Quadratically constrained polynomial optimisation in statistics

Kemal Rose

Workshop on Solving Polynomial Equations and Applications 2022 at CWI Amsterdam

What is a POMDP

Partially observable Markov decision processes model decision processes in which an agent manipulates the state of a system in a sequence of events, having only partial information about the state of the system.

Crying baby example

The task is to feed a baby when it is hungry and not when it is full. The decision is based only on the information whether the baby cries. Feeding a baby ensures that it is no longer hungry, while an unfed baby might turn hungry:

\[\begin{align*}
F &\quad H \\
0.8 &\quad 0.2
\end{align*} \]

The information whether a baby cries might not reveal the true state of the baby:

\[
P(\text{cries} | \text{fed}) = 0.2, \quad P(\text{cries} | \text{hungry}) = 0.9
\]

The decision rule \(\pi\) of the agent is a stochastic map from observations to actions.

\[\pi = (P(\text{feed} | \text{cries}), P(\text{feed} | \text{doesn't cry}))\]

The optimisation problem

We optimise the expected discounted reward

\[R(\pi) = \mathbb{E} \left(\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right) \]

A rational function on a product of simplices. A possible reward function is

\[R(\pi) = -108.1 + 160.0\pi_1 + 40.55\pi_2 - 90.0\pi_1\pi_2 - 90.0\pi_2^2 \]

\[1.9 + 8.5\pi_1 - 0.45\pi_2 \]

The set of state-action frequencies

We denote by \(\Phi(\Delta_{O,A})\) the state-action frequency of \(\pi\). Have a linear function \(r\) with

\[R = r \circ \Phi. \]

What is new?

We recast the optimisation problem by factorising the reward function. \(\Phi(\Delta_{O,A})\) is quadratically constrained! In fact, a join of Segre varieties intersected with the simplex and a linear space.

- Reward optimisation is equivalent to optimising the linear function \(r\) over the quadratically constrained set \(\Phi(\Delta_{O,A})\).
- Investigate critical equations coming from the KKT approach.
- Have better numerical stability for discount factors \(\gamma\) close to 1.
- New approaches possible that leverage the geometry of \(\Phi(\Delta_{O,A})\), i.e. Riemannian optimisation.

Semidefinite programming

We apply SDP relaxation to the quadratically constrained optimisation problem.

\[\begin{align*}
&\text{minimise} & \quad \text{trace}(QX) \\
&\text{subject to} & \quad X \succeq 0, \\
& & \quad X_{i,i} = 1 \forall i.
\end{align*} \]

- The resulting SDP problem can be solved efficiently.
- Computational experiments suggest: the objective value of the relaxed problem does not change.
- Approach: investigate the faces of the polyhedral cone of convex Lagrange multipliers.

References

Code can be found at https://github.com/marinagarrote/Algebraic-Optimization-of-Sequential-Decision-Rules

Ongoing & Future Research

→ Apply methods from Riemannian optimization
→ Investigate the multi-agent case.
→ Determine polar/ED degrees of \(\Phi(\Delta_{O,A})\)
→ Show objective value exactness for SDP relaxation.