbner basis

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1} + x_2 - 1$
 $f_2 = \boxed{x_1} - x_2 + 1$
 $\boxed{f_1 - f_2} = 2x_2 - 2$
This is a Gröbner basis

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$
 $f_2 = x_1 - x_2 + 1$

This is **not** a Gröbner basis

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1} + x_2 - 1$
 $f_2 = \boxed{x_1} - x_2 + 1$
 $\boxed{f_1 - f_2} = 2x_2 - 2$

This is a Gröbner basis

- Ordering on the variables
 Vector space of linear equations
- triangular rewriting

(eliminating monomials)

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$ $f_2 = x_1 - x_2 + 1$

This is **not** a Gröbner basis

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1} + x_2 - 1$
 $f_2 = \boxed{x_1} - x_2 + 1$
 $\boxed{f_1 - f_2} = 2x_2 - 2$
This is a Cräbner ba

This is a Gröbner basis

- Ordering on the variables
 Vector space of linear equations
- triangular rewriting

6 (eliminating monomials)

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1^2} + x_2^2 - 1$
 $f_2 = \boxed{x_1^2} - x_2^2 + 1$

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$ $f_2 = x_1 - x_2 + 1$ This is **not** a

Gröbner basis

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1} + x_2 - 1$
 $f_2 = \boxed{x_1} - x_2 + 1$
 $\boxed{f_1 - f_2} = 2x_2 - 2$
This is a Cröbner ba

This is a Gröbner basis

- Ordering on the variables
 Vector space of linear equations
- triangular rewriting

s (eliminating monomials)

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1^2} + x_2^2 - 1$
 $f_2 = \boxed{x_1^2} - x_2^2 + 1$
 $\boxed{g = f_1 - f_2} = 2x_2^2 - 2$
 $\boxed{f_1 - \frac{1}{2}g} = x_1^2$

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$ $f_2 = x_1 - x_2 + 1$ This is **not** a Gröbner basis

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1} + x_2 - 1$
 $f_2 = \boxed{x_1} - x_2 + 1$
 $\boxed{f_1 - f_2} = 2x_2 - 2$
This is a Gröbner bas

 Ordering on the variables
 Vector space of linear equations
 triangular rewriting

sis (eliminating monomials)

Picking $x_1 \succ x_2$ What about? $f_1 = \begin{bmatrix} x_1^2 \\ x_1^2 \end{bmatrix} + x_2^2 - 1$ $f_1 = x_1^2 + x_2^2 + x_1 x_2 - 1$ $f_2 = \begin{bmatrix} x_1^2 \\ x_1^2 \end{bmatrix} - x_2^2 + 1$ $f_2 = x_1^2 - x_2^2 - 2x_1 x_2 + 1$ $\boxed{g = f_1 - f_2} = 2x_2^2 - 2$ $f_1 - f_2 = 2x_2^2 + 2x_1 x_2 - 2$ $\boxed{f_1 - \frac{1}{2}g} = x_1^2$

Gröbner basis \rightsquigarrow convenient rewriting of $F = (f_1, \ldots, f_s) \subset \mathbb{K}[x_1, \ldots, x_n]$

 $f_1 = x_1 + x_2 - 1$ $f_2 = x_1 - x_2 + 1$ This is **not** a Gröbner basis

Picking
$$x_1 \succ x_2$$

 $f_1 = \boxed{x_1} + x_2 - 1$
 $f_2 = \boxed{x_1} - x_2 + 1$
 $\boxed{f_1 - f_2} = 2x_2 - 2$
This is a Gröbner basis

 Ordering on the variables
 Vector space of linear equations
 triangular rewriting

(eliminating monomials)

Picking $x_1 \succ x_2$ What about? $f_1 = \begin{bmatrix} x_1^2 \\ x_1^2 \end{bmatrix} + x_2^2 - 1$ $f_1 = x_1^2 + x_2^2 + x_1 x_2 - 1$ $f_2 = \begin{bmatrix} x_1^2 \\ x_1^2 \end{bmatrix} - x_2^2 + 1$ $f_2 = x_1^2 - x_2^2 - 2x_1 x_2 + 1$ $\boxed{g = f_1 - f_2} = 2x_2^2 - 2$ $f_1 - f_2 = 2x_2^2 + 2x_1 x_2 - 2$ $\boxed{f_1 - \frac{1}{2}g} = x_1^2$

- Monomial orderings
- Vector spaces are no more sufficient
- Ideals generated by polynomials

$$\begin{split} \mathbb{K}[x] & \rightsquigarrow \text{Monomial ordering induced by } \mathbb{N} \\ g_1 &= x^a + \cdots \qquad g_2 = x^b + \cdots \qquad \text{with } a \geq b \\ S &= \mathbf{1} \times g_1 - x^{a-b} g_2 \in \langle g_1, g_2 \rangle \\ S &= 0?, \, \mathsf{Im}(S) \notin \langle \mathsf{Im}(g_2) \rangle? \qquad \qquad \sim \text{repeat} \end{split}$$

$$\begin{split} \mathbb{K}[x] & \rightsquigarrow \text{Monomial ordering induced by } \mathbb{N} \\ g_1 &= x^a + \cdots \qquad g_2 = x^b + \cdots \qquad \text{with } a \geq b \\ S &= \mathbf{1} \times g_1 - x^{a-b} g_2 \in \langle g_1, g_2 \rangle \\ S &= 0?, \, \mathsf{Im}(S) \notin \langle \mathsf{Im}(g_2) \rangle? \qquad \rightsquigarrow \text{repeat} \end{split}$$

 $\mathbb{K}[x_1,\ldots,x_n] \rightsquigarrow \mathsf{Admissible}$ monomial orderings over \mathbb{N}^n

$$\begin{split} \mathbb{K}[x] & \rightsquigarrow \text{Monomial ordering induced by } \mathbb{N} \\ g_1 &= x^a + \cdots \qquad g_2 = x^b + \cdots \qquad \text{with } a \geq b \\ S &= \mathbf{1} \times g_1 - x^{a-b} g_2 \in \langle g_1, g_2 \rangle \\ S &= 0?, \, \mathsf{Im}(S) \notin \langle \mathsf{Im}(g_2) \rangle? \qquad \rightsquigarrow \text{repeat} \end{split}$$

 $\mathbb{K}[x_1,\ldots,x_n] \rightsquigarrow \mathsf{Admissible}$ monomial orderings over \mathbb{N}^n

$$g_{1} = \mathbf{x}^{\alpha_{1,1}} + \cdots, g_{2} = \mathbf{x}^{\alpha_{2,1}} + \cdots, g_{s} = \mathbf{x}^{\alpha_{s,1}} + \cdots$$
$$\lambda_{i,j} = \operatorname{lcm}(\mathbf{x}^{\alpha_{i,1}}, \mathbf{x}^{\alpha_{j,1}})$$
$$S = \operatorname{spol}_{\prec}(g_{i}, g_{j}) = \frac{\lambda_{i,j}}{\operatorname{Im}_{\prec}(g_{i})} g_{i} - \frac{\lambda_{i,j}}{\operatorname{Im}_{\prec}(g_{j})} g_{j} \in \langle g_{1}, \dots, g_{s} \rangle$$
$$S = 0?, \operatorname{Im}_{\prec}(S) \notin \langle \operatorname{Im}_{\prec}(g_{1}), \dots, \operatorname{Im}_{\prec}(g_{s}) \rangle?$$

~ FullReduce algorithm

$$\begin{split} \mathbb{K}[x] & \rightsquigarrow \text{Monomial ordering induced by } \mathbb{N} \\ g_1 &= x^a + \cdots \qquad g_2 = x^b + \cdots \qquad \text{with } a \geq b \\ S &= \mathbf{1} \times g_1 - x^{a-b} g_2 \in \langle g_1, g_2 \rangle \\ S &= 0?, \, \mathsf{Im}(S) \notin \langle \mathsf{Im}(g_2) \rangle? \qquad \rightsquigarrow \text{repeat} \end{split}$$

 $\mathbb{K}[x_1,\ldots,x_n] \rightsquigarrow \mathsf{Admissible}$ monomial orderings over \mathbb{N}^n

$$g_{1} = \mathbf{x}^{\boldsymbol{\alpha}_{1,1}} + \cdots, g_{2} = \mathbf{x}^{\boldsymbol{\alpha}_{2,1}} + \cdots, g_{s} = \mathbf{x}^{\boldsymbol{\alpha}_{s,1}} + \cdots$$
$$\lambda_{i,j} = \operatorname{lcm}(\mathbf{x}^{\boldsymbol{\alpha}_{i,1}}, \mathbf{x}^{\boldsymbol{\alpha}_{j,1}})$$
$$S = \operatorname{spol}_{\prec}(g_{i}, g_{j}) = \frac{\lambda_{i,j}}{\operatorname{Im}_{\prec}(g_{i})} g_{i} - \frac{\lambda_{i,j}}{\operatorname{Im}_{\prec}(g_{j})} g_{j} \in \langle g_{1}, \dots, g_{s} \rangle$$
$$S = 0?, \operatorname{Im}_{\prec}(S) \notin \langle \operatorname{Im}_{\prec}(g_{1}), \dots, \operatorname{Im}_{\prec}(g_{s}) \rangle?$$

 \rightsquigarrow FullReduce algorithm

☞ S-polynomials

Division/rewriting algorithm

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$, \prec an admissible monomial ordering

Let $I \subset R$ be an ideal. A subset $G \subset R$ is a Gröbner basis for (I, \prec) if (*i*) *G* is finite, (*ii*) $G \subset I$, (*iii*) $\langle \text{Im}_{\prec}(G) \rangle = \langle \text{Im}_{\prec}(I) \rangle$.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$, \prec an admissible monomial ordering

Let $I \subset R$ be an ideal. A subset $G \subset R$ is a Gröbner basis for (I, \prec) if (*i*) *G* is finite, (*ii*) $G \subset I$, (*iii*) $\langle \text{Im}_{\prec}(G) \rangle = \langle \text{Im}_{\prec}(I) \rangle$.

- 1. $G \leftarrow F$
- 2. $\mathscr{P} \leftarrow \mathsf{Pairs}(G)$
- 3. while $\mathscr{P} \neq \emptyset$
 - Choose $(f,g) \in \mathscr{P}$;
 - $\mathscr{P} \leftarrow \mathscr{P} \{(f, g)\}$
 - $\bullet \ r \leftarrow \mathbf{FullReduce}_\prec(\mathsf{spol}_\prec(f,g),G)$
 - if $r \neq 0$,
 - $\star \ G \leftarrow G \cup \{r\}$
 - $\star \mathscr{P} \leftarrow \mathscr{P} \cup \mathsf{Pairs}(G)$
- 4. return G

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$, \prec an admissible monomial ordering

Let $I \subset R$ be an ideal. A subset $G \subset R$ is a Gröbner basis for (I, \prec) if (*i*) *G* is finite, (*ii*) $G \subset I$, (*iii*) $\langle \text{Im}_{\prec}(G) \rangle = \langle \text{Im}_{\prec}(I) \rangle$.

- 1. $G \leftarrow F$
- 2. $\mathscr{P} \leftarrow \mathsf{Pairs}(G)$
- 3. while $\mathscr{P} \neq \emptyset$
 - Choose $(f,g) \in \mathscr{P}$;
 - $\mathscr{P} \leftarrow \mathscr{P} \{(f,g)\}$
 - $r \leftarrow \mathbf{FullReduce}_{\prec}(\mathsf{spol}_{\prec}(f,g),G)$
 - if $r \neq 0$,
 - $\star G \leftarrow G \cup \{r\}$
 - $\star \mathscr{P} \leftarrow \mathscr{P} \cup \mathsf{Pairs}(G)$
- 4. return G

- ▲ Correctness, by design
- \bullet Terminates because $\langle Im_{\prec}(G) \rangle$ keeps increasing

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$, \prec an admissible monomial ordering

Let $I \subset R$ be an ideal. A subset $G \subset R$ is a Gröbner basis for (I, \prec) if (*i*) *G* is finite, (*ii*) $G \subset I$, (*iii*) $\langle \text{Im}_{\prec}(G) \rangle = \langle \text{Im}_{\prec}(I) \rangle$.

- 1. $G \leftarrow F$
- 2. $\mathscr{P} \leftarrow \mathsf{Pairs}(G)$
- 3. while $\mathscr{P} \neq \emptyset$
 - Choose $(f,g) \in \mathscr{P}$; $\mathscr{P} \leftarrow \mathscr{P} - \{(f,g)\}$
 - $r \leftarrow \mathbf{FullReduce}_{\prec}(\mathsf{spol}_{\prec}(f,g),G)$
 - if $r \neq 0$,
 - $\star \ G \leftarrow G \cup \{r\}$
 - $\star \mathscr{P} \leftarrow \mathscr{P} \cup \mathsf{Pairs}(G)$
- 4. return G

- ▲ Correctness, by design
- \checkmark Terminates because $\langle Im_{\prec}(G) \rangle$ keeps increasing
- Most of the time is spent on computing 0
- Not so clear how to organise the computations (choice of pairs, choice of reducers, etc.)

Let *G* be a Gröbner basis for (I, \prec) .

Normal form. FullReduce \prec (*f*, *G*) is unique (and 0 when *f* \in $\langle G \rangle$)

allows us to compute in $\frac{R}{I}$ ($f \sim g \Leftrightarrow f - g \in I$)

Let *G* be a Gröbner basis for (I, \prec) .

Normal form. FullReduce (f, G) is unique (and 0 when $f \in \langle G \rangle$)

allows us to compute in $\frac{R}{I}$ ($f \sim g \Leftrightarrow f - g \in I$)

Equality of ideals. Reduced Gröbner basis for (I, \prec) is unique.

Let *G* be a Gröbner basis for (I, \prec) .

Normal form. FullReduce \prec (*f*, *G*) is unique (and 0 when *f* \in $\langle G \rangle$)

allows us to compute in $\frac{R}{I}$ ($f \sim g \Leftrightarrow f - g \in I$)

Equality of ideals. Reduced Gröbner basis for (I, \prec) is unique.

Elimination theorem. When \prec is an ordering which eliminates $x_1, \ldots, x_i, G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for $(I \cap \mathbb{K}[x_{i+1}, \ldots, x_n], \prec)$ and defines the Zariski closure of $\pi(V(I))$.

Let *G* be a Gröbner basis for (I, \prec) .

Normal form. FullReduce (f, G) is unique (and 0 when $f \in \langle G \rangle$)

allows us to compute in $\frac{R}{I}$ ($f \sim g \Leftrightarrow f - g \in I$)

Equality of ideals. Reduced Gröbner basis for (I, \prec) is unique.

Elimination theorem. When \prec is an ordering which eliminates $x_1, \ldots, x_i, G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for $(I \cap \mathbb{K}[x_{i+1}, \ldots, x_n], \prec)$ and defines the Zariski closure of $\pi(V(I))$.

Shape of lex Gröbner bases. $G = G_n \cup G_{n-1} \cup \cdots \cup G_1$ with $G_i \subset \mathbb{K}[x_i, \ldots, x_n]$ Triangular structure, relations discovery

Let *G* be a Gröbner basis for (I, \prec) .

Normal form. FullReduce (f, G) is unique (and 0 when $f \in \langle G \rangle$)

allows us to compute in $\frac{R}{I}$ ($f \sim g \Leftrightarrow f - g \in I$)

Equality of ideals. Reduced Gröbner basis for (I, \prec) is unique.

Elimination theorem. When \prec is an ordering which eliminates $x_1, \ldots, x_i, G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for $(I \cap \mathbb{K}[x_{i+1}, \ldots, x_n], \prec)$ and defines the Zariski closure of $\pi(V(I))$.

Shape of lex Gröbner bases. $G = G_n \cup G_{n-1} \cup \cdots \cup G_1$ with $G_i \subset \mathbb{K}[x_i, \ldots, x_n]$ Triangular structure, relations discovery

Shape of graded Gröbner bases. $d = \min(\deg(f) | f \in I - \{0\}).$

 $\operatorname{Span}(g \in G \mid \operatorname{deg}(g) = d) = \operatorname{Span}(f \in I \mid \operatorname{deg}(f) = d)$

G contains polynomials of the least possible degree achieved in $I - \{0\}$

Bayer, Mumford'93 One of the difficulties in surveying this area is that mathematicians from so many specialties [...] tend to publish in their own specialized journals. [...] One group, the working algebraic geometers, are much more interested in actually computing examples. [...] Another group comes from theoretical computer science and is much more interested in theoretical bounds

Bayer, Mumford'93 One of the difficulties in surveying this area is that mathematicians from so many specialties [...] tend to publish in their own specialized journals. [...] One group, the working algebraic geometers, are much more interested in actually computing examples. [...] Another group comes from theoretical computer science and is much more interested in theoretical bounds

Grete Hermann. A foundational PhD for computational algebra. *Die Frage der endlich vielen Schritte in der Theorie der Polynomideale.* Math. Ann. 1926. Constructive method with **doubly exponential bounds**.

Bayer, Mumford'93 One of the difficulties in surveying this area is that mathematicians from so many specialties [...] tend to publish in their own specialized journals. [...] One group, the working algebraic geometers, are much more interested in actually computing examples. [...] Another group comes from theoretical computer science and is much more interested in theoretical bounds

Grete Hermann. A foundational PhD for computational algebra. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 1926. Constructive method with **doubly exponential bounds**. Mayr-Meyer'82 These bounds are "unavoidable".

Bayer, Mumford'93 One of the difficulties in surveying this area is that mathematicians from so many specialties [...] tend to publish in their own specialized journals. [...] One group, the working algebraic geometers, are much more interested in actually computing examples. [...] Another group comes from theoretical computer science and is much more interested in theoretical bounds

Grete Hermann. A foundational PhD for computational algebra.
Die Frage der endlich vielen Schritte in der Theorie der
Polynomideale. Math. Ann. 1926.
Constructive method with doubly exponential bounds.
Mayr-Meyer'82 These bounds are "unavoidable".

Bayer/Stillman'87'88'92. Hilbert series, function, polynomial and monomial orderings, regularity.

Bayer, Mumford'93 One of the difficulties in surveying this area is that mathematicians from so many specialties [...] tend to publish in their own specialized journals. [...] One group, the working algebraic geometers, are much more interested in actually computing examples. [...] Another group comes from theoretical computer science and is much more interested in theoretical bounds

Grete Hermann. A foundational PhD for computational algebra.
Die Frage der endlich vielen Schritte in der Theorie der
Polynomideale. Math. Ann. 1926.
Constructive method with doubly exponential bounds.
Mayr-Meyer'82 These bounds are "unavoidable".

Bayer/Stillman'87'88'92. Hilbert series, function, polynomial and monomial orderings, regularity.

Gritzmann/Sturmfels'93, Caboara/Perry'14.

Monomial orderings \rightsquigarrow Dynamic versions of Buchberger's algorithm?

Bayer, Mumford'93 One of the difficulties in surveying this area is that mathematicians from so many specialties [...] tend to publish in their own specialized journals. [...] One group, the working algebraic geometers, are much more interested in actually computing examples. [...] Another group comes from theoretical computer science and is much more interested in theoretical bounds

Grete Hermann. A foundational PhD for computational algebra. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 1926. Constructive method with **doubly exponential bounds**. Mayr-Meyer'82 These bounds are "unavoidable".

Bayer/Stillman'87'88'92. Hilbert series, function, polynomial and monomial orderings, regularity.

Gritzmann/Sturmfels'93, Caboara/Perry'14.

Monomial orderings \rightsquigarrow Dynamic versions of Buchberger's algorithm? Lazard, Lazard/Giusti. Macaulay matrices, regular sequences Degree of regularity is bounded by Macaulay's bound: $1 + \sum_i (\deg(f_i) - 1)$

Macaulay matrices:

columns = monomials sorted by ≺ rows = coeffs of polynomials Take the best of Buchberger and Macaulay

Macaulay matrices:

columns = monomials sorted by ≺ rows = coeffs of polynomials Take the best of Buchberger and Macaulay

1. $G \leftarrow F$

2.
$$\mathscr{P} \leftarrow \{(af, bg) \mid f, g \in G\}$$

- 3. while $\mathscr{P} \neq \emptyset$
- $\bullet \ \mathscr{P}' \leftarrow \mathbf{Select}(\mathscr{P}), \ \mathscr{P} \leftarrow \mathscr{P} \mathscr{P}'$
- $\bullet \ L \leftarrow \{af, bg \mid (af, bg) \in \mathscr{P}'\}$
- $L \leftarrow \mathbf{SymbolicPreProcessing}(L, G)$
- $\bullet \ H \leftarrow \mathbf{GaussianReduction}(\mathbf{Macaulay}(L))$
- for $h \in H$
 - $$\begin{split} & \text{if } \text{Im}_{\prec}(h) \notin \langle \text{Im}(G) \rangle \\ & G \leftarrow G \cup \{h\} + \text{update } \mathscr{P} \end{split}$$
- 4. return G

Macaulay matrices:

columns = monomials sorted by ≺ rows = coeffs of polynomials Take the best of Buchberger and Macaulay

1. $G \leftarrow F$

2.
$$\mathscr{P} \leftarrow \{(af, bg) \mid f, g \in G\}$$

- 3. while $\mathscr{P} \neq \emptyset$
- $\mathscr{P}' \leftarrow \operatorname{Select}(\mathscr{P}), \, \mathscr{P} \leftarrow \mathscr{P} \mathscr{P}'$
- $\bullet \ L \leftarrow \{af, bg \mid (af, bg) \in \mathscr{P}'\}$
- $L \leftarrow \mathbf{SymbolicPreProcessing}(L, G)$
- $\bullet \ H \leftarrow \mathbf{GaussianReduction}(\mathbf{Macaulay}(L))$
- for $h \in H$
 - $$\begin{split} & \text{if } \text{Im}_{\prec}(h) \notin \langle \text{Im}(G) \rangle \\ & G \leftarrow G \cup \{h\} + \text{update } \mathscr{P} \end{split}$$
- 4. return G

- selects a bunch of pairs at the same time
- does a symbolic-preprocessing
- \rightsquigarrow choice of reducers?
- full reduction at once

Macaulay matrices:

columns = monomials sorted by ≺ rows = coeffs of polynomials Take the best of Buchberger and Macaulay

1. $G \leftarrow F$

2.
$$\mathscr{P} \leftarrow \{(af, bg) \mid f, g \in G\}$$

- 3. while $\mathscr{P} \neq \emptyset$
- $\mathscr{P}' \leftarrow \operatorname{Select}(\mathscr{P}), \, \mathscr{P} \leftarrow \mathscr{P} \mathscr{P}'$
- $\bullet \ L \leftarrow \{af, bg \mid (af, bg) \in \mathscr{P}'\}$
- $L \leftarrow \mathbf{SymbolicPreProcessing}(L, G)$

- for $h \in H$
 - $$\begin{split} & \text{if } \text{Im}_{\prec}(h) \notin \langle \text{Im}(G) \rangle \\ & G \leftarrow G \cup \{h\} + \text{update } \mathscr{P} \end{split}$$
- 4. return G

- selects a bunch of pairs at the same time
- does a symbolic-preprocessing
- \rightsquigarrow choice of reducers?
- full reduction at once

Macaulay matrices:

columns = monomials sorted by ≺ rows = coeffs of polynomials Take the best of Buchberger and Macaulay

1. $G \leftarrow F$

2.
$$\mathscr{P} \leftarrow \{(af, bg) \mid f, g \in G\}$$

- 3. while $\mathscr{P} \neq \emptyset$
- $\mathscr{P}' \leftarrow \operatorname{Select}(\mathscr{P}), \, \mathscr{P} \leftarrow \mathscr{P} \mathscr{P}'$
- $\bullet \ L \leftarrow \{af, bg \mid (af, bg) \in \mathscr{P}'\}$
- $L \leftarrow \mathbf{SymbolicPreProcessing}(L, G)$
- $H \leftarrow GaussianReduction(Macaulay(L)) \downarrow_{fast spars}$
- for $h \in H$
 - $$\begin{split} & \text{if } \text{Im}_{\prec}(h) \notin \langle \text{Im}(G) \rangle \\ & G \leftarrow G \cup \{h\} + \text{update } \mathscr{P} \end{split}$$
- 4. return G

- selects a bunch of pairs at the same time
- does a symbolic-preprocessing
- \sim choice of reducers?
- full reduction at once
- →) i fast sparse linear algebra
 i pstill lots of reductions to zero →
 F5 algorithm.

Macaulay matrices:

columns = monomials sorted by ≺ rows = coeffs of polynomials Take the best of Buchberger and Macaulay

1. $G \leftarrow F$

2.
$$\mathscr{P} \leftarrow \{(af, bg) \mid f, g \in G\}$$

- 3. while $\mathscr{P} \neq \emptyset$
- $\mathscr{P}' \leftarrow \operatorname{Select}(\mathscr{P}), \, \mathscr{P} \leftarrow \mathscr{P} \mathscr{P}'$
- $\bullet \ L \leftarrow \{af, bg \mid (af, bg) \in \mathscr{P}'\}$
- $L \leftarrow \mathbf{SymbolicPreProcessing}(L, G)$
- $H \leftarrow GaussianReduction(Macaulay(L)) \downarrow_{fast space}$
- for $h \in H$
 - $$\begin{split} & \text{if } \operatorname{Im}_{\prec}(h) \notin \langle \operatorname{Im}(G) \rangle \\ & G \leftarrow G \cup \{h\} + \text{update } \mathscr{P} \end{split}$$
- 4. return G

- selects a bunch of pairs at the same time
- does a symbolic-preprocessing \sim choice of reducers?
- full reduction at once
- $\mathbf{ulay}(L)$) \mathbf{d} fast sparse linear algebra

 - ▲probabilistic linear algebra
 - idtrace of the algorithm ■

Change of orderings

Basic common case. $V(\mathbf{F})$ is finite in $\overline{\mathbb{K}}^n$

 $\rightsquigarrow \frac{R}{\langle F \rangle}$ is a finite dimensional $\mathbb K\text{-vector space}$

Change of orderings

Basic common case. $V(\mathbf{F})$ is finite in $\overline{\mathbb{K}}^n$

 $\rightsquigarrow \frac{R}{\langle F \rangle}$ is a finite dimensional K-vector space

Basic common case. $V(\mathbf{F})$ is finite in $\overline{\mathbb{K}}^n$

 $\rightsquigarrow \frac{R}{\langle F \rangle}$ is a finite dimensional K-vector space

Basic common case. $V(\mathbf{F})$ is finite in $\overline{\mathbb{K}}^n$

 $\rightsquigarrow \frac{R}{\langle F \rangle}$ is a finite dimensional K-vector space

Basic common case. $V(\mathbf{F})$ is finite in $\overline{\mathbb{K}}^n$

 $\rightsquigarrow \frac{R}{\langle F \rangle}$ is a finite dimensional K-vector space

Gröbner basis \rightsquigarrow (finite) monomial basis for $\frac{R}{T}$

Basic common case. $V(\mathbf{F})$ is finite in $\overline{\mathbb{K}}^n$

 $\rightsquigarrow \frac{R}{\langle F \rangle}$ is a finite dimensional K-vector space

Gröbner basis \rightsquigarrow (finite) monomial basis for $\frac{R}{I}$ Basic idea: recover linear relations between $\{1, x_n, \dots, x_n^D\}$ in $\frac{R}{I}$ + other relations Faugère/Gianni/Lazard/Mora

Linear system solving.

plain C library implemented by Berthomieu, Eder, S. \simeq 55 000 lines, license GPLv2+ uses GMP and FLINT

https://msolve.lip6.fr

plain C library implemented by Berthomieu, Eder, S. $\simeq 55\ 000$ lines, license GPLv2+ uses GMP and FLINT https://msolve.lip6.fr

https://github.com/algebraic-solving/msolve
https://gitlab.lip6.fr/safey/msolve

plain C library implemented by Berthomieu, Eder, S. $\simeq 55\ 000$ lines, license GPLv2+ uses GMP and FLINT https://msolve.lip6.fr

https://github.com/algebraic-solving/msolve
https://gitlab.lip6.fr/safey/msolve

https://algebraic-solving.github.io/

GitHub GitLab

plain C library implemented by Berthomieu, Eder, S. $\simeq 55\ 000$ lines, license GPLv2+ uses GMP and FLINT https://msolve.lip6.fr

https://github.com/algebraic-solving/msolve
https://gitlab.lip6.fr/safey/msolve

https://algebraic-solving.github.io/

GitHub GitLab

plain C library implemented by Berthomieu, Eder, S. $\simeq 55\ 000$ lines, license GPLv2+ uses GMP and FLINT https://msolve.lip6.fr

https://github.com/algebraic-solving/msolve
https://gitlab.lip6.fr/safey/msolve

https://algebraic-solving.github.io/

• Computes grevlex Gröbner bases when $\mathbb{K} = \frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p < 2^{31}$ prime) ./msolve -g 2 -f in.ms -o out.ms

(coming soon $\rightsquigarrow \mathbb{K} = \mathbb{Q}$).

• Computes grevlex Gröbner bases when $\mathbb{K}=\frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p<2^{31}$ prime) ./msolve -g 2 -f in.ms -o out.ms

(coming soon $\rightsquigarrow \mathbb{K} = \mathbb{Q}$).

• Computes *lex* Gröbner bases of the radical of the input ideal when $\mathbb{K} = \frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p < 2^{31}$ prime) and when it is in shape position $w(x_n), x_{n-1} - v_{n-1}(x_n), \dots, x_1 - v_1(x_n)$

No shape position assumption? ~> msolve performs a change of coordinate ./msolve -g 2 -f in.ms -o out.ms

• Computes grevlex Gröbner bases when $\mathbb{K}=\frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p<2^{31}$ prime) ./msolve -g 2 -f in.ms -o out.ms

(coming soon $\rightsquigarrow \mathbb{K} = \mathbb{Q}$).

• Computes *lex* Gröbner bases of the radical of the input ideal when $\mathbb{K} = \frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p < 2^{31}$ prime) and when it is in shape position $w(x_n), x_{n-1} - v_{n-1}(x_n), \dots, x_1 - v_1(x_n)$

No shape position assumption? $\sim msolve performs a change of coordinate ./msolve -g 2 -f in.ms -o out.ms$

- When $\mathbb{K} = \mathbb{Q}$ and number of complex solutions is finite:
 - msolve isolates the real solutions

./msolve -f in.ms -o out.ms

• Computes grevlex Gröbner bases when $\mathbb{K}=\frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p<2^{31}$ prime) ./msolve -g 2 -f in.ms -o out.ms

(coming soon $\rightsquigarrow \mathbb{K} = \mathbb{Q}$).

• Computes *lex* Gröbner bases of the radical of the input ideal when $\mathbb{K} = \frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p < 2^{31}$ prime) and when it is in shape position $w(x_n), x_{n-1} - v_{n-1}(x_n), \dots, x_1 - v_1(x_n)$

No shape position assumption? $\sim msolve \text{ performs a change of }$ coordinate ./msolve -g 2 -f in.ms -o out.ms

- When $\mathbb{K} = \mathbb{Q}$ and number of complex solutions is finite:
 - msolve isolates the real solutions

./msolve -f in.ms -o out.ms

msolve computes a rational parametrization of the complex solutions

$$w(x_n), \frac{\partial w}{\partial x_n} x_{n-1} - r_{n-1}(x_n), \dots, \frac{\partial w}{\partial x_n} x_1 - r_1(x_n)$$

./msolve -P 1 -f in.ms -o out.ms

• Computes grevlex Gröbner bases when $\mathbb{K}=\frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p<2^{31}$ prime) ./msolve -g 2 -f in.ms -o out.ms

(coming soon $\rightsquigarrow \mathbb{K} = \mathbb{Q}$).

• Computes *lex* Gröbner bases of the radical of the input ideal when $\mathbb{K} = \frac{\mathbb{Z}}{p\mathbb{Z}}$ (with $p < 2^{31}$ prime) and when it is in shape position $w(x_n), x_{n-1} - v_{n-1}(x_n), \dots, x_1 - v_1(x_n)$

No shape position assumption? $\sim msolve \text{ performs a change of }$ coordinate ./msolve -g 2 -f in.ms -o out.ms

- When $\mathbb{K} = \mathbb{Q}$ and number of complex solutions is finite:
 - msolve isolates the real solutions

./msolve -f in.ms -o out.ms

msolve computes a rational parametrization of the complex solutions

$$w(x_n), \frac{\partial w}{\partial x_n} x_{n-1} - r_{n-1}(x_n), \dots, \frac{\partial w}{\partial x_n} x_1 - r_1(x_n)$$

./msolve -P 1 -f in.ms -o out.ms

Some other more experimental functionalities

(e.g. elimination ideals, saturations of ideals, normal forms) 10

• Gröbner basis engine: F4 algorithm (variation of Eder's gb library) (Memory usage) (Fast divisibility check) (Linear algebra) (AVX2)

- Gröbner basis engine: F4 algorithm (variation of Eder's gb library) Memory usage Fast divisibility check Linear algebra AVX2
- Change of orderings: "Sparse-FGLM"
 Faugère/Mou

Matrix multiplications can be "read" from the GB.

Wiedemann's algorithm + Berlekamp-Massey

Dedicated storage Cache aware matrix-vector product AVX2

• (F4 trace algorithm) Traverso'88

- Gröbner basis engine: F4 algorithm (variation of Eder's gb library)
 Memory usage) (Fast divisibility check) (Linear algebra) AVX2
- Change of orderings: "Sparse-FGLM"
 Faugère/Mou

Matrix multiplications can be "read" from the GB.

Wiedemann's algorithm + Berlekamp-Massey

Dedicated storage) Cache aware matrix-vector product) AVX2

(F4 trace algorithm) Traverso'88

Multi-threading through Openmp

- Gröbner basis engine: F4 algorithm (variation of Eder's gb library) Memory usage Fast divisibility check Linear algebra AVX2
- Change of orderings: "Sparse-FGLM"
 Faugère/Mou

Matrix multiplications can be "read" from the GB.

Wiedemann's algorithm + Berlekamp-Massey

Dedicated storage (Cache aware matrix-vector product)

(F4 trace algorithm) **Traverso'88**

Multi-threading through Openmp

- Multi-modular arithmetics $\frac{a}{b}$ uniquely determined by its image in $\frac{\mathbb{Z}}{p_1\mathbb{Z}} \times \cdots \times \frac{\mathbb{Z}}{p_k\mathbb{Z}}$ provided that $2p_1 \cdots p_k \ge ||a|| ||b||$
- Computations over ${\mathbb Q}$ use this multi-modular arithmetics
- Low memory usage

 \rightsquigarrow parallel multi-modular computations

AVX2

• + extra computer algebra algorithms

Some timings

Examples	DEG	msolve(trace)	msolve(prob)	speed-up	maple	speed-up	magma	speed-up
Katsura-9	256	4.89	7.49	1.53	104	21.27	2522	515
Katsura-10	512	43.7	70.5	1.61	1 278	29.24	82 540	1 888
Katsura-11	1024	424	814	1.92	7 812	18.4	-	
Katsura-12	2048	6 262	11 215	1.79	120 804	19.29	-	
Katsura-13	4096	89 390	148 372	1.66	-		-	
Katsura-14	8192	1 308 602	2 000 170	1.53	-		-	
Eco-10	256	12.5	21.2	1.69	26.3	2.1	6520	521.6
Eco-11	512	90.3	161	1.78	312	3.45	214 770	2378
Eco-12	1024	877	1 619	1.84	4 287	4.88	-	
Eco-13	2048	12 137	19 553	1.61	66 115	5.44	-	
Eco-14	4096	167 798	254 389	1.51	-		-	
Henrion-5	100	0.71	0.83	1.17	2.7	3.8	93	130.98
Henrion-6	720	138	157	1.13	1 470	10.65	-	
Henrion-7	5040	117 803	127 456	1.08	-		-	
CP(3,5,2)	288	18.1	19.2	1.06	249	13.75	-	
CP(3,6,2)	720	390	450	1.15	23 440	60	-	
CP(3,7,2)	1728	9 643	11 511	1.19	-		-	
CP(3,8,2)	4032	269 766	323 838	1.2	-		-	

Some timings

Examples	DEG	msolve(trace)	msolve(prob)	speed-up	maple	speed-up	magma	speed-up
Katsura-9	256	4.89	7.49	1.53	104	21.27	2522	515
Katsura-10	512	43.7	70.5	1.61	1 278	29.24	82 540	1 888
Katsura-11	1024	424	814	1.92	7 812	18.4	-	
Katsura-12	2048	6 262	11 215	1.79	120 804	19.29	-	
Katsura-13	4096	89 390	148 372	1.66	-		-	
Katsura-14	8192	1 308 602	2 000 170	1.53	-		-	
Eco-10	256	12.5	21.2	1.69	26.3	2.1	6520	521.6
Eco-11	512	90.3	161	1.78	312	3.45	214 770	2378
Eco-12	1024	877	1 619	1.84	4 287	4.88	-	
Eco-13	2048	12 137	19 553	1.61	66 115	5.44	-	
Eco-14	4096	167 798	254 389	1.51	-		-	
Henrion-5	100	0.71	0.83	1.17	2.7	3.8	93	130.98
Henrion-6	720	138	157	1.13	1 470	10.65	-	
Henrion-7	5040	117 803	127 456	1.08	-		-	
CP(3,5,2)	288	18.1	19.2	1.06	249	13.75	-	
CP(3,6,2)	720	390	450	1.15	23 440	60	-	
CP(3,7,2)	1728	9 643	11 511	1.19	-		-	
CP(3,8,2)	4032	269 766	323 838	1.2	-		-	
Noon-7	2173	4039	5 045	1.25	432	0.1	-	
Noon-8	6545	598 647	640 177	1.07	5997	0.01	-	

Some timings

Examples	DEG	msolve(trace)	msolve(prob)	speed-up	maple	speed-up	magma	speed-up
Katsura-9	256	4.89	7.49	1.53	104	21.27	2522	515
Katsura-10	512	43.7	70.5	1.61	1 278	29.24	82 540	1 888
Katsura-11	1024	424	814	1.92	7 812	18.4	-	
Katsura-12	2048	6 262	11 215	1.79	120 804	19.29	-	
Katsura-13	4096	89 390	148 372	1.66	-		-	
Katsura-14	8192	1 308 602	2 000 170	1.53	-		-	
Eco-10	256	12.5	21.2	1.69	26.3	2.1	6520	521.6
Eco-11	512	90.3	161	1.78	312	3.45	214 770	2378
Eco-12	1024	877	1 619	1.84	4 287	4.88	-	
Eco-13	2048	12 137	19 553	1.61	66 115	5.44	-	
Eco-14	4096	167 798	254 389	1.51	-		-	
Henrion-5	100	0.71	0.83	1.17	2.7	3.8	93	130.98
Henrion-6	720	138	157	1.13	1 470	10.65	-	
Henrion-7	5040	117 803	127 456	1.08	-		-	
CP(3,5,2)	288	18.1	19.2	1.06	249	13.75	-	
CP(3,6,2)	720	390	450	1.15	23 440	60	-	
CP(3,7,2)	1728	9 643	11 511	1.19	-		-	
CP(3,8,2)	4032	269 766	323 838	1.2	-		-	
Noon-7	2173	4039	5 045	1.25	432	0.1	-	
Noon-8	6545	598 647	640 177	1.07	5997	0.01	-	

☞ Katsura-16 259 240 secs (learn grevlex), 7 518 (tracer), 15 688 secs (fglm)

Applications in cryptology

 \mathbb{K} finite.

Security assessment through complexity

Applications in cryptology

 \mathbb{K} finite.

Security assessment through complexity

Geometric applications

Applications in cryptology

K finite.

Security assessment through complexity

Geometric applications

Applications in combinatorics

Compute algebraic relations

Applications in cryptology

K finite.

Security assessment through complexity

Geometric applications

Applications in combinatorics

Compute algebraic relations

Using Gröbner bases to improve numerical computing

Discover properties, algebraic relations

Applications in cryptology

K finite.

Security assessment through complexity

Geometric applications

Applications in combinatorics

Compute algebraic relations

Using Gröbner bases to improve numerical computing

Discover properties, algebraic relations

Image-based visual servoing

Gröbner bases at the rescue...

Gröbner bases in cryptography (I)

Gröbner bases in cryptography (I)

Generate σ from $\delta \rightsquigarrow F(\sigma') = \delta T^{-1} \rightsquigarrow \sigma \stackrel{\text{def}}{=} \sigma' S^{-1}$

Gröbner bases in cryptography (II)

Trapdoor examples.

• **Triangular structure.** F is triangular (and n = s)

- **Triangular structure.** F is triangular (and n = s)
- Oil and vinegar. $O = \{x_1, \ldots, x_{n-s}\}, V = \{x_{n-s+1}, \ldots, x_n\}$ and f_i is quadratic but linear when V is instantiated.

- **Triangular structure.** F is triangular (and n = s)
- Oil and vinegar. $O = \{x_1, \ldots, x_{n-s}\}, V = \{x_{n-s+1}, \ldots, x_n\}$ and f_i is quadratic but linear when V is instantiated.

• Field extensions.
$$\mathbb{K} = \mathbb{F}_{q^n} \simeq \mathbb{F}_q^n$$

Take $F = \sum_{\substack{1 \le i \le j \le n \\ q^i + q^i \le D}} a_{i,j} X^{q^i + q^j} + \sum_{\substack{0 \le i < n \\ q^i \le D}} b_i X^{q^i} + c$
and a basis $(1, \alpha, \dots, \alpha^{n-1})$ of \mathbb{F}_{q^n} .

 $F(\sum_{i=1}^{n-1} \alpha^{i-1} x_i) = \sum_{i=0}^{n-1} f_i(x_1, \dots, x_n) \alpha^i$

- **Triangular structure.** F is triangular (and n = s)
- Oil and vinegar. $O = \{x_1, \ldots, x_{n-s}\}, V = \{x_{n-s+1}, \ldots, x_n\}$ and f_i is quadratic but linear when V is instantiated.

• Field extensions.
$$\mathbb{K} = \mathbb{F}_{q^n} \simeq \mathbb{F}_q^n$$

Take $F = \sum_{\substack{1 \le i \le j \le n \\ q^i + q^i \le D}} a_{i,j} X^{q^i + q^j} + \sum_{\substack{0 \le i < n \\ q^i \le D}} b_i X^{q^i} + c$
and a basis $(1, \alpha, \dots, \alpha^{n-1})$ of \mathbb{F}_{q^n} .

$$F(\sum_{i=1}^{n-1} \alpha^{i-1} x_i) = \sum_{i=0}^{n-1} f_i(x_1, \dots, x_n) \alpha^i$$

Gröbner bases are used to "attack" crypto-systems (i.e. recover encrypted secrets, forge signatures) "sharp" complexity analysis of the attacks helps to identify secure parameters

- **Triangular structure.** F is triangular (and n = s)
- Oil and vinegar. $O = \{x_1, \ldots, x_{n-s}\}, V = \{x_{n-s+1}, \ldots, x_n\}$ and f_i is quadratic but linear when V is instantiated.

• Field extensions.
$$\mathbb{K} = \mathbb{F}_{q^n} \simeq \mathbb{F}_q^n$$

Take $F = \sum_{\substack{1 \le i \le j \le n \\ q^i + q^i \le D}} a_{i,j} X^{q^i + q^j} + \sum_{\substack{0 \le i < n \\ q^i \le D}} b_i X^{q^i} + c$

and a basis $(1, \alpha, \ldots, \alpha^{n-1})$ of \mathbb{F}_{q^n} .

$$F(\sum_{i=1}^{n-1} \alpha^{i-1} x_i) = \sum_{i=0}^{n-1} f_i(x_1, \dots, x_n) \alpha^{i-1}$$

Gröbner bases are used to "attack" crypto-systems (i.e. recover encrypted secrets, forge signatures) "sharp" complexity analysis of the attacks helps to identify secure parameters

Using Gröbner bases in geometry (I)

Take C_1, C_2, C_3, C_4, C_5 in $\mathbb{Q}[x_1, x_2]$ of degree 2. Compute $U \in \mathbb{Q}[x_1, x_2]$ such that V(U) is tangent to $V(C_i)$ for $1 \le i \le 5$.

Using Gröbner bases in geometry (I)

Take C_1, C_2, C_3, C_4, C_5 in $\mathbb{Q}[x_1, x_2]$ of degree 2. Compute $U \in \mathbb{Q}[x_1, x_2]$ such that V(U) is tangent to $V(C_i)$ for $1 \le i \le 5$.

Breiding, Sturmfels, Timme'20 Solving means computing a Gröbner basis G. Indeed, crucial invariants, such as the dimension and degree of the solution variety, [...] The number of real solutions is found by applying techniques [...]. Yet Gröbner bases can take a very long time to compute. We found them impractical for Steiner's problem.

Various modelings proposed, difficulty is to "force" U to be generic.
 One suits better with numerical homotopy continuation

Using Gröbner bases in geometry (I)

Take C_1, C_2, C_3, C_4, C_5 in $\mathbb{Q}[x_1, x_2]$ of degree 2. Compute $U \in \mathbb{Q}[x_1, x_2]$ such that V(U) is tangent to $V(C_i)$ for $1 \le i \le 5$.

Breiding, Sturmfels, Timme'20 Solving means computing a Gröbner basis G. Indeed, crucial invariants, such as the dimension and degree of the solution variety, [...] The number of real solutions is found by applying techniques [...]. Yet Gröbner bases can take a very long time to compute. We found them impractical for Steiner's problem.

Various modelings proposed, difficulty is to "force" U to be generic.
 One suits better with numerical homotopy continuation

"New" alternative modeling which suits "well" to Gröbner bases

- msolve can solve one instance within \simeq 2.5 hours (!)
- using 36 threads (memory consumption is ok but not tiny)...
Using Gröbner bases in geometry (II)

Theorem. Surfaces of degree 3 always contain lines and conics.

Noether–Lefschetz theorem \implies surfaces of degree ≥ 4 almost never do.

Using Gröbner bases in geometry (II)

Theorem. Surfaces of degree 3 always contain lines and conics.

Noether–Lefschetz theorem \implies surfaces of degree \ge 4 almost never do.

What about some special surfaces of degree 4? $\cos(t)f + \sin(t)g = 0$

Using msolve 7 secs to compute the lines

Using Gröbner bases in geometry (II)

Theorem. Surfaces of degree 3 always contain lines and conics.

Noether–Lefschetz theorem \implies surfaces of degree ≥ 4 almost never do.

What about some special surfaces of degree 4? $\cos(t)f + \sin(t)g = 0$

Using msolve 7 secs to compute the lines

... several days/weeks to obtain the conics

Bostan/Chyzak/Notarantonio/S.

Problem. find robot control parameters to bring it into the desired position under the kinematics and collision constraint \sim 7DOF serial manipulators are harder.

Problem. find robot control parameters to bring it into the desired position under the kinematics and collision constraint → 7DOF serial manipulators are harder.

+ Pavel Trutman

Problem. find robot control parameters to bring it into the desired position under the kinematics and collision constraint \rightarrow 7DOF serial manipulators are harder.

+ Pavel Trutman

Solutions that minimize the weighted sum of distances of the joint angles from their preferred values \rightsquigarrow optimization problem

- 14 variables
- quadratic objective function
- equality constraints of degree 4

Problem. find robot control parameters to bring it into the desired position under the kinematics and collision constraint \rightarrow 7DOF serial manipulators are harder.

+ Pavel Trutman

Solutions that minimize the weighted sum of distances of the joint angles from their preferred values \rightsquigarrow optimization problem

- 14 variables
- quadratic objective function
- equality constraints of degree 4
- 1st Lasserre relaxation
- \rightsquigarrow SDP with 3060 variables
- 2nd Lasserre relaxtion
- \rightsquigarrow SDP with 38760 variables

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 - 47779557 c_2 s_7 s_1 s_7 s_$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 + 359142 c_6 s_7 + 359142 c_6 s_7 + 359142 c_7 + 359142 c_7$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ $2063733 s_1 s_6, 47736318 c_1 c_6 c_7 s_2 + 14719214 c_1 c_6 s_2 s_7 + 14721294 c_6 c_7 s_1 s_2 -$ $47779557 c_6 s_1 s_2 s_7 - 2063733 c_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 c_6 c_7 - 359142 c_2 c_6 s_7 - 260282 s_1 s_2 s_6 - 2048843 c_2 s_7 - 2063733 c_1 s_2 s_6 - 2048843 c_2 s_6 - 2048844 c_2 s_6 - 20488$ $49953414 c_{2} s_{6} - 49996703 c_{5} s_{4}, 47736318 c_{1} c_{2} c_{7} s_{6} + 14719214 c_{1} c_{2} s_{6} s_{7} +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 + 260282 c_2 s_1 + 260282$ 2048843 c7 s2 s6 + 359142 s2 s6 s7 - 49996703 c3 s4 - 49953414 c6 s2, 14721294 c1 c7 s6 - $47779557 c_{1} s_{6} s_{7} - 47736318 c_{7} s_{1} s_{6} - 14719214 s_{1} s_{6} s_{7} + 260282 c_{1} c_{6} - 2063733 c_{6} s_{1} -$ $49996703 s_3 s_4, 47736318 c_1 c_7 s_2 s_6 + 14719214 c_1 s_2 s_6 s_7 + 14721294 c_7 s_1 s_2 s_6 -$ $47779557 s_1 s_2 s_6 s_7 + 2063733 c_1 c_6 s_2 - 2048843 c_2 c_7 s_6 - 359142 c_2 s_6 s_7 + 260282 c_6 s_1 s_2 +$ 49953414 c₂ c₆ - 49996703 c₄, -14719214 c₁ c₂ c₇ + 47736318 c₁ c₂ s₇ + 47779557 c₂ c₇ s₁ + $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ $2048843 s_2 s_7, -49996703 c_4 s_3 s_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47996703 c_2 s_7 + 49996703 c_3 c_5 + 47996703 c_2 s_7 + 49996703 c_3 c_5 + 47996703 c_2 s_7 + 49996703 c_3 c_5 + 47996703 c_3 s_7 + 49996703 c_3 c_5 + 47996703 c_3 s_7 + 49996703 c_3 s_7 + 49996700 c_3 s_7 + 49996700$ $13502153845963 c_1 - 85644470995000 s_1, 171288941990000 c_1 s_2 + 27004307691926 s_1 s_2 +$ $91729827067889 c_2 + 9999340600000 c_4 + 99993406000000, c_1^2 + s_1^2 - 1, c_2^2 + s_2^2 - 1, c_3^2 + s_2^2 - 1, c_3^2 + s_3^2 - 1, c_3^2 - 1, c_3^2$ $s_3^2 - 1, c_4^2 + s_4^2 - 1, c_5^2 + s_5^2 - 1, c_6^2 + s_6^2 - 1, c_7^2 + s_7^2 - 1$

20

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 - 47779557 c_2 s_7 - 4777957 c_2 s_7 - 4$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 +$ $49953414 s_2 s_6 - 49996703 s_3 s_5, 14721294 c_1 c_6 c_7 - 47779557 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 60000 c_1 c_6 s_7$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ $2063733 s_1 s_6, 47736318 c_1 c_6 c_7 s_2 + 14719214 c_1 c_6 s_2 s_7 + 14721294 c_6 c_7 s_1 s_2 - 2063733 s_1 s_6, 47736318 c_1 c_6 c_7 s_2 + 14719214 c_1 c_6 s_2 s_7 + 14721294 c_6 c_7 s_1 s_2 - 2063733 s_1 s_6 + 2063733 s_1 s_6 + 2063733 s_1 s_6 + 2063733 s_1 s_2 + 2063733 s_2 + 2063$ $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 + 260282 c_2 s_1 + 260282 c_2 c_2 s_1 + 260282 c_2 c_2 s_1 + 260282 c_2 s_1$ 47779557 c1 s6 s7 - 47736318 c7 s1 s6 - 14719214 s1 s6 s7 + 260282 c1 c6 - 2063733 c6 s1 -47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4, -14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 64779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 64779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 64779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 647736318 c_1 c_2 s_7 + 64779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 6477388 c_2 s_7 + 6477388 c_1 c_2 s_7 + 6477388 c_2 s_7 + 647788 c_2 s_7$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ $2048843 s_2 s_7 - 49996703 c_4 s_3 s_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 +$ $14719214 c_7 s_1 - 47736318 s_1 s_7, -14719214 c_1 c_7 s_2 + 47736318 c_1 s_2 s_7 + 47779557 c_7 s_1 s_2 + 477779557 c_7 s_1 s_2 + 47779557 c_7 s_1 s_1 s_2 +$ 91729827067889 c_2 + 99993406000000 c_4 + 99993406000000, c_1^2 + s_1^2 - 1, c_2^2 + s_2^2 - 1, c_3^2 + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 - 47779557 c_2 s_7 - 4777957 c_2 s_7 - 4$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 +$ $49953414 s_2 s_6 - 49996703 s_3 s_5, 14721294 c_1 c_6 c_7 - 47779557 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 60000 c_1 c_6 s_7$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ 2063733 s₁ s₆, 47736318 c₁ c₆ c₇ s₂ + 14719214 c₁ c₆ s₂ s₇ + 14721294 c₆ c₇ s₁ s₂ - $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 + 260282 c_2 s_1 + 260282 c_2 c_2 s_1 + 260282 c_2 c_2 s_1 + 260282 c_2 s_1$ 47779557 c1 s6 s7 - 47736318 c7 s1 s6 - 14719214 s1 s6 s7 + 260282 c1 c6 - 2063733 c6 s1 -47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4, -14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 4777957 c_2 c_7 s_1 +$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ $2048843 s_2 s_7 - 49996703 c_4 s_3 s_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 +$ $14719214 c_7 s_1 - 47736318 s_1 s_7, -14719214 c_1 c_7 s_2 + 47736318 c_1 s_2 s_7 + 47779557 c_7 s_1 s_2 + 477779557 c_7 s_1 s_2 + 47779557 c_7 s_1 s_1 s_2 +$ 91729827067889 c_2 + 99993406000000 c_4 + 99993406000000, c_1^2 + s_1^2 - 1, c_2^2 + s_2^2 - 1, c_3^2 + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 -$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 +$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ 2063733 s₁ s₆, 47736318 c₁ c₆ c₇ s₂ + 14719214 c₁ c₆ s₂ s₇ + 14721294 c₆ c₇ s₁ s₂ - $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 + 260282 c_2 s_1$ $47779557 c_1 s_6 s_7 - 47736318 c_7 s_1 s_6 - 14719214 s_1 s_6 s_7 + 260282 c_1 c_6 - 2063733 c_6 s_1 - 206373 c_6 s_1 -$ 47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4, -14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 4777957 c_2 c_7 s_1 +$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ $2048843 s_2 s_7$, $-49996703 c_4 s_3 s_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 47779557 c_1 c_7 + 49996703 c_7 + 49996703 c_7 c_7 + 49996700 c_7 + 49$ 14719214 c₇ s₁ - 47736318 s₁ s₇, -14719214 c₁ c₇ s₂ + 47736318 c₁ s₂ s₇ + 47779557 c₇ s₁ s₂ + $13502153845963 c_1 - 85644470995000 s_1, 171288941990000 c_1 s_2 + 27004307691926 s_1 s_2 +$ 91729827067889 c₂ + 99993406000000 c₄ + 99993406000000, c₁² + s₁² - 1. c₂² + s₂² - 1. c₃² + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 -$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 +$ $49953414 s_2 s_6 - 49996703 s_3 s_5, 14721294 c_1 c_6 c_7 - 47779557 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 60000 c_1 c_6 s_7$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ 2063733 s₁ s₆, 47736318 c₁ c₆ c₇ s₂ + 14719214 c₁ c₆ s₂ s₇ + 14721294 c₆ c₇ s₁ s₂ - $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 +$ 47779557 c1 s6 s7 - 47736318 c7 s1 s6 - 14719214 s1 s6 s7 + 260282 c1 c6 - 2063733 c6 s1 -47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4, -14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 6477388 c_1 c_2 s_7 + 647738838 c_1 c_2 s_7 + 647736318 c_2 s_7 + 647736318 c_2 s_7 + 647736318 c_2 s_7 + 647736388 c_2 s_7 + 647736388 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ 14719214 c₇ s₁ - 47736318 s₁ s₇, -14719214 c₁ c₇ s₂ + 47736318 c₁ s₂ s₇ + 47779557 c₇ s₁ s₂ + $13502153845963 c_1 - 85644470995000 s_1, 171288941990000 c_1 s_2 + 27004307691926 s_1 s_2 +$ 91729827067889 c₂ + 99993406000000 c₄ + 99993406000000, c₁² + s₁² - 1. c₂² + s₂² - 1. c₃² + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 - 47779557 c_2 s_7 - 47779557 c_2 s_7 - 4777957 c_2 s_7 - 4777957$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 +$ $49953414 s_2 s_6 - 49996703 s_3 s_5, 14721294 c_1 c_6 c_7 - 47779557 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 60000 c_1 c_6 s_7$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ 2063733 s₁ s₆, 47736318 c₁ c₆ c₇ s₂ + 14719214 c₁ c₆ s₂ s₇ + 14721294 c₆ c₇ s₁ s₂ - $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 +$ 47779557 c1 s6 s7 - 47736318 c7 s1 s6 - 14719214 s1 s6 s7 + 260282 c1 c6 - 2063733 c6 s1 -47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4, -14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 6477388 c_1 c_2 s_7 + 647738838 c_1 c_2 s_7 + 647736318 c_2 s_7 + 647736318 c_2 s_7 + 647736318 c_2 s_7 + 647736388 c_2 s_7 + 647736388 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ 14719214 c₇ s₁ - 47736318 s₁ s₇, -14719214 c₁ c₇ s₂ + 47736318 c₁ s₂ s₇ + 47779557 c₇ s₁ s₂ + $13502153845963 c_1 - 85644470995000 s_1, 171288941990000 c_1 s_2 + 27004307691926 s_1 s_2 +$ 91729827067889 c₂ + 99993406000000 c₄ + 99993406000000, c₁² + s₁² - 1. c₂² + s₂² - 1. c₃² + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 -$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 +$ $49953414 s_2 s_6 - 49996703 s_3 s_5, 14721294 c_1 c_6 c_7 - 47779557 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 60000 c_1 c_6 s_7$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ 2063733 s₁ s₆, 47736318 c₁ c₆ c₇ s₂ + 14719214 c₁ c₆ s₂ s₇ + 14721294 c₆ c₇ s₁ s₂ - $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 +$ $47779557 c_1 s_6 s_7 - 47736318 c_7 s_1 s_6 - 14719214 s_1 s_6 s_7 + 260282 c_1 c_6 - 2063733 c_6 s_1 - 206373 c_6 s_1$ 47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4, -14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 6477388 c_1 c_2 s_7 + 647738838 c_1 c_2 s_7 + 647736318 c_2 s_7 + 647736318 c_2 s_7 + 647736318 c_2 s_7 + 647736388 c_2 s_7 + 647736388 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c_2 s_7 + 64773638 c$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ $14719214 \text{ cr } s_1 - 47736318 \text{ sr } s_7 - 14719214 \text{ cr } s_7 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ cr } s_2 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ sr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } s_2 + 47736318 \text{ sr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } s_1 \text{ sr } + 47779557 \text{ cr } + 477779557 \text{ cr } + 4777957779578 \text{ cr } + 477795779578 \text{ cr } + 477$ $13502153845963 c_1 - 85644470995000 s_1, 171288941990000 c_1 s_2 + 27004307691926 s_1 s_2 +$ 91729827067889 c₂ + 99993406000000 c₄ + 99993406000000, c₁² + s₁² - 1, c₂² + s₂² - 1, c₃² + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

 $[47736318 c_1 c_2 c_6 c_7 + 14719214 c_1 c_2 c_6 s_7 + 14721294 c_2 c_6 c_7 s_1 - 47779557 c_2 c_6 s_1 s_7 - 47779557 c_2 s_7 - 477795757 c_2 s_7 - 47779577 c_2 s_7 - 4$ $2063733 c_1 c_2 s_6 - 260282 c_2 s_1 s_6 + 49996703 c_3 c_4 c_5 + 2048843 c_6 c_7 s_2 + 359142 c_6 s_2 s_7 + 359142 c_6 s_7 + 359142 c_7 + 359142 c_7$ $49953414 s_2 s_6 - 49996703 s_3 s_5, 14721294 c_1 c_6 c_7 - 47779557 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 49996703 c_4 c_5 s_3 - 60000 c_1 c_6 s_7 + 60000 c_1 c_6 s$ $47736318 c_6 c_7 s_1 - 14719214 c_6 s_1 s_7 - 260282 c_1 s_6 + 49996703 c_3 s_5 +$ 2063733 s₁ s₆, 47736318 c₁ c₆ c₇ s₂ + 14719214 c₁ c₆ s₂ s₇ + 14721294 c₆ c₇ s₁ s₂ - $49953414 c_2 s_6 - 49996703 c_5 s_4, 47736318 c_1 c_2 c_7 s_6 + 14719214 c_1 c_2 s_6 s_7 +$ $14721294 c_2 c_7 s_1 s_6 - 47779557 c_2 s_1 s_6 s_7 + 2063733 c_1 c_2 c_6 + 260282 c_2 c_6 s_1 +$ $47779557 c_1 s_6 s_7 - 47736318 c_7 s_1 s_6 - 14719214 s_1 s_6 s_7 + 260282 c_1 c_6 - 2063733 c_6 s_1 - 206373 c_6 s_1$ 47779557 s1 s2 s6 s7 + 2063733 c1 c6 s2 - 2048843 c2 c7 s6 - 359142 c2 s6 s7 + 260282 c6 s1 s2 + $49953414 c_2 c_6 - 49996703 c_4 - 14719214 c_1 c_2 c_7 + 47736318 c_1 c_2 s_7 + 47779557 c_2 c_7 s_1 + 647736318 c_1 c_2 s_7 + 647736318 c_2 s_7 + 647778878 c_2 s_7 + 647788878$ $14721294 c_2 s_1 s_7 - 49996703 c_3 c_4 s_5 - 49996703 c_5 s_3 - 359142 c_7 s_2 +$ $2048843 s_2 s_7, -49996703 c_4 s_3 s_5 + 47779557 c_1 c_7 + 14721294 c_1 s_7 + 49996703 c_3 c_5 + 49996703 c_3 c_5 + 49996703 c_6 s_7 + 49996703 c_7 c_7 + 49996703 c_7 + 49996703$ 14719214 c₇ s₁ - 47736318 s₁ s₇, -14719214 c₁ c₇ s₂ + 47736318 c₁ s₂ s₇ + 47779557 c₇ s₁ s₂ + 91729827067889 c_2 + 99993406000000 c_4 + 99993406000000, ${c_1}^2$ + ${s_1}^2$ - 1, ${c_2}^2$ + ${s_2}^2$ - 1, ${c_3}^2$ + $s_3^2 - 1$, $c_4^2 + s_4^2 - 1$, $c_5^2 + s_5^2 - 1$, $c_6^2 + s_6^2 - 1$, $c_7^2 + s_7^2 - 1$

• We had thousands of optimization problems to solve

- We had thousands of optimization problems to solve
- 70% of such problems could be solved

efficiently with GloptiPoly

- We had thousands of optimization problems to solve
- 70% of such problems could be solved

efficiently with GloptiPoly

 $\bullet\,$ Numerical issues + dramatic slow down on the other 30%

- We had thousands of optimization problems to solve
- 70% of such problems could be solved

efficiently with GloptiPoly

- Numerical issues + dramatic slow down on the other 30%
- Critical points \rightsquigarrow Gröbner basis solver $\rightsquigarrow \simeq 30$ secs(!) msolve Still too long for the actual application

- We had thousands of optimization problems to solve
- 70% of such problems could be solved

efficiently with GloptiPoly

- Numerical issues + dramatic slow down on the other 30%
- Critical points \rightsquigarrow Gröbner basis solver $\rightsquigarrow \simeq 30$ secs(!) msolve Still too long for the actual application
- System of constraints is always the same.
 - The ideal is generated by quadrics Property of Gröbner bases!!
 - \implies one can reformulate the problem with quadrics

(and hence avoid quartics)

- We had thousands of optimization problems to solve
- 70% of such problems could be solved

efficiently with GloptiPoly

- Numerical issues + dramatic slow down on the other 30%
- Critical points \rightsquigarrow Gröbner basis solver $\rightsquigarrow \simeq 30$ secs(!) msolve Still too long for the actual application
- System of constraints is always the same.
 - The ideal is generated by quadrics Property of Gröbner bases!!
 - ullet \Longrightarrow one can reformulate the problem with quadrics

(and hence avoid quartics)

- Using this reformulation, **GloptiPoly** can solve 99% of the systems
 - Gröbner basis solver was used for the remaining 1%.

Lyapunov theory

- eye-in-hand with configuration camera
- dynamic control observation

observation \rightsquigarrow desired position

critical points of a polynomial map

local extrema \rightsquigarrow stability analysis

- eye-in-hand with configuration camera
- dynamic control observation

observation \rightsquigarrow desired position

Lyapunov theory

critical points of a polynomial map

local extrema \rightsquigarrow stability analysis

System	msolve(×12)	нс,і (×1)	Out. (algebraic)	Out. (numeric)
sys1	15 days	1630 secs	402/50	403/50
sys2	24 days	1495 secs	1016/44	1016/44
sys3	27 days	1950 secs	1064/48	871/32
sys4	41 days	2280 secs	3656/84	3537/95

- eye-in-hand with configuration camera
- dynamic control observation

observation \rightsquigarrow desired position

Lyapunov theory

critical points of a polynomial map

local extrema \rightsquigarrow stability analysis

System	msolve(×12)	нс,і (×1)	Out. (algebraic)	Out. (numeric)
sys1	15 days	1630 secs	402/50	403/50
sys2	24 days	1495 secs	1016/44	1016/44
sys3	27 days	1950 secs	1064/48	871/32
sys4	41 days	2280 secs	3656/84	3537/95

Using co-planarity conditions

	System	msolve(×12)	нс.µ (×1)	Out. (algebraic)	Out. (numeric)
ſ	sys1	478 secs	14499 secs	402/50	402/50
ſ	sys2	21.2 h	15480 secs	1016/44	1016/44
ĺ	sys3	18.4h	20099 secs	1064/48	871/32
ĺ	sys 4	41-days	2280 secs	3656/84	3537/95

- eye-in-hand with configuration camera
- dynamic control observation

observation \rightsquigarrow desired position

Lyapunov theory

critical points of a polynomial map

local extrema \rightsquigarrow stability analysis

Γ	System	msolve(×12)	нс,і (×1)	Out. (algebraic)	Out. (numeric)
Γ	sys1	15 days	1630 secs	402/50	403/50
Γ	sys2	24 days	1495 secs	1016/44	1016/44
Γ	sys3	27 days	1950 secs	1064/48	871/32
Г	sys4	41 days	2280 secs	3656/84	3537/95

System	msolve(×12)	msolve(×12)	msolve(×12)
sys1	15 days	1630 secs	172 secs
sys2	24 days	1495 secs	10243 secs
sys3	27 days	1950 secs	8035 secs
sys4	41 days	-	26h

Using co-planarity conditions

System	msolve(×12)	нс.µ (×1)	Out. (algebraic)	Out. (numeric)
sys1	478 secs	14499 secs	402/50	402/50
sys2	21.2 h	15480 secs	1016/44	1016/44
sys3	18.4h	20099 secs	1064/48	871/32
sys 4	41-days	2280 secs	3656/84	3537/95

- Symetries arise naturally in the formulation.
- Using GBs one can rewrite the polynomial system w.r.t. invariants.
- Last column reports on timings.

A module approach $fg = gf \rightsquigarrow \operatorname{lt}(f)g = gf - \operatorname{tail}(f)g$

Compact representations of module of syzygies (F5) Eder/Faugère

A module approach $fg = gf \rightsquigarrow \operatorname{lt}(f)g = gf - \operatorname{tail}(f)g$

Compact representations of module of syzygies (F5) Eder/Faugère

- Complexity issues in F5 algorithms
- Specializations of F5 in some structured setting
- Determinantal setting \rightsquigarrow Crypto applications

Gopalakrishnan/Neiger/S.

A module approach $fg = gf \rightsquigarrow \operatorname{lt}(f)g = gf - \operatorname{tail}(f)g$

Compact representations of module of syzygies (F5) Eder/Faugère

• Complexity issues in F5 algorithms

- Specializations of F5 in some structured setting
- Determinantal setting ~> Crypto applications

Gopalakrishnan/Neiger/S.

Ideal theoretic operations

Nothing new since Bayer's PhD (!)

► F4 variant to compute saturation of ideals

Berthomieu/Eder/S.

A module approach $fg = gf \rightsquigarrow \operatorname{lt}(f)g = gf - \operatorname{tail}(f)g$

Compact representations of module of syzygies (F5) Eder/Faugère

- Complexity issues in F5 algorithms
- Specializations of F5 in some structured setting
- Determinantal setting \rightsquigarrow Crypto applications

Gopalakrishnan/Neiger/S.

Ideal theoretic operations

Nothing new since Bayer's PhD (!)

- F4 variant to compute saturation of ideals Berthomieu/Eder/S.
- F5 variant for saturations + equidimensional decomposition
- Some reductions to 0 are unavoidable
- Exploit them \rightsquigarrow decomposition of ideals

Eder/Lairez/Mohr/S.

$\left[\right]$	Paradigm shift) s	ightarrow m structured			Berthomieu/Neiger/S.	
Ĩ	0	1	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	
	0	0	0	1	0	0	0	0	
	0	-22	$^{-3}$	$^{-3}$	-26	-23	0	-15	
	0	0	0	0	0	1	0	0	
	-17	0	$^{-3}$	0	-15	-28	-19	$^{-5}$	
	0	0	0	0	0	0	0	1	
	-3	-9	-19	$^{-18}$	0	-27	-2	-24	
Recent works and on-going developments

Paradigm shift					pars	m e ightarrow	stru	actured Berthomieu/Neiger/S.
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	basis of $\mathbb{K}[x_3]$ -module of $I \cap (\mathbb{K}[x_3] + x_2\mathbb{K}[x_3] + x_1\mathbb{K}[x_3])$
0	0	0	1	0	0	0	0	
0	-22	$^{-3}$	$^{-3}$	-26	-23	0	-15	$\begin{bmatrix} x_3^2 + 3x_3^2 + 3x_3^2 + 22x_3 & 23x_3 + 26 & 15x_3 \\ 2x_2^2 + 17 & x_2^2 + 28x_3 + 15 & 5x_3 + 10 \end{bmatrix} \subset \mathbb{K}[x_1]t \times t$
0	0	0	0	0	1	0	0	$\begin{bmatrix} 3x_3 + 17 & x_3 + 2\delta x_3 + 15 & 5x_3 + 19 \\ 18x_3^3 + 10x_2^2 + 0x_3 + 2 & 27x_3 & x_2^2 + 24x_3 + 2 \end{bmatrix} \in \mathbb{R}[x_3]$
-17	0	$^{-3}$	0	-15	-28	-19	$^{-5}$	$\begin{bmatrix} 10x_3 + 19x_3 + 9x_3 + 5 & 2/x_3 & x_3 + 24x_3 + 2 \end{bmatrix}$ Hermite normal form \rightarrow lex Gröbner basis Complexity: $O\left(t^{\omega-1}D\right)$
0	0	0	0	0	0	0	1	
3	-9	-19	-18	0	-27	-2	-24	

Recent works and on-going developments

Paradigm shift					pars	m e ightarrow	stru	actured Berthomieu/Neiger/S.
[0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	basis of $\mathbb{K}[x_3]$ -module of $I \cap (\mathbb{K}[x_3] + x_2\mathbb{K}[x_3] + x_1\mathbb{K}[x_3])$
0	0	0	1	0	0	0	0	
0	-22	$^{-3}$	$^{-3}$	-26	-23	0	-15	$x_3^2 + 3x_3^2 + 3x_3^2 + 22x_3 = 23x_3 + 26 = 15x_3$
0	0	0	0	0	1	0	0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
-17	0	$^{-3}$	0	-15	-28	-19	$^{-5}$	
0	0	0	0	0	0	0	1	
L -3	-9	-19	-18	0	-27	-2	-24	

Gröbner bases in semi-algebraic geometry

- Real solutions to positive dimensional systems
 - (with inequalities)
- grab sample points in each connected component
- answer connectivity queries
- compute the projection on some coordinate subspace

msolve todo list

- 1. Lift Gröbner bases over the rationals (started, on-going)
- 2. Test more and stabilize new algorithms for ideal saturation (started, on-going)
- 3. Mix F5 and F4 → F6 algorithm (started, on-going)
- 4. Implement new change of orderings algorithms (started, on-going)
- 5. Implement Hilbert series computations
- 6. Implement weighted orderings
- 7. Implement ideal decompositions (zero-dimensional case)
- 8. Develop the AlgebraicSolving.jl package (basic solving)
- 9. Develop the AlgebraicSolving.jl package for semi-algebraic geometry
- 10. Improve parallelism in hashing
- 11. Use AVX512 + Apple M2 chip instructions
- 12. Use MPI to have msolve running on clusters
- 13. Write an interface to the tracer (in AlgebraicSolving.jl)
- 14. Write a C interface with a documented API
- 15. Integrate Hensel lifting techniques ~> quadratic convergence when lifting rationals
- 16. Modular arithmetics with floating point arithmetics
- 17. Linear algebra improvements: matrices are not only sparse

but structured \rightsquigarrow matrix multiplication \leftrightarrow Gaussian elimination

- 18. Use code generation techniques
- 19. Have a dedicated implementation for the boolean field
- 21. Hunt bugs, write documentations, etc, etc, etc, etc...

Recent trends in computer algebra

https://rtca2023.github.io/

- Effective Aspects in Diophantine Approximation (March 27-31)
- Certified and Symbolic-Numeric Computation (May 22-26)
- Mathematical Software and High Performance Algebraic Computing (June 26-30)
- Fundamental Algorithms and Algorithmic Complexity (Sep. 25-29)
- Geometry of Polynomial System Solving, Optimization and Topology (Oct. 16-20)
- Computer Algebra for Functional Equations in Combinatorics and Physics (Dec. 4-8)

