The Chvátal-Gomory Procedure for Integer SDPs

Frank de Meijer, Renata Sotirov

Tilburg University, The Netherlands

Outline of the talk

- Integer Semidefinite Programs (ISDPs)
- Chvátal-Gomory procedure for ISDPs
- A Branch-and-Cut algorithm for ISDPs
- Case study: the Quadratic Traveling Salesman Problem

Integer semidefinite programs

- $\mathcal{S}^{n}:=\left\{X \in \mathbb{R}^{n \times n}: X=X^{\top}\right\}$
- $\langle\cdot, \cdot\rangle$...the trace inner product

Integer semidefinite programs

- $\mathcal{S}^{n}:=\left\{X \in \mathbb{R}^{n \times n}: X=X^{\top}\right\}$
- $\langle\cdot, \cdot\rangle$... the trace inner product
- Integer SemiDefinite Program (ISDP) in standard primal form:

$$
\begin{aligned}
& \min \\
\left(P_{I S D P}\right) & \langle\mathbf{C}, \mathbf{X}\rangle \\
\text { s.t. } & \left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{X}\right\rangle=b_{i} \quad \text { for all } i \in[m], \\
& \mathbf{X} \succeq \mathbf{0}, \mathbf{X} \in \mathbb{Z}^{n \times n},
\end{aligned}
$$

where $\mathbf{C}, \mathbf{A}_{i} \in \mathcal{S}^{n}, \mathbf{b} \in \mathbb{R}^{m}$.

Integer semidefinite programs

- $\mathcal{S}^{n}:=\left\{X \in \mathbb{R}^{n \times n}: X=X^{\top}\right\}$
- $\langle\cdot, \cdot\rangle$...the trace inner product
- Integer SemiDefinite Program (ISDP) in standard primal form:

$$
\begin{aligned}
& \min \\
\left(P_{I S D P}\right) & \langle\mathbf{C}, \mathbf{X}\rangle \\
\text { s.t. } & \left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{X}\right\rangle=b_{i} \quad \text { for all } i \in[m], \\
& \mathbf{X} \succeq \mathbf{0}, \mathbf{X} \in \mathbb{Z}^{n \times n},
\end{aligned}
$$

where $\mathbf{C}, \mathbf{A}_{i} \in \mathcal{S}^{n}, \mathbf{b} \in \mathbb{R}^{m}$.

- ISDP in standard dual form:

$$
\max \mathbf{b}^{\top} \mathbf{x}
$$

$\left(D_{I S D P}\right) \quad$ s.t. $\quad \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m}$.

Integer semidefinite programs

- Here, we (mostly) consider ISDPs in dual form:

$$
\begin{array}{ll}
\max & \mathbf{b}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m} .
\end{array}
$$

Integer semidefinite programs

- Here, we (mostly) consider ISDPs in dual form:

$$
\begin{array}{ll}
\max & \mathbf{b}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m} .
\end{array}
$$

- if $\mathbf{x} \in \mathbb{Z}^{m_{1}} \times \mathbb{R}^{m_{2}}$ s.t. $m_{1}+m_{2}=m \rightsquigarrow$ mixed-integer SDP (MISDP)

Integer semidefinite programs

- Here, we (mostly) consider ISDPs in dual form:

$$
\begin{array}{ll}
\max & \mathbf{b}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m} .
\end{array}
$$

- if $\mathbf{x} \in \mathbb{Z}^{m_{1}} \times \mathbb{R}^{m_{2}}$ s.t. $m_{1}+m_{2}=m \rightsquigarrow$ mixed-integer SDP (MISDP)
- MISDPs:
- are (in general) $\mathcal{N} \mathcal{P}$-hard problems

Integer semidefinite programs

- Here, we (mostly) consider ISDPs in dual form:

$$
\begin{array}{ll}
\max & \mathbf{b}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m} .
\end{array}
$$

- if $\mathbf{x} \in \mathbb{Z}^{m_{1}} \times \mathbb{R}^{m_{2}}$ s.t. $m_{1}+m_{2}=m \rightsquigarrow$ mixed-integer SDP (MISDP)
- MISDPs:
- are (in general) $\mathcal{N} \mathcal{P}$-hard problems
- find applications: truss topology optimization, signal processing, control systems, etc.

Integer semidefinite programs

- Here, we (mostly) consider ISDPs in dual form:

$$
\begin{array}{ll}
\max & \mathbf{b}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m} .
\end{array}
$$

- if $\mathbf{x} \in \mathbb{Z}^{m_{1}} \times \mathbb{R}^{m_{2}}$ s.t. $m_{1}+m_{2}=m \rightsquigarrow$ mixed-integer SDP (MISDP)
- MISDPs:
- are (in general) $\mathcal{N} \mathcal{P}$-hard problems
- find applications: truss topology optimization, signal processing, control systems, etc.
- in combinatorial optimization

Example: BQPs and ISDPs

Binary Quadratic Problems \& ISDPs

Given

- cost matrix $\mathbf{Q} \in \mathcal{S}^{n}$
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b}=\left(b_{i}\right) \in \mathbb{R}^{m}$

Binary Quadratic Problems \& ISDPs

Given

- cost matrix $\mathbf{Q} \in \mathcal{S}^{n}$
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b}=\left(b_{i}\right) \in \mathbb{R}^{m}$

Binary Quadratic Problem (BQP):

$$
\begin{aligned}
\min & \mathbf{x}^{\top} \mathbf{Q x} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \in\{0,1\}^{n} .
\end{aligned}
$$

Binary Quadratic Problems \& ISDPs

Given

- cost matrix $\mathbf{Q} \in \mathcal{S}^{n}$
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b}=\left(b_{i}\right) \in \mathbb{R}^{m}$

Binary Quadratic Problem (BQP):

$$
\begin{aligned}
\min & \mathbf{x}^{\top} \mathbf{Q x} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \in\{0,1\}^{n} .
\end{aligned}
$$

Examples:

- max-cut, stable set problem, quadratic assignment problem, graph coloring, graph partition problem, bandwidth problem, etc.

Binary Quadratic Problems \& ISDPs

- rewrite the objective function:

$$
\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}=\left\langle\mathbf{Q}, \mathbf{x x}^{\top}\right\rangle=\langle\mathbf{Q}, \mathbf{X}\rangle,
$$

where $\mathbf{X}=\mathbf{x} \mathbf{x}^{\top}$

Binary Quadratic Problems \& ISDPs

- rewrite the objective function:

$$
\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}=\left\langle\mathbf{Q}, \mathbf{x x}^{\top}\right\rangle=\langle\mathbf{Q}, \mathbf{X}\rangle,
$$

where $\mathbf{X}=\mathbf{x x}^{\top}$

- reformulated BQP:

$$
\begin{array}{cl}
\min & \langle\mathbf{Q}, \mathbf{X}\rangle \\
\text { s.t. } & \mathbf{A} \mathbf{x}=\mathbf{b} \\
& \operatorname{diag}(\mathbf{X})=\mathbf{x} \\
& \left(\begin{array}{cc}
1 & \mathbf{x}^{\top} \\
\mathbf{x} & \mathbf{X}
\end{array}\right) \succeq \mathbf{0}, \operatorname{rank}\left(\begin{array}{cc}
1 & \mathbf{x}^{\top} \\
\mathbf{x} & \mathbf{X}
\end{array}\right)=1
\end{array}
$$

where diag : $\mathcal{S}^{n} \rightarrow \mathbb{R}^{n}$ maps a matrix to a vector containing its diag. entries.

Binary Quadratic Problems \& ISDPs

- rank constraint can be replaced by another notion of exactness (!)

Binary Quadratic Problems \& ISDPs

- rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanović and Rendl, Letchford and Sørensen)

Let $\mathbf{X} \in\{0,1\}^{n \times n}$ be a symmetric matrix.
Then $\mathbf{X} \succeq \mathbf{0}$ if and only if $\mathbf{X}=\sum_{i=1}^{k} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}{ }^{\top}$ for some $\mathbf{x}_{\mathbf{i}} \in\{0,1\}^{n}, i \in[k]$.

Binary Quadratic Problems \& ISDPs

- rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanović and Rendl, Letchford and Sørensen)

Let $\mathbf{X} \in\{0,1\}^{n \times n}$ be a symmetric matrix.
Then $\mathbf{X} \succeq \mathbf{0}$ if and only if $\mathbf{X}=\sum_{i=1}^{k} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}{ }^{\top}$ for some $\mathbf{x}_{\mathbf{i}} \in\{0,1\}^{n}, i \in[k]$.
Lemma (de Meijer, S.)
Let $\overline{\mathbf{X}}=\left(\begin{array}{cc}1 & \operatorname{diag}(\mathbf{X})^{\top} \\ \operatorname{diag}(\mathbf{X}) & \mathbf{X}\end{array}\right) \succeq \mathbf{0}$. Then $\operatorname{rank}(\overline{\mathbf{X}})=1 \Leftrightarrow \mathbf{X} \in\{0,1\}^{n \times n}$.

Binary Quadratic Problems \& ISDPs

- rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanović and Rendl, Letchford and Sørensen)

Let $\mathbf{X} \in\{0,1\}^{n \times n}$ be a symmetric matrix.
Then $\mathbf{X} \succeq \mathbf{0}$ if and only if $\mathbf{X}=\sum_{i=1}^{k} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}{ }^{\top}$ for some $\mathbf{x}_{\mathbf{i}} \in\{0,1\}^{n}, i \in[k]$.
Lemma (de Meijer, S.)
Let $\overline{\mathbf{X}}=\left(\begin{array}{cc}1 & \operatorname{diag}(\mathbf{X})^{\top} \\ \operatorname{diag}(\mathbf{X}) & \mathbf{X}\end{array}\right) \succeq \mathbf{0}$. Then $\operatorname{rank}(\overline{\mathbf{X}})=1 \Leftrightarrow \mathbf{X} \in\{0,1\}^{n \times n}$.

$$
\text { BQP } \quad \Leftrightarrow \quad \text { BSDP } \begin{cases}\min & \langle\mathbf{Q}, \mathbf{X}\rangle \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \operatorname{diag}(\mathbf{X})=\mathbf{x} \\
& \mathbf{X} \in\{0,1\}^{n \times n},\left(\begin{array}{cc}
1 & \mathbf{x}^{\top} \\
\mathbf{x} & \mathbf{X}
\end{array}\right) \succeq \mathbf{0}\end{cases}
$$

The Chvátal-Gomory closure

The Chvátal-Gomory closure

- $C \subseteq \mathbb{R}^{m}$ be a compact convex set

The Chvátal-Gomory closure

- $C \subseteq \mathbb{R}^{m}$ be a compact convex set
- $C_{I}:=\operatorname{Conv}\left(C \cap \mathbb{Z}^{m}\right) \ldots$ integer hull of C

The Chvátal-Gomory closure

- $C \subseteq \mathbb{R}^{m}$ be a compact convex set
- $C_{I}:=\operatorname{Conv}\left(C \cap \mathbb{Z}^{m}\right) \ldots$ integer hull of C
- the Chvátal-Gomory (CG) closure of C :

$$
c(C):=\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{Z}^{m} \times \mathbb{R} \\ C \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq\lfloor d\rfloor\right\}
$$

The Chvátal-Gomory closure

- $C \subseteq \mathbb{R}^{m}$ be a compact convex set
- $C_{I}:=\operatorname{Conv}\left(C \cap \mathbb{Z}^{m}\right) \ldots$ integer hull of C
- the Chvátal-Gomory (CG) closure of C :

$$
c(C):=\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{Z}^{m} \times \mathbb{R} \\ C \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq\lfloor d\rfloor\right\}
$$

- the inequalities that define $c(C)$ are known as Chvátal-Gomory cuts

The Chvátal-Gomory closure

- $C \subseteq \mathbb{R}^{m}$ be a compact convex set
- $C_{I}:=\operatorname{Conv}\left(C \cap \mathbb{Z}^{m}\right) \ldots$ integer hull of C
- the Chvátal-Gomory (CG) closure of C :

$$
c(C):=\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{Z}^{m} \times \mathbb{R} \\ C \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq\lfloor d\rfloor\right\}
$$

- the inequalities that define $c(C)$ are known as Chvátal-Gomory cuts
- Let $C^{(0)}:=C$ and

$$
C^{(k+1)}:=c\left(C^{(k)}\right) \text {, where } C^{(k)} \text { is the } k \text { th CG closure of } C, k \in \mathbb{Z}_{+}
$$

The Chvátal-Gomory closure

- $C \subseteq \mathbb{R}^{m}$ be a compact convex set
- $C_{I}:=\operatorname{Conv}\left(C \cap \mathbb{Z}^{m}\right) \ldots$ integer hull of C
- the Chvátal-Gomory (CG) closure of C :

$$
c(C):=\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{Z}^{m} \times \mathbb{R} \\ C \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq\lfloor d\rfloor\right\}
$$

- the inequalities that define $c(C)$ are known as Chvátal-Gomory cuts
- Let $C^{(0)}:=C$ and

$$
C^{(k+1)}:=c\left(C^{(k)}\right) \text {, where } C^{(k)} \text { is the } k \text { th CG closure of } C, k \in \mathbb{Z}_{+}
$$

- this leads to:

$$
C_{I} \subseteq \ldots \subseteq C^{(k+1)} \subseteq C^{(k)} \subseteq \ldots \subseteq C^{(0)}=C
$$

The Chvátal-Gomory closure (cont.)

$$
C_{I} \subseteq \ldots \subseteq C^{(k+1)} \subseteq C^{(k)} \subseteq \ldots \subseteq C^{(0)}=C
$$

- the smallest k for which $C_{I}=C^{(k)}$ is known as the Chvátal rank of C

The Chvátal-Gomory closure (cont.)

$$
C_{I} \subseteq \ldots \subseteq C^{(k+1)} \subseteq C^{(k)} \subseteq \ldots \subseteq C^{(0)}=C
$$

- the smallest k for which $C_{I}=C^{(k)}$ is known as the Chvátal rank of C
- finite Chvátal rank is proven for:
- bounded real polyhedra - Chvátal
- unbounded rational polyhedra - Schrijver
- irrational polytopes - Dunkel, Schulz
- bounded conic representable sets - Çezik, lyengar
- rational ellipsoids Dey and Vielma
- strictly convex bodies - Dadush, Dey, Vielma
- compact convex sets - Braun, Pokutta and Dadush, Dey, Vielma

the Chvátal-Gomory closure of spectrahedra

The Chvátal-Gomory closure of spectrahedra

- ISDP in standard dual form:

$$
\begin{array}{lll}
& \max & \mathbf{b}^{\top} \mathbf{x} \\
\left(D_{I S D P}\right) & \text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m}
\end{array}
$$

The Chvátal-Gomory closure of spectrahedra

- ISDP in standard dual form:

$$
\begin{array}{lll}
& \max & \mathbf{b}^{\top} \mathbf{x} \\
\left(D_{I S D P}\right) & \text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m}
\end{array}
$$

- underlying spectrahedron:

$$
P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}
$$

The Chvátal-Gomory closure of spectrahedra

- ISDP in standard dual form:

$$
\begin{array}{lll}
& \max & \mathbf{b}^{\top} \mathbf{x} \\
\left(D_{I S D P}\right) & \text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m}
\end{array}
$$

- underlying spectrahedron:

$$
P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}
$$

- Recall: $\mathbf{D} \succeq 0$ iff $\langle\mathbf{D}, \mathbf{U}\rangle \geq 0$ for all $\mathbf{U} \in \mathcal{S}_{+}^{n}:=\left\{X \in \mathcal{S}^{n}: X \succeq 0\right\}$

The Chvátal-Gomory closure of spectrahedra

- ISDP in standard dual form:

$$
\begin{array}{lll}
& \max & \mathbf{b}^{\top} \mathbf{x} \\
\left(D_{\text {ISDP }}\right) & \text { s.t. } & \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{m}
\end{array}
$$

- underlying spectrahedron:

$$
P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}
$$

- Recall: $\mathbf{D} \succeq 0$ iff $\langle\mathbf{D}, \mathbf{U}\rangle \geq 0$ for all $\mathbf{U} \in \mathcal{S}_{+}^{n}:=\left\{X \in \mathcal{S}^{n}: X \succeq 0\right\}$

$$
P=\bigcap_{\mathbf{U} \in \mathcal{S}_{+}^{n}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \sum_{i=1}^{m} x_{i}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \leq\langle\mathbf{C}, \mathbf{U}\rangle\right\}
$$

The Chvátal-Gomory closure of spectrahedra (cont.)

- P is a closed convex set: $P=\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{R}^{m+1} \\ P \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}$

The Chvátal-Gomory closure of spectrahedra (cont.)

- P is a closed convex set: $P=$

$$
\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{R}^{m+1} \\ P \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}
$$

Theorem (de Meijer, S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ be a non-empty spectrahedron.

The Chvátal-Gomory closure of spectrahedra (cont.)

- P is a closed convex set: $P=$

$$
\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{R}^{m+1} \\ P \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}
$$

Theorem (de Meijer, S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ be a non-empty spectrahedron.
Let $(\mathbf{c}, d) \in \mathbb{R}^{m+1}$ be such that $P \subseteq\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}$.

The Chvátal-Gomory closure of spectrahedra (cont.)

- P is a closed convex set: $P=$

$$
\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{R}^{m+1} \\ P \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}
$$

Theorem (de Meijer, S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ be a non-empty spectrahedron.
Let $(\mathbf{c}, d) \in \mathbb{R}^{m+1}$ be such that $P \subseteq\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}$.
Then, $\exists \mathbf{U} \in \mathcal{S}_{+}^{n}$ such that $\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle=c_{i}$ for all $i \in[m]$ and $\langle\mathbf{C}, \mathbf{U}\rangle \leq d$.

The Chvátal-Gomory closure of spectrahedra (cont.)

- P is a closed convex set: $P=$

$$
\bigcap_{\substack{(\mathbf{c}, d) \in \mathbb{R}^{m+1} \\ P \subseteq\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}
$$

Theorem (de Meijer, S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ be a non-empty spectrahedron.
Let $(\mathbf{c}, d) \in \mathbb{R}^{m+1}$ be such that $P \subseteq\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{c}^{\top} \mathbf{x} \leq d\right\}$.
Then, $\exists \mathbf{U} \in \mathcal{S}_{+}^{n}$ such that $\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle=c_{i}$ for all $i \in[m]$ and $\langle\mathbf{C}, \mathbf{U}\rangle \leq d$.

- the Chvátal-Gomory closure of P :

$$
c(P)=\bigcap_{\substack{\mathbf{U} \in \mathcal{S}_{+}^{n} \text { s.t. } \\\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, i \in[m]}}\left\{\mathbf{x} \in \mathbb{R}^{m}: \sum_{i=1}^{m} x_{i}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor\right\}
$$

Chvátal-Gomory cuts for spectrahedra

- a Chvátal-Gomory cut:

$$
\sum_{i=1}^{m} x_{i}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor, \quad \mathbf{U} \in \mathcal{S}_{+}^{n} \text { s.t. }\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]
$$

Chvátal-Gomory cuts for spectrahedra

- a Chvátal-Gomory cut:

$$
\sum_{i=1}^{m} x_{i}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor, \quad \mathbf{U} \in \mathcal{S}_{+}^{n} \text { s.t. }\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]
$$

- Chvátal-Gomory cuts for binary conic programs are introduced:

Cezik and lyengar, Cuts for mixed 0-1 conic programming. Math. Program., 104, 2005.

Chvátal-Gomory cuts for spectrahedra

- a Chvátal-Gomory cut:

$$
\sum_{i=1}^{m} x_{i}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor, \quad \mathbf{U} \in \mathcal{S}_{+}^{n} \text { s.t. }\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]
$$

- Chvátal-Gomory cuts for binary conic programs are introduced:

Cezik and lyengar, Cuts for mixed 0-1 conic programming. Math. Program., 104, 2005.

- Separation of CG cuts for conic problems is posted as an open problem by Çezik-lyengar.

Some results on CG cuts and spectrahedra

Some results on CG cuts and spectrahedra

- CG closure of bounded spectrahedron is a rational polytope.

Dadush, Dey and Vielma, On the Chvátal-Gomory closure of a compact convex set. Math. Program., 145, 2014.

Some results on CG cuts and spectrahedra

- CG closure of bounded spectrahedron is a rational polytope.

Dadush, Dey and Vielma, On the Chvátal-Gomory closure of a compact convex set. Math. Program., 145, 2014.

- Homogeneity property of CG closure:

Let H be a supporting hyperplane of bounded spectrahedron P. Then

$$
c(P \cap H)=c(P) \cap H .
$$

Simplified proof for bounded spectrahedra by de Meijer and S.

Some results on CG cuts and spectrahedra

- CG closure of bounded spectrahedron is a rational polytope.

Dadush, Dey and Vielma, On the Chvátal-Gomory closure of a compact convex set. Math. Program., 145, 2014.

- Homogeneity property of CG closure:

Let H be a supporting hyperplane of bounded spectrahedron P. Then

$$
c(P \cap H)=c(P) \cap H .
$$

Simplified proof for bounded spectrahedra by de Meijer and S.

- A closed-form expression for the CG closure of some bounded spectrahedra

A closed-form expression for $c(P)$

- for rational polyhedra: closed-form expression for $c(P)$ follows from a total dual integral (TDI) representation of the linear system

A closed-form expression for $c(P)$

- for rational polyhedra: closed-form expression for $c(P)$ follows from a total dual integral (TDI) representation of the linear system

Total dual integrality for SDPs ?
De Carli Silva and Tunçel. A notion on total dual integrality for convex, semidefinite, and extended formulations. SIAM J. Discrete Math., 34, 2018.

A closed-form expression for $c(P)$

Total dual integrality for SDPs ?

Definiton (Property (PZZ))

A matrix $\mathbf{X} \in \mathcal{S}_{n}^{+}$satisfies integrality property $(\mathrm{P} \mathbb{Z})$ if

$$
\mathbf{X}=\sum_{S \subseteq[n]} \mathbf{y}_{\mathbf{s}} \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}^{\top} \quad \text { for some } \mathbf{y}: \mathcal{P}([n]) \rightarrow \mathbb{Z}_{+},
$$

where $\mathbb{1}_{\mathbf{S}}$ is the indicator vector of S, and $\mathcal{P}([n])$ the set of all subsets of $[n]$.

A closed-form expression for $c(P)$

Total dual integrality for SDPs ?

Definiton (Property (PZ))

A matrix $\mathbf{X} \in \mathcal{S}_{n}^{+}$satisfies integrality property ($\mathrm{P} \mathbb{Z}$) if

$$
\mathbf{X}=\sum_{S \subseteq[n]} \mathbf{y}_{\mathbf{s}} \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}^{\top} \quad \text { for some } \mathbf{y}: \mathcal{P}([n]) \rightarrow \mathbb{Z}_{+},
$$

where $\mathbb{1}_{\mathbf{S}}$ is the indicator vector of S, and $\mathcal{P}([n])$ the set of all subsets of $[n]$.

Definiton (Total dual integrality for SDPs)

An LMI C $-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}$ is called totally dual integral if, for every $\mathbf{b} \in \mathbb{Z}^{m}$, the SDP dual to $\sup \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq 0\right\}$ has an optimal solution satisfying property $(\mathrm{P} \mathbb{Z})$ whenever it has an optimal solution.

A closed-form expression for $c(P)$ (cont.)

Theorem (de Meijer and S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ with $\mathbf{A}_{\mathbf{i}} \in \mathbb{Z}^{n \times n} \cap \mathcal{S}^{n}$ for all $i \in[m]$
s.t. $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}$ is totally dual integral and satisfies Slater's condition.

A closed-form expression for $c(P)$ (cont.)

Theorem (de Meijer and S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ with $\mathbf{A}_{\mathbf{i}} \in \mathbb{Z}^{n \times n} \cap \mathcal{S}^{n}$ for all $i \in[m]$
s.t. $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}$ is totally dual integral and satisfies Slater's condition.

Then

$$
c(P)=Q:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{B} \mathbf{x} \leq \mathbf{d}\right\},
$$

A closed-form expression for $c(P)$ (cont.)

Theorem (de Meijer and S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ with $\mathbf{A}_{\mathbf{i}} \in \mathbb{Z}^{n \times n} \cap \mathcal{S}^{n}$ for all $i \in[m]$
s.t. $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}$ is totally dual integral and satisfies Slater's condition.

Then

$$
c(P)=Q:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{B} \mathbf{x} \leq \mathbf{d}\right\},
$$

where $\mathbf{B} \in \mathbb{Z}^{\mathcal{P}([n]) \times m}$ and $\mathbf{d} \in \mathbb{Z}^{\mathcal{P}([n])}$ s.t.

$$
B_{s, i}:=\left\langle\mathbf{A}_{\mathbf{i}}, \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}{ }^{\top}\right\rangle \quad \text { and } \quad d_{s}:=\left\lfloor\left\langle\mathbf{C}, \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}^{\top}\right\rangle\right\rfloor,
$$

for all $S \subseteq[n]$ and $i \in[m]$.

A closed-form expression for $c(P)$ (cont.)

Theorem (de Meijer and S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ with $\mathbf{A}_{\mathbf{i}} \in \mathbb{Z}^{n \times n} \cap \mathcal{S}^{n}$ for all $i \in[m]$
s.t. $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}$ is totally dual integral and satisfies Slater's condition.

Then

$$
c(P)=Q:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{B} \mathbf{x} \leq \mathbf{d}\right\},
$$

where $\mathbf{B} \in \mathbb{Z}^{\mathcal{P}([n]) \times m}$ and $\mathbf{d} \in \mathbb{Z}^{\mathcal{P}([n])}$ s.t.

$$
B_{s, i}:=\left\langle\mathbf{A}_{\mathbf{i}}, \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}{ }^{\top}\right\rangle \quad \text { and } \quad d_{s}:=\left\lfloor\left\langle\mathbf{C}, \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}^{\top}\right\rangle\right\rfloor,
$$

for all $S \subseteq[n]$ and $i \in[m]$.

- If \mathbf{C} is s.t. $\left\langle\mathbf{C}, \mathbb{1}_{\mathbf{S}} \mathbb{1}_{\mathbf{S}}{ }^{\top}\right\rangle \in \mathbb{Z}$ for all $S \subseteq[n]$, then $c(P)=P$.

A closed-form expression for $c(P)$ (cont.)

Theorem (de Meijer and S.)

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$ with $\mathbf{A}_{\mathbf{i}} \in \mathbb{Z}^{n \times n} \cap \mathcal{S}^{n}$ for all $i \in[m]$
s.t. $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}$ is totally dual integral and satisfies Slater's condition.

Then

$$
c(P)=Q:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{B} \mathbf{x} \leq \mathbf{d}\right\},
$$

where $\mathbf{B} \in \mathbb{Z}^{\mathcal{P}([n]) \times m}$ and $\mathbf{d} \in \mathbb{Z}^{\mathcal{P}([n])}$ s.t.

$$
B_{S, i}:=\left\langle\mathbf{A}_{\mathbf{i}}, \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{s}}{ }^{\top}\right\rangle \quad \text { and } \quad d_{s}:=\left\lfloor\left\langle\mathbf{C}, \mathbb{1}_{\mathbf{s}} \mathbb{1}_{\mathbf{S}}^{\top}\right\rangle\right\rfloor,
$$

for all $S \subseteq[n]$ and $i \in[m]$.

- If \mathbf{C} is s.t. $\left\langle\mathbf{C}, \mathbb{1}_{\mathbf{S}} \mathbb{1}_{\mathbf{S}}{ }^{\top}\right\rangle \in \mathbb{Z}$ for all $S \subseteq[n]$, then $c(P)=P$.
- For any rational polyhedron there exists a TDI system that describes P. Is there such analogue for spectrahedra?

on exploiting CG cuts for spectrahedra ...

A CG-based branch-and-cut algorithm for ISDPs

- B\&C algorithm for solving ISDPs that exploits CG cuts of the spectrahedron

A CG-based branch-and-cut algorithm for ISDPs

- B\&C algorithm for solving ISDPs that exploits CG cuts of the spectrahedron
- our algorithm extends the work of:

Kobayashi and Takano. A B\&C algorithm for solving mixed-integer semidefinite optimization problems. Comput. Optim. Appl., 75, 2020.

A CG-based branch-and-cut algorithm for ISDPs

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$

A CG-based branch-and-cut algorithm for ISDPs

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$
- define $\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \operatorname{diag}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}\right) \geq 0\right\}$

A CG-based branch-and-cut algorithm for ISDPs

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$
- define $\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \operatorname{diag}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}\right) \geq 0\right\}$
- the $\mathbf{B} \& \mathbf{C}$ algorithm starts with the ILP:

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in \mathcal{F} \cap \mathbb{Z}^{m}\right\}
$$

and uses dynamic constraint generation (lazy constraint callback)

A CG-based branch-and-cut algorithm for ISDPs

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$
- define $\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \operatorname{diag}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}\right) \geq 0\right\}$
- the $\mathbf{B} \& \mathbf{C}$ algorithm starts with the ILP:

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in \mathcal{F} \cap \mathbb{Z}^{m}\right\}
$$

and uses dynamic constraint generation (lazy constraint callback)

- Whenever $\hat{x} \in \mathbb{Z}^{m}$ is found in the branching tree
\Longrightarrow check if $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} \hat{x}_{i} \succeq \mathbf{0}$ satisfied

A CG-based branch-and-cut algorithm for ISDPs

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$
- define $\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \operatorname{diag}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}\right) \geq 0\right\}$
- the $\mathbf{B} \& \mathbf{C}$ algorithm starts with the ILP:

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in \mathcal{F} \cap \mathbb{Z}^{m}\right\}
$$

and uses dynamic constraint generation (lazy constraint callback)

- Whenever $\hat{x} \in \mathbb{Z}^{m}$ is found in the branching tree
\Longrightarrow check if $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} \hat{x}_{i} \succeq \mathbf{0}$ satisfied
- If so, $\hat{\mathbf{x}}$ feasible for ($D_{I S D P}$).

A CG-based branch-and-cut algorithm for ISDPs

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i} \succeq \mathbf{0}\right\}$
- define $\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{m}: \operatorname{diag}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}\right) \geq 0\right\}$
- the $\mathbf{B} \& \mathbf{C}$ algorithm starts with the ILP:

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in \mathcal{F} \cap \mathbb{Z}^{m}\right\}
$$

and uses dynamic constraint generation (lazy constraint callback)

- Whenever $\hat{x} \in \mathbb{Z}^{m}$ is found in the branching tree
\Longrightarrow check if $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} \hat{x}_{i} \succeq \mathbf{0}$ satisfied
- If so, $\hat{\mathbf{x}}$ feasible for ($D_{I S D P}$).
- If not, then generate cut(s).

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- Kobayashi-Takano: Let d be an eigenvector corresponding to the smallest eigenvalue of $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} \hat{x}_{i}$. Then, add the cut:

$$
\left\langle\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}, \mathbf{d d}^{\top}\right\rangle \geq 0 \Longleftrightarrow \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{d d}^{\top}\right\rangle x_{i} \leq\left\langle\mathbf{C}, \mathbf{d d}^{\top}\right\rangle
$$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- Kobayashi-Takano: Let d be an eigenvector corresponding to the smallest eigenvalue of $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} \hat{x}_{i}$. Then, add the cut:

$$
\left\langle\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}, \mathbf{d d}^{\top}\right\rangle \geq 0 \Longleftrightarrow \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{d d}^{\top}\right\rangle x_{i} \leq\left\langle\mathbf{C}, \mathbf{d d}^{\top}\right\rangle
$$

$\Longrightarrow \hat{\mathbf{x}}$ is separated from P

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- Kobayashi-Takano: Let d be an eigenvector corresponding to the smallest eigenvalue of $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} \hat{x}_{j}$. Then, add the cut:

$$
\left\langle\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}, \mathbf{d d}^{\top}\right\rangle \geq 0 \Longleftrightarrow \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{d d}^{\top}\right\rangle x_{i} \leq\left\langle\mathbf{C}, \mathbf{d d}^{\top}\right\rangle
$$

$\Longrightarrow \hat{\mathbf{x}}$ is separated from P

- Our approach: Let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}$ for all $i \in[m]$

$$
\text { s.t. } \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \hat{x}_{i}>\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor .
$$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- Kobayashi-Takano: Let d be an eigenvector corresponding to the smallest eigenvalue of $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} \hat{x}_{i}$. Then, add the cut:

$$
\left\langle\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}, \mathbf{d d}^{\top}\right\rangle \geq 0 \quad \Longleftrightarrow \quad \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{d d}^{\top}\right\rangle x_{i} \leq\left\langle\mathbf{C}, \mathbf{d d}^{\top}\right\rangle
$$

$\Longrightarrow \hat{\mathbf{x}}$ is separated from P

- Our approach: Let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}$ for all $i \in[m]$

$$
\text { s.t. } \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \hat{x}_{i}>\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor .
$$

Then, add the CG cut:

$$
\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor
$$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- Kobayashi-Takano: Let d be an eigenvector corresponding to the smallest eigenvalue of $\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{i} \hat{x}_{i}$. Then, add the cut:

$$
\left\langle\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}, \mathbf{d d}^{\top}\right\rangle \geq 0 \Longleftrightarrow \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{d d}^{\top}\right\rangle x_{i} \leq\left\langle\mathbf{C}, \mathbf{d d}^{\top}\right\rangle
$$

$\Longrightarrow \hat{\mathbf{x}}$ is separated from P

- Our approach: Let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}$ for all $i \in[m]$

$$
\text { s.t. } \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \hat{x}_{i}>\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor .
$$

Then, add the CG cut:

$$
\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor
$$

Can one do even better?

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]$
- Note that

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in \mathbb{Z}^{m}\right\}
$$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]$
- Note that

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in \mathbb{Z}^{m}\right\}
$$

- Assume that $P \cap \mathbb{Z}^{m}$ is contained in $S \subseteq \mathbb{Z}^{m}$ and find

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]$
- Note that

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in \mathbb{Z}^{m}\right\}
$$

- Assume that $P \cap \mathbb{Z}^{m}$ is contained in $S \subseteq \mathbb{Z}^{m}$ and find

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor_{S} \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in S\right\}
$$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]$
- Note that

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in \mathbb{Z}^{m}\right\}
$$

- Assume that $P \cap \mathbb{Z}^{m}$ is contained in $S \subseteq \mathbb{Z}^{m}$ and find

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor_{S} \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in S\right\}
$$

- which leads to the Strengthened Chvátal-Gomory (S-CG) cut

$$
\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor_{S}
$$

A CG-based branch-and-cut algorithm for ISDPs (cont.)

- let $\mathbf{U} \in \mathcal{S}_{+}^{n},\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle \in \mathbb{Z}, \forall i \in[m]$
- Note that

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in \mathbb{Z}^{m}\right\}
$$

- Assume that $P \cap \mathbb{Z}^{m}$ is contained in $S \subseteq \mathbb{Z}^{m}$ and find

$$
\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor_{S} \geq \max \left\{\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i}: \sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\langle\mathbf{C}, \mathbf{U}\rangle, \mathbf{x} \in S\right\}
$$

- which leads to the Strengthened Chvátal-Gomory (S-CG) cut

$$
\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}\right\rangle x_{i} \leq\lfloor\langle\mathbf{C}, \mathbf{U}\rangle\rfloor_{S}
$$

- S-CG cuts are introduced for rational polyhedra:

Dash, Günlük, Lee. On a generalization of the CG closure. Math. Program., 192, 2022

A CG-based branch-and-cut algorithm for ISDPs (cont.)

Algorithm 1: CG-based B\&C algorithm for solving ($D_{\text {ISDP }}$)
Input: $\mathbf{C}, \mathbf{A}_{\mathbf{i}}, i \in[\mathrm{~m}], \mathrm{S}$
Initialize $\mathcal{F}=\left\{\mathbf{x} \in \mathbb{R}^{m}: \operatorname{diag}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} x_{i}\right) \geq 0\right\}$.
2 B\&B procedure: Start or continue the B\&B algorithm for solving the MILP $\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in \mathcal{F} \cap \mathbb{Z}^{m}\right\}$ using the callback function at each node in the tree.

3 Callback procedure: if an integer point $\hat{\mathbf{x}} \in \mathcal{F}$ is found then
if $\lambda_{\text {min }}\left(\mathbf{C}-\sum_{i=1}^{m} \mathbf{A}_{\mathbf{i}} \hat{x}_{i}\right)<0$ then
Call SeparationRoutine $\left(\mathbf{C}, \mathbf{A}_{\mathbf{1}}, \ldots, \mathbf{A}_{\mathbf{m}}, S, \hat{\mathbf{x}}\right)$ which provides $\mathbf{U}_{\mathbf{j}}, j \in[K]$. Add the cuts

$$
\sum_{i=1}^{m}\left\langle\mathbf{A}_{\mathbf{i}}, \mathbf{U}_{\mathbf{j}}\right\rangle x_{i} \leq\left\lfloor\left\langle\mathbf{C}, \mathbf{U}_{\mathbf{j}}\right\rangle\right\rfloor s \quad \text { for } j \in[K] \text { to } \mathcal{F} .
$$

else
| Use $\hat{\mathbf{x}}$ to cut off other nodes in the branching tree.
end
Return to Step 2
end
Output: $\hat{\mathbf{x}}, O P T:=\mathbf{b}^{\top} \mathbf{x}$

Separation routines?

SeparationRoutine is

Separation routines?

SeparationRoutine is

- ... a generic routine for binary SDPs, based on

Thm (Djukanović and Rendl, Letchford and Sørensen)
Let $\mathbf{X} \in\{0,1\}^{n \times n}$. Then $\mathbf{X} \succeq \mathbf{0} \Leftrightarrow \mathbf{X}=\sum_{i=1}^{k} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}^{\top}$ for $\mathbf{x}_{\mathbf{i}} \in\{0,1\}^{n}, i \in[k]$.

Separation routines?

SeparationRoutine is

- ... a generic routine for binary SDPs, based on

Thm (Djukanović and Rendl, Letchford and Sørensen)
Let $\mathbf{X} \in\{0,1\}^{n \times n}$. Then $\mathbf{X} \succeq \mathbf{0} \Leftrightarrow \mathbf{X}=\sum_{i=1}^{k} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}^{\top}$ for $\mathbf{x}_{\mathbf{i}} \in\{0,1\}^{n}, i \in[k]$.

- ... a problem-specific routine for constructing S-CG cuts for given a optimization problem.

ISDP for the Quadratic Traveling Salesman Problem

- $G=(V, A) \ldots$ directed simple graph
- $V \ldots$ vertex set, $n=|V|$
- $A \ldots$ arcs set, $m=|A|$

ISDP for the Quadratic Traveling Salesman Problem

- $G=(V, A) \ldots$ directed simple graph
- V... vertex set, $n=|V|$
- $A \ldots$ arcs set, $m=|A|$
- the set of tour matrices:

$$
\mathcal{T}_{n}(G):=\left\{\mathbf{X}^{\mathcal{C}} \in\{0,1\}^{n \times n}: x_{i j}^{\mathcal{C}}=1 \text { iff }(i, j) \in \mathcal{C} \text { for Hamiltonian cycle } \mathcal{C}\right\}
$$

ISDP for the Quadratic Traveling Salesman Problem

- $G=(V, A) \ldots$ directed simple graph
- $V \ldots$ vertex set, $n=|V|$
- $A \ldots$ arcs set, $m=|A|$
- the set of tour matrices:

$$
\mathcal{T}_{n}(G):=\left\{\mathbf{X}^{\mathcal{C}} \in\{0,1\}^{n \times n}: x_{i j}^{\mathcal{C}}=1 \text { iff }(i, j) \in \mathcal{C} \text { for Hamiltonian cycle } \mathcal{C}\right\}
$$

- the set of the 2 -arcs of G :

$$
\mathcal{A}:=\{(i, j, k):(i, j),(j, k) \in A,|\{i, j, k\}|=3\}
$$

ISDP for the Quadratic Traveling Salesman Problem

- $G=(V, A) \ldots$ directed simple graph
- V... vertex set, $n=|V|$
- $A \ldots$ arcs set, $m=|A|$
- the set of tour matrices:

$$
\mathcal{T}_{n}(G):=\left\{\mathbf{X}^{\mathcal{C}} \in\{0,1\}^{n \times n}: x_{i j}^{\mathcal{C}}=1 \text { iff }(i, j) \in \mathcal{C} \text { for Hamiltonian cycle } \mathcal{C}\right\}
$$

- the set of the 2-arcs of G :

$$
\mathcal{A}:=\{(i, j, k):(i, j),(j, k) \in A,|\{i, j, k\}|=3\}
$$

- $\mathbf{Q}=\left(q_{i j k}\right) \in \mathbb{R}^{n \times n \times n}$ s.t. $q_{i j k}=0$ if $(i, j, k) \notin \mathcal{A} \ldots$ cost matrix

ISDP for the Quadratic Traveling Salesman Problem

the Quadratic Traveling Salesman Problem:

$$
\operatorname{QTSP}(\mathbf{Q}, G):=\min _{\mathbf{x} \in \mathcal{T}_{n}(G)} \sum_{i, j, k=1}^{n} q_{i j k} x_{i j} x_{j k}
$$

ISDP for the Quadratic Traveling Salesman Problem

 the Quadratic Traveling Salesman Problem:$$
\operatorname{QTSP}(\mathbf{Q}, G):=\min _{\mathbf{x} \in \mathcal{T}_{n}(G)} \sum_{i, j, k=1}^{n} q_{i j k} x_{i j} x_{j k}
$$

- linearize the objective: $y_{i j k}:=x_{i j} x_{j k}$ and introduce coupling constraints:

$$
x_{i j}=\sum_{\substack{k \in N: \\(k, i, j) \in \mathcal{A}}} y_{k i j}=\sum_{\substack{k \in N: \\(i, j, k) \in \mathcal{A}}} y_{i j k} \quad \forall(i, j) \in A
$$

ISDP for the Quadratic Traveling Salesman Problem

 the Quadratic Traveling Salesman Problem:$$
\operatorname{QTSP}(\mathbf{Q}, G):=\min _{\mathbf{x} \in \mathcal{T}_{n}(G)} \sum_{i, j, k=1}^{n} q_{i j k} x_{i j} x_{j k}
$$

- linearize the objective: $y_{i j k}:=x_{i j} x_{j k}$ and introduce coupling constraints:

$$
x_{i j}=\sum_{\substack{k \in N: \\(k, i, j) \in \mathcal{A}}} y_{k i j}=\sum_{\substack{k \in N: \\(i, j, k) \in \mathcal{A}}} y_{i j k} \forall(i, j) \in A
$$

- formulation of the QTSP:

$$
\begin{aligned}
\operatorname{QTSP}(\mathbf{Q}, G):=\min & \sum_{i, j, k=1}^{n} q_{i j k} y_{i j k} \\
\text { s.t. } & \text { coupling constriants } \\
& y_{i j k} \geq 0 \quad \forall(i, j, k) \in \mathcal{A} \\
& \mathbf{X} \in \mathcal{T}_{n}(G)
\end{aligned}
$$

ISDP for the QTSP

ISDP for the QTSP:

$$
\min \sum_{i, j, k=1}^{n} q_{i j k} y_{i j k}
$$

s.t. coupling constriants

$$
\begin{aligned}
& \beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0} \\
& y_{i j k} \geq 0 \quad \forall(i, j, k) \in \mathcal{A} \\
& \mathbf{X}, \mathbf{X}^{(2)} \in \Pi_{n},
\end{aligned}
$$

where $\alpha \geq\left(2-\cos \left(\frac{2 \pi}{n}\right)\right) / n, \cos \left(\frac{2 \pi}{n}\right) \leq \beta<2$
and Π_{n} is the set of permutation matrices

Chvátal-Gomory cuts for the ISDPs of the QTSP

- the SDP constraint:

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0}
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP

- the SDP constraint:

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0}
$$

- Our B\&C algorithm starts optimizing over:

$$
\mathcal{F}:=\left\{\left(\mathbf{y}, \mathbf{X}, \mathbf{X}^{(2)}\right) \in \mathbb{R}_{+}^{\mathcal{A}} \times \Pi_{n} \times \Pi_{n}: \text { coupling constriants }\right\}
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP

- the SDP constraint:

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0}
$$

- Our B\&C algorithm starts optimizing over:

$$
\mathcal{F}:=\left\{\left(\mathbf{y}, \mathbf{X}, \mathbf{X}^{(2)}\right) \in \mathbb{R}_{+}^{\mathcal{A}} \times \Pi_{n} \times \Pi_{n}: \text { coupling constriants }\right\}
$$

- If an integer solution $\left(\hat{\mathbf{y}}, \hat{\mathbf{X}}, \hat{\mathbf{X}}^{(2)}\right)$ is found in the branching tree, then check $\lambda_{\text {min }}\left(\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right) \geq 0$.

Chvátal-Gomory cuts for the ISDPs of the QTSP

- the SDP constraint:

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0}
$$

- Our B\&C algorithm starts optimizing over:

$$
\mathcal{F}:=\left\{\left(\mathbf{y}, \mathbf{X}, \mathbf{X}^{(2)}\right) \in \mathbb{R}_{+}^{\mathcal{A}} \times \Pi_{n} \times \Pi_{n}: \text { coupling constriants }\right\}
$$

- If an integer solution $\left(\hat{\mathbf{y}}, \hat{\mathbf{X}}, \hat{\mathbf{X}}^{(2)}\right)$ is found in the branching tree, then check $\lambda_{\text {min }}\left(\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right) \geq 0$.
- If so, then $\hat{\mathbf{X}} \in \mathcal{T}_{n}(G)$ and we have found a solution for the QTSP.
- If not, then $\hat{\mathbf{X}}$ is the adjacency matrix of a directed node-disjoint cycle cover.

Chvátal-Gomory cuts for the ISDPs of the QTSP

- the SDP constraint:

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0}
$$

- Our B\&C algorithm starts optimizing over:

$$
\mathcal{F}:=\left\{\left(\mathbf{y}, \mathbf{X}, \mathbf{X}^{(2)}\right) \in \mathbb{R}_{+}^{\mathcal{A}} \times \Pi_{n} \times \Pi_{n}: \text { coupling constriants }\right\}
$$

- If an integer solution $\left(\hat{\mathbf{y}}, \hat{\mathbf{X}}, \hat{\mathbf{X}}^{(2)}\right)$ is found in the branching tree, then check $\lambda_{\text {min }}\left(\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right) \geq 0$.
- If so, then $\hat{\mathbf{X}} \in \mathcal{T}_{n}(G)$ and we have found a solution for the QTSP.
- If not, then $\hat{\mathbf{X}}$ is the adjacency matrix of a directed node-disjoint cycle cover.
\Rightarrow Generate dual matrices to cut off the current solution.

Chvátal-Gomory cuts for the ISDPs of the QTSP

- the SDP constraint:

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\mathbf{X}+\mathbf{X}^{(2)}\right)+\left(\mathbf{X}+\mathbf{X}^{(2)}\right)^{\top}\right) \succeq \mathbf{0}
$$

- Our B\&C algorithm starts optimizing over:

$$
\mathcal{F}:=\left\{\left(\mathbf{y}, \mathbf{X}, \mathbf{X}^{(2)}\right) \in \mathbb{R}_{+}^{\mathcal{A}} \times \Pi_{n} \times \Pi_{n}: \text { coupling constriants }\right\}
$$

- If an integer solution $\left(\hat{\mathbf{y}}, \hat{\mathbf{X}}, \hat{\mathbf{X}}^{(2)}\right)$ is found in the branching tree, then check $\lambda_{\text {min }}\left(\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right) \geq 0$.
- If so, then $\hat{\mathbf{X}} \in \mathcal{T}_{n}(G)$ and we have found a solution for the QTSP.
- If not, then $\hat{\mathbf{X}}$ is the adjacency matrix of a directed node-disjoint cycle cover.
\Rightarrow Generate dual matrices to cut off the current solution.
- we provide 6 classes of CG-cuts for the ISDP of the QTSP

Numerical results

We ...

- ... test various settings that include different cuts

Numerical results

We ...

- ... test various settings that include different cuts
- ... implement our algorithm in Julia and use Gurobi as MILP solver

Numerical results

We ...

- ... test various settings that include different cuts
-implement our algorithm in Julia and use Gurobi as MILP solver
- ... test our B\&C algorithm on 492 instances

Numerical results

We ...

- ... test various settings that include different cuts
-implement our algorithm in Julia and use Gurobi as MILP solver
- ... test our B\&C algorithm on 492 instances
- ... compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Numerical results

We ...

- ... test various settings that include different cuts
-implement our algorithm in Julia and use Gurobi as MILP solver
- ... test our B\&C algorithm on 492 instances
- ... compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Our algorithm significantly outperforms alternative solvers ...

- in computational times - we are hundreds time faster than alternatives
- in size of instances that we can solve

Numerical results

We ...

- ... test various settings that include different cuts
-implement our algorithm in Julia and use Gurobi as MILP solver
- ... test our B\&C algorithm on 492 instances
- ...compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Our algorithm significantly outperforms alternative solvers ...

- in computational times - we are hundreds time faster than alternatives
- in size of instances that we can solve
\Rightarrow We solve all instances within 5 minutes.
\Rightarrow Our largest QTSP instance has 2646 vertices and 5172 arcs.

Numerical results

We ...

- ... test various settings that include different cuts
-implement our algorithm in Julia and use Gurobi as MILP solver
- ... test our B\&C algorithm on 492 instances
- ...compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Our algorithm significantly outperforms alternative solvers ...

- in computational times - we are hundreds time faster than alternatives
- in size of instances that we can solve
\Rightarrow We solve all instances within 5 minutes.
\Rightarrow Our largest QTSP instance has 2646 vertices and 5172 arcs.
Is THIS AN EFFICIENT PROCEDURE FOR SOLVING GENERAL ISDPs?

Summary

In this talk, we ...

- derived binary SDP formulation for BQPs.

Summary

In this talk, we ...

- derived binary SDP formulation for BQPs.
- presented the CG procedure for integer SDPs.

Summary

In this talk, we ...

- derived binary SDP formulation for BQPs.
- presented the CG procedure for integer SDPs.
- introduced a CG-based B\&C algorithm for ISDPs.

Summary

In this talk, we ...

- derived binary SDP formulation for BQPs.
- presented the CG procedure for integer SDPs.
- introduced a CG-based B\&C algorithm for ISDPs.
- discussed implementation of our algorithm for the QTSP.

Summary

In this talk, we ...

- derived binary SDP formulation for BQPs.
- presented the CG procedure for integer SDPs.
- introduced a CG-based B\&C algorithm for ISDPs.
- discussed implementation of our algorithm for the QTSP.
- ... pointed to several open problems ... for future (current) research ...

Summary

In this talk, we ...

- derived binary SDP formulation for BQPs.
- presented the CG procedure for integer SDPs.
- introduced a CG-based B\&C algorithm for ISDPs.
- discussed implementation of our algorithm for the QTSP.
- ... pointed to several open problems ... for future (current) research ...

The talk is based on:
de Meijer and Sotirov, The Chvátal-Gomory-Gomory Procedure for Integer SDPs with Applications in Combinatorial Optimization, https://arxiv.org/abs/2201.10224

THANK YOU FOR YOUR ATTENTION

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

\Rightarrow find integer eigenvectors corr. to negative eigenvalues of

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right.
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

\Rightarrow find integer eigenvectors corr. to negative eigenvalues of

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right.
$$

- Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be the partition of V implied by the cycle covers in $\hat{\mathbf{X}}$, then

$$
v_{i}^{j}:=\left\{\begin{array}{ll}
n-\left|S_{j}\right| & \text { if } i \in S_{j} \\
-\left|S_{j}\right| & \text { if } i \notin S_{j},
\end{array} \quad \forall j \in[k]\right.
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

\Rightarrow find integer eigenvectors corr. to negative eigenvalues of

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right.
$$

- Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be the partition of V implied by the cycle covers in $\hat{\mathbf{X}}$, then

$$
\begin{gathered}
v_{i}^{j}:=\left\{\begin{array}{ll}
n-\left|S_{j}\right| & \text { if } i \in S_{j} \\
-\left|S_{j}\right| & \text { if } i \notin S_{j},
\end{array} \quad \forall j \in[k]\right. \\
\left\langle\mathbf{v}^{\mathbf{j}}\left(\mathbf{v}^{j}\right)^{\top}, \beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right\rangle<0 \text { for all } j \in[k]
\end{gathered}
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

\Rightarrow find integer eigenvectors corr. to negative eigenvalues of

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right.
$$

- Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be the partition of V implied by the cycle covers in $\hat{\mathbf{X}}$, then

$$
\begin{gathered}
v_{i}^{j}:=\left\{\begin{array}{ll}
n-\left|S_{j}\right| & \text { if } i \in S_{j} \\
-\left|S_{j}\right| & \text { if } i \notin S_{j},
\end{array} \quad \forall j \in[k]\right. \\
\left\langle\mathbf{v}^{\mathbf{j}}\left(\mathbf{v}^{j}\right)^{\top}, \beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right\rangle<0 \text { for all } j \in[k]
\end{gathered}
$$

- For all $j \in[k]$ construct the following CG cuts:

$$
\left\langle\mathbf{v}^{\mathbf{j}}\left(\mathbf{v}^{\mathbf{j}}\right)^{\top}, \mathbf{X}+\mathbf{X}^{(2)}\right\rangle \leq\left\lfloor\left\langle\mathbf{v}^{\mathbf{j}}\left(\mathbf{v}^{\mathbf{j}}\right)^{\top}, \beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}\right\rangle\right\rfloor
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

\Rightarrow find integer eigenvectors corr. to negative eigenvalues of

$$
\beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right.
$$

- Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be the partition of V implied by the cycle covers in $\hat{\mathbf{X}}$, then

$$
\begin{gathered}
v_{i}^{j}:=\left\{\begin{array}{ll}
n-\left|S_{j}\right| & \text { if } i \in S_{j} \\
-\left|S_{j}\right| & \text { if } i \notin S_{j},
\end{array} \quad \forall j \in[k]\right. \\
\left\langle\mathbf{v}^{\mathbf{j}}\left(\mathbf{v}^{j}\right)^{\top}, \beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}-\frac{1}{2}\left(\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)+\left(\hat{\mathbf{X}}+\hat{\mathbf{X}}^{(2)}\right)^{\top}\right)\right\rangle<0 \text { for all } j \in[k]
\end{gathered}
$$

- For all $j \in[k]$ construct the following CG cuts:

$$
\left\langle\mathbf{v}^{\mathbf{j}}\left(\boldsymbol{v}^{\mathbf{j}}\right)^{\top}, \mathbf{X}+\mathbf{X}^{(2)}\right\rangle \leq\left\lfloor\left\langle\mathbf{v}^{\mathbf{j}}\left(\mathbf{v}^{\mathbf{j}}\right)^{\top}, \beta \mathbf{I}_{\mathbf{n}}+\alpha \mathbf{J}_{\mathbf{n}}\right\rangle\right\rfloor
$$

- we provide 6 classes of CG-cuts for the ISDP of the QTSP

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

- CG cut of with dual multiplier $\mathbf{U}=\mathbb{1}_{\mathbf{S}} \mathbb{1}_{\mathbf{S}}{ }^{\top}$:

$$
\sum_{i \in S, j \in S} x_{i j} \leq|S|-1, \quad \forall S \subset N, 2 \leq|S|<n
$$

Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

- CG cut of with dual multiplier $\mathbf{U}=\mathbb{1}_{\mathbf{S}} \mathbb{1}_{\mathbf{S}}{ }^{\top}$:

$$
\sum_{i \in S, j \in S} x_{i j} \leq|S|-1, \quad \forall S \subset N, 2 \leq|S|<n
$$

- S-CG cut with dual multiplier $\mathbf{U}=\mathbb{1}_{\mathbf{S}} \mathbb{1}_{\mathbf{S}}{ }^{\top}$ and
$\sum_{k \in N:(i, k, j) \in \mathcal{A}} y_{i k j}-x_{i j}^{(2)}=0, \forall i, j \in S$, each with dual multiplier 1 , and $-y_{i k j} \leq 0 \forall(i, k, j) \in \mathcal{A}$, each with dual multiplier 1

$$
\sum_{\substack{i \in S \\ j \in S}} x_{i j}+\sum_{\substack{i \in S \\ j \in S}} \sum_{\substack{k \in N \backslash S \\(i, k, j) \in \mathcal{A}}} y_{i k j} \leq|S|-1, \quad \forall S \subset N, 2 \leq|S|<\frac{1}{2} n
$$

