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Outline of the talk

Integer Semidefinite Programs (ISDPs)

@ Chvatal-Gomory procedure for ISDPs
@ A Branch-and-Cut algorithm for ISDPs

Case study: the Quadratic Traveling Salesman Problem
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@ (-,-) ...the trace inner product
o Integer SemiDefinite Program (ISDP) in standard primal form:

min  (C, X)
(Pispp) st. (A, X) = b; for all i € [m],
X - 0 X e Zn><n7

where C,A; € S", b € R™.
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Integer semidefinite programs
0 ST ={XeR™ : X=X"}
@ (-,-) ...the trace inner product
o Integer SemiDefinite Program (ISDP) in standard primal form:

min  (C, X)
(Pispp) st. (A, X) = b; for all i € [m],
X - 0 X e Zn><n7

where C,A; € S", b € R™.
@ ISDP in standard dual form:

max b'x

D m
( ISDP) st. C— ZA,‘X; - 0, xcZm.
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Integer semidefinite programs

@ Here, we (mostly) consider ISDPs in dual form:

max b'x

m
st. C— ZA,‘X,’ > 0, xeZ™.

i=1
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Integer semidefinite programs

@ Here, we (mostly) consider ISDPs in dual form:

max b'x
m
st. C— ZA,‘X,’ > 0, xeZ™.

i=1

e if x € Z™ x R™ s.t. my + my = m ~» mixed—integer SDP (MISDP)
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@ Here, we (mostly) consider ISDPs in dual form:

max b'x
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st. C— ZA,‘X,’ =0, xe€ 7™,

i=1

e if x € Z™ x R™ s.t. my + my = m ~» mixed—integer SDP (MISDP)

o MISDPs:
o are (in general) N'P-hard problems

e find applications: truss topology optimization, signal processing, control
systems, etc.
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Integer semidefinite programs

@ Here, we (mostly) consider ISDPs in dual form:

max b'x

m
st. C— ZA,‘X,’ =0, xe€ 7™,

i=1

e if x € Z™ x R™ s.t. my + my = m ~» mixed—integer SDP (MISDP)

o MISDPs:
o are (in general) N'P-hard problems

e find applications: truss topology optimization, signal processing, control
systems, etc.
e in combinatorial optimization
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Binary Quadratic Problems & ISDPs

Given
@ cost matrix Q € 8"
@ AcR™"and b = (b;) € R"
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Binary Quadratic Problems & ISDPs

Given
@ cost matrix Q € 8"
@ AcR™"and b = (b;) € R"

Binary Quadratic Problem (BQP):

min  x' Qx
st. Ax=Db
x € {0,1}".
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Binary Quadratic Problems & ISDPs

Given
@ cost matrix Q € 8"
@ AcR™"and b = (b;) € R"

Binary Quadratic Problem (BQP):

min  x' Qx
st. Ax=Db
x € {0,1}".
Examples:

@ max-cut, stable set problem, quadratic assignment problem, graph coloring,
graph partition problem, bandwidth problem, etc.
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Binary Quadratic Problems & ISDPs

@ rewrite the objective function:
x"Qx = (Q,xx") = (Q,X),

where X = xx
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Binary Quadratic Problems & ISDPs

@ rewrite the objective function:
x"Qx = (Q,xx") = (Q,X),

where X = xx

o reformulated BQP:

min  (Q, X)
st. Ax=Db
diag(X) = x

1 x' 1 x'
>' "¢ =
<x X) =0, rank <x X) 1,

where diag : S” — R” maps a matrix to a vector containing its diag. entries.
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Binary Quadratic Problems & ISDPs

@ rank constraint can be replaced by another notion of exactness (!)
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Binary Quadratic Problems & ISDPs

@ rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanovi¢ and Rendl, Letchford and Sgrensen)

Let X € {0,1}"*" be a symmetric matrix.
Then X = 0 if and only if X = Zf'(:l xix; | for some x; € {0,1}", i € [K].
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Binary Quadratic Problems & ISDPs

@ rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanovi¢ and Rendl, Letchford and Sgrensen)

Let X € {0,1}"*" be a symmetric matrix.
Then X = 0 if and only if X = Zf'(:l xix; | for some x; € {0,1}", i € [K].

Lemma (de Meijer, S.)

o 1 diag(X) " o\ .
Let X = (diag(X) X = 0. Then rank(X) =1 < X e {0,1}"*".
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Binary Quadratic Problems & ISDPs

@ rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanovi¢ and Rendl, Letchford and Sgrensen)

Let X € {0,1}"*" be a symmetric matrix.
Then X = 0 if and only if X = Zf'(:l xix; | for some x; € {0,1}", i € [K].

Lemma (de Meijer, S.)

o 1 diag(X)T o\ .
Let X = (diag(X) X = 0. Then rank(X) =1 < X e {0,1}"*".
min  (Q, X)
st. Ax=Db
BQP < BSDP diag(X) = x

.
X € {0,1}"", <)1( ’;()to
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The Chvatal-Gomory closure

@ C C R™ be a compact convex set
e G :=Conv(CNZ™) ...integer hull of C

@ the Chvatal-Gomory (CG) closure of C:

c(C) = N {xeR™: c'x < |d]}
(c,d)eZ™ xR
CC{x: c"x<d}
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@ C C R™ be a compact convex set
e G :=Conv(CNZ™) ...integer hull of C

@ the Chvatal-Gomory (CG) closure of C:

c(C) = N {xeR™: c'x < |d]}
(c,d)eZ™ xR
CC{x: c"x<d}

o the inequalities that define c(C) are known as Chvétal-Gomory cuts

e Let COO .= C and
Ctk+1) .= ¢(C®), where C%) is the kth CG closure of C, k € Z
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The Chvatal-Gomory closure

@ C C R™ be a compact convex set
e G :=Conv(CNZ™) ...integer hull of C

@ the Chvatal-Gomory (CG) closure of C:

c(C) = m {xeR™: c'x < |d]}
(c,d)eZ™ xR
CC{x: c"x<d}

the inequalities that define c(C) are known as Chvatal-Gomory cuts
o Let C(9 = C and
C+1) .= ¢(C), where C(K) is the kth CG closure of C, k € Z,

this leads to:

GC..cckbcchc. . cc®=c
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The Chvatal-Gomory closure (cont.)

gc..cckthccWe...ccO=c

@ the smallest k for which C; = C(¥) is known as the Chvéatal rank of C
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The Chvatal-Gomory closure (cont.)

gc..cckthccWe...ccO=c
@ the smallest k for which C; = C(¥) is known as the Chvéatal rank of C

o finite Chvatal rank is proven for:

bounded real polyhedra — Chvatal

unbounded rational polyhedra — Schrijver

irrational polytopes — Dunkel, Schulz

bounded conic representable sets — Cezik, lyengar

rational ellipsoids Dey and Vielma

strictly convex bodies — Dadush, Dey, Vielma

compact convex sets — Braun, Pokutta and Dadush, Dey, Vielma
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The Chvatal-Gomory closure of spectrahedra

@ ISDP in standard dual form:

max b'x

(Disop) “ m
s.t. C—ZA;X,' =0, x€Z

i=1
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The Chvatal-Gomory closure of spectrahedra

@ ISDP in standard dual form:

max b'x
D m
(Disor) st. C— ZA;X,' =0, xezZ"
i=1
@ underlying spectrahedron:

P = {XER’" :C—ZA;X;EO}

i=1
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The Chvatal-Gomory closure of spectrahedra

@ ISDP in standard dual form:

max b'x

(Disop) “ m
s.t. C—ZA;X,' =0, x€Z
i=1
@ underlying spectrahedron:
P = {XER’" : C—ZA;X;EO}
i=1

@ Recall: D = 0iff (D,U) >0 forallUe S} :={XeS": X =0}
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The Chvatal-Gomory closure of spectrahedra

@ ISDP in standard dual form:

max b'x

(Disop) “ m
s.t. C—ZA;X,' =0, x€Z
i=1
@ underlying spectrahedron:
P = {XGR"’ : C—ZA;X;EO}
i=1

@ Recall: D = 0iff (D,U) >0 forallUe S} :={XeS": X =0}

P= {XER’" ZX,A.,U cu>}

ues:
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The Chvatal-Gomory closure of spectrahedra (cont.)

@ P is a closed convex set: P = N {xeR™: c¢'x < d}
(c,d)er™t!
PC{x: c'x<d}
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The Chvatal-Gomory closure of spectrahedra (cont.)

@ P is a closed convex set: P = N {xeR™: c¢'x < d}
(c,d)er™t!
PC{x: c'x<d}

Theorem (de Meijer, S.)

Let P={x€R™: C—>", Aix; = 0} be a non-empty spectrahedron.
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The Chvatal-Gomory closure of spectrahedra (cont.)
@ P is a closed convex set: P = N {xeR™: c¢'x < d}

(c,d)erR™?
PC{x: c'x<d}

Theorem (de Meijer, S.)

Let P={x€R™: C—>", Aix; = 0} be a non-empty spectrahedron.
Let (c,d) € R™1 be such that PC {x e R™ : ¢'x < d}.
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The Chvatal-Gomory closure of spectrahedra (cont.)
@ P is a closed convex set: P = N {xeR™: c¢'x < d}

(c,d)erR™?
PC{x: c'x<d}

Theorem (de Meijer, S.)

Let P={x€R™: C—>", Aix; = 0} be a non-empty spectrahedron.
Let (c,d) € R™1 be such that PC {x e R™ : ¢'x < d}.
Then, 3U € 87 such that (A;,U) = ¢ for all i € [m] and (C,U) < d.
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The Chvatal-Gomory closure of spectrahedra (cont.)
@ P is a closed convex set: P = N {xeR™: c¢'x < d}

(c,d)erR™?
PC{x: c'x<d}

Theorem (de Meijer, S.)

Let P={x€R™: C—>", Aix; = 0} be a non-empty spectrahedron.
Let (c,d) € R™1 be such that PC {x e R™ : ¢'x < d}.
Then, 3U € 87 such that (A;,U) = ¢ for all i € [m] and (C,U) < d.

@ the Chvatal-Gomory closure of P:

c(P) = ﬂ {X cR™ . ZX,‘<Ai, U> < |_<C7 U>J}

UeSts.t. i=1
(AL U)EZ, i€[m]
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Chvatal-Gomory cuts for spectrahedra

@ a Chviatal-Gomory cut:

zm:X,'<Ai,U> < |_<C, U>J7 Ue Si s.t. <Ai7 U> €7, Vi e [m]
i=1
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Chvatal-Gomory cuts for spectrahedra

@ a Chviatal-Gomory cut:

X,'<Ai,U> < |_<C, U>J7 Uce Si s.t. <Ai7 U> €7, Vi e [m]
i=1

@ Chvdétal-Gomory cuts for binary conic programs are introduced:
Cezik and lyengar, Cuts for mixed 0-1 conic programming. Math. Program., 104, 2005.
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Chvatal-Gomory cuts for spectrahedra

@ a Chviatal-Gomory cut:

X,'<Ai,U> < |_<C, U>J7 Uce Si s.t. <Ai7 U> €7, Vi e [m]
i=1

@ Chvdétal-Gomory cuts for binary conic programs are introduced:
Cezik and lyengar, Cuts for mixed 0-1 conic programming. Math. Program., 104, 2005.

@ Separation of CG cuts for conic problems is posted as an open problem by
Cezik—lyengar.
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Some results on CG cuts and spectrahedra
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Some results on CG cuts and spectrahedra

@ CG closure of bounded spectrahedron is a rational polytope.
Dadush, Dey and Vielma, On the Chvatal-Gomory closure of a compact convex
set. Math. Program., 145, 2014.
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Some results on CG cuts and spectrahedra

@ CG closure of bounded spectrahedron is a rational polytope.
Dadush, Dey and Vielma, On the Chvatal-Gomory closure of a compact convex
set. Math. Program., 145, 2014.

@ Homogeneity property of CG closure:
Let H be a supporting hyperplane of bounded spectrahedron P. Then

c(PNH)=c(P)NH.

Simplified proof for bounded spectrahedra by de Meijer and S.
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Some results on CG cuts and spectrahedra

@ CG closure of bounded spectrahedron is a rational polytope.
Dadush, Dey and Vielma, On the Chvatal-Gomory closure of a compact convex
set. Math. Program., 145, 2014.

@ Homogeneity property of CG closure:
Let H be a supporting hyperplane of bounded spectrahedron P. Then

c(PNH)=c(P)NH.
Simplified proof for bounded spectrahedra by de Meijer and S.

@ A closed-form expression for the CG closure of some bounded spectrahedra
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A closed-form expression for ¢(P)

e for rational polyhedra: closed-form expression for c(P) follows from a total
dual integral (TDI) representation of the linear system
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A closed-form expression for ¢(P)

e for rational polyhedra: closed-form expression for c(P) follows from a total
dual integral (TDI) representation of the linear system

Total dual integrality for SDPs ?
De Carli Silva and Tungel. A notion on total dual integrality for convex, semidefinite, and
extended formulations. SIAM J. Discrete Math., 34, 2018.
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A closed-form expression for ¢(P)

Total dual integrality for SDPs ?

Definiton (Property (PZ))

A matrix X € S, satisfies integrality property (PZ) if

X= Z yslsls' for somey: P([n]) — Z,,
SCin]

where 1g is the indicator vector of S, and P([n]) the set of all subsets of [n].
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A closed-form expression for ¢(P)

Total dual integrality for SDPs ?

Definiton (Property (PZ))

A matrix X € S, satisfies integrality property (PZ) if

X= Z yslsls' for somey: P([n]) — Z,,
SCin]

where 1g is the indicator vector of S, and P([n]) the set of all subsets of [n].

Definiton (Total dual integrality for SDPs)

An LMI C— 3", Aix; = 0 is called totally dual integral if, for every b € Z™,
the SDP dual to sup{b'x : C—3>", Aix; = 0} has an optimal solution

satisfying property (PZ) whenever it has an optimal solution.

TP, — Ty
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A closed-form expression for c(P) (cont.)

Theorem (de Meijer and S.)

Let P={x€R™: C— Y7 Aix; = 0} with A; € Z™" N S" for all i € [m]

st. C— >, Aix; = 0 is totally dual integral and satisfies Slater’s condition.

SotirovR (TiU) The CG Procedure for ISDPs
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A closed-form expression for c(P) (cont.)

Theorem (de Meijer and S.)

Let P={xeR™: C—Y ", Aix; = 0} with A; € Z"*"NS" for all i € [m]
st. C— >, Aix; = 0 is totally dual integral and satisfies Slater’s condition.
Then

c(P)=Q:={xeR": Bx<d},
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A closed-form expression for c(P) (cont.)

Theorem (de Meijer and S.)

Let P={xeR™: C—Y ", Aix; = 0} with A; € Z"*"NS" for all i € [m]
st. C— >, Aix; = 0 is totally dual integral and satisfies Slater’s condition.
Then

c(P)=Q:={xeR": Bx<d},
where B € ZP{")xm and d € P st.

Bs’,' = <Ai, 1515T> and d5 = KC, 1515T>J s

for all S C [n] and i € [m].
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A closed-form expression for c(P) (cont.)

Theorem (de Meijer and S.)

Let P={xeR™: C—Y ", Aix; = 0} with A; € Z"*"NS" for all i € [m]
st. C— >, Aix; = 0 is totally dual integral and satisfies Slater’s condition.
Then

c(P)=Q:={xeR": Bx<d},
where B € ZP{")xm and d € P st.

Bs’,' = <Ai, 1515T> and d5 = KC, 1515T>J s

for all S C [n] and i € [m].

e If Ciss.t. (C,1sls') € Z for all S C [n], then ¢(P) = P.
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A closed-form expression for c(P) (cont.)

Theorem (de Meijer and S.)

Let P={xeR™: C—Y ", Aix; = 0} with A; € Z"*"NS" for all i € [m]
st. C— >, Aix; = 0 is totally dual integral and satisfies Slater’s condition.
Then

c(P)=Q:={xeR": Bx<d},
where B € ZP{")xm and d € P st.

Bs’,' = <Ai, 1515T> and d5 = KC, 1515T>J s

for all S C [n] and i € [m].

e If Ciss.t. (C,1sls') € Z for all S C [n], then ¢(P) = P.

@ For any rational polyhedron there exists a TDI system that describes P.
Is there such analogue for spectrahedra?
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A CG-based branch-and-cut algorithm for ISDPs

e B&C algorithm for solving ISDPs that exploits CG cuts of the spectrahedron
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A CG-based branch-and-cut algorithm for ISDPs

e B&C algorithm for solving ISDPs that exploits CG cuts of the spectrahedron

@ our algorithm extends the work of:
Kobayashi and Takano. A B&C algorithm for solving mixed-integer semidefinite
optimization problems. Comput. Optim. Appl., 75, 2020.
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A CG-based branch-and-cut algorithm for ISDPs

o P.={xeR” :C-X", Aix; = 0}
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A CG-based branch-and-cut algorithm for ISDPs

o P.={xeR” :C-X", Aix; = 0}

o define 7 := {x e R™ : diag (C— Y7, Aix;) > 0}
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A CG-based branch-and-cut algorithm for ISDPs

o P:= {XER’" : C—E;ilAiX,-i—O}
o define 7 := {x e R™ : diag (C— Y7, Aix;) > 0}

o the B&C algorithm starts with the ILP:
max{bTx ©XE ]:ﬂZ'"}

and uses dynamic constraint generation (lazy constraint callback)
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o define 7 := {x e R™ : diag (C— Y7, Aix;) > 0}

o the B&C algorithm starts with the ILP:
max{bTx DX E ]:ﬂZ'"}

and uses dynamic constraint generation (lazy constraint callback)

@ Whenever x € Z™ is found in the branching tree

— check if C — Y7, Ai%; = 0 satisfied
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A CG-based branch-and-cut algorithm for ISDPs

o P:= {XER’" : C—E;ilAiX,-i—O}
o define 7 := {x e R™ : diag (C— Y7, Aix;) > 0}

o the B&C algorithm starts with the ILP:
max{bTx DX E ]:ﬂZ'"}

and uses dynamic constraint generation (lazy constraint callback)

@ Whenever x € Z™ is found in the branching tree

— check if C — Y7, Ai%; = 0 satisfied

o If so, X feasible for (Dispp).
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A CG-based branch-and-cut algorithm for ISDPs

o P:= {XER’" : C—E;ilAiX,-i—O}
o define 7 := {x e R™ : diag (C— Y7, Aix;) > 0}

o the B&C algorithm starts with the ILP:
max{bTx ©XE ]:ﬂZ'"}
and uses dynamic constraint generation (lazy constraint callback)
@ Whenever x € Z™ is found in the branching tree
— check if C — Y7, Ai%; = 0 satisfied

o If so, X feasible for (Dispp).
e If not, then generate cut(s).
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o Kobayashi—Takano: Let d be an eigenvector corresponding to the smallest
eigenvalue of C — Y7 Ai%;. Then, add the cut:

<CZAix,-,ddT>zo = > (Aidd")x < (C,dd")
i=1

i=1
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o Kobayashi—Takano: Let d be an eigenvector corresponding to the smallest
eigenvalue of C — Y7 Ai%;. Then, add the cut:

<CZAix,-,ddT>zo = > (Aidd")x < (C,dd")
i=1

i=1

= X is separated from P
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o Kobayashi—Takano: Let d be an eigenvector corresponding to the smallest
eigenvalue of C — Y7 Ai%;. Then, add the cut:

<CZAix,-,ddT>zo = > (Aidd")x < (C,dd")
i=1

i=1

= X is separated from P

e Our approach: Let U € ST, (A;,U) € Z for all i € [m]
st. Y (AL U)K > [(C,U)].
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o Kobayashi—Takano: Let d be an eigenvector corresponding to the smallest
eigenvalue of C — Y7 Ai%;. Then, add the cut:

<CZAix,-,ddT>zo = > (Aidd")x < (C,dd")
i=1

i=1

= X is separated from P

e Our approach: Let U € ST, (A;,U) € Z for all i € [m]
st. Y (AL U)K > [(C,U)].
Then, add the CG cut:
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o Kobayashi—Takano: Let d be an eigenvector corresponding to the smallest
eigenvalue of C — Y7 Ai%;. Then, add the cut:

<CZAix,-,ddT>zo = > (Aidd")x < (C,dd")
i=1

i=1

= X is separated from P

e Our approach: Let U € ST, (A;,U) € Z for all i € [m]
st. Y (AL U)K > [(C,U)].
Then, add the CG cut:

m

S (AL U < [(C.U)]

i=1
CAN ONE DO EVEN BETTER?
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o let Uec ST, (A,U) €Z, Vie[m]
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o let Uec ST, (A,U) €Z, Vie[m]

@ Note that
[(C,U)] > max {37 (A, U)x; : S (A, U)x; < (C,U), x € Z™}
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o let Uec ST, (A,U) €Z, Vie[m]

@ Note that
[(C,U)] > max {37 (A, U)x; : S (A, U)x; < (C,U), x € Z™}

@ Assume that P N 7Z™ is contained in S C Z™ and find
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o let Uec ST, (A,U) €Z, Vie[m]

@ Note that
[(C,U)] > max {37 (A, U)x; : S (A, U)x; < (C,U), x € Z™}

@ Assume that P N 7Z™ is contained in S C Z™ and find
[{C,U)Js > max {37, (A, U)x; = 257 (Ai, U)x; < (C,U), x € S}
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

o let Uec ST, (A,U) €Z, Vie[m]

@ Note that
[(C,U)] > max {37 (A, U)x; : S (A, U)x; < (C,U), x € Z™}

@ Assume that P N 7Z™ is contained in S C Z™ and find
[{C,U)Js > max {37, (A, U)x; = 257 (Ai, U)x; < (C,U), x € S}

@ which leads to the Strengthened Chvatal-Gomory (S-CG) cut

m

Z<Ai, U>X,' < |_<C* U>J5

i=1
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

let Ue ST, (Ai,U) € Z, Vi€ [m]

@ Note that
[(C,U)] > max {37 (A, U)x; : S (A, U)x; < (C,U), x € Z™}

Assume that P N 7Z™ is contained in S C Z™ and find
[{C,U)Js > max {37, (A, U)x; = 257 (Ai, U)x; < (C,U), x € S}

@ which leads to the Strengthened Chvatal-Gomory (S-CG) cut

m

Z<Ai, U>X,' < |_<C* U>J5

i=1

@ S-CG cuts are introduced for rational polyhedra:
Dash, Giinliik, Lee. On a generalization of the CG closure. Math. Program., 192, 2022
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

Algorithm 1: CG-based B&C algorithm for solving (Djspp)

Input: C,A;, i € [m], S

Initialize 7 = {x € R™ : diag (C— 7", Aix;) > 0}.

B&B procedure: Start or continue the B&B algorithm for solving the MILP
max {bTx xeFN Z’"} using the callback function at each node in the tree.

Callback procedure: if an integer point X € F is found then

if Amin (C ->m A;)?,-) < 0 then
Call SEPARATIONROUTINE(C, Ay, ..., Am, S,%X) which provides U;, j € [K].
Add the cuts

> (AL U)X < [(C,U) s forj € [K]to F.
i=1
else

‘ Use x to cut off other nodes in the branching tree.
end

RETURN TO STEP 2

end
Output: %, OPT :=b'x
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SEPARATIONROUTINE is
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Separation routines?

SEPARATIONROUTINE is

@ ...a generic routine for binary SDPs, based on

Thm (Djukanovi¢ and Rendl, Letchford and Sgrensen)

Let X € {0,1}™". Then X = 0 < X = 2 xix; | for x; € {0,1}", i € [k].
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Separation routines?

SEPARATIONROUTINE is

@ ...a generic routine for binary SDPs, based on

Thm (Djukanovi¢ and Rendl, Letchford and Sgrensen)

Let X € {0,1}™". Then X = 0 < X = 2 xix; | for x; € {0,1}", i € [k].

@ ...a problem-specific routine for constructing S-CG cuts for given a
optimization problem.
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application of the CG-based B&C algorithm ... )
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ISDP for the Quadratic Traveling Salesman Problem

e G =(V,A) ...directed simple graph
o V ... vertex set, n=|V|
o A...arcs set, m= |A]
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ISDP for the Quadratic Traveling Salesman Problem

e G =(V,A) ...directed simple graph
o V ... vertex set, n=|V|
o A...arcs set, m= |A]

@ the set of tour matrices:

To(G) == {XC € {0,1}™" : x,-f = 1iff (i,j) € C for Hamiltonian cycle C}
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ISDP for the Quadratic Traveling Salesman Problem

e G =(V,A) ...directed simple graph
o V ... vertex set, n=|V|
o A ...arcs set, m = |A|

@ the set of tour matrices:
To(G) == {XC € {0,1}™" : x,-f = 1iff (i,j) € C for Hamiltonian cycle C}
@ the set of the 2-arcs of G:

A= {(i, k) = (1), U, k) € A, [{i.j, k}| = 3}
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|
ISDP for the Quadratic Traveling Salesman Problem

e G =(V,A) ...directed simple graph
o V ... vertex set, n=|V|
o A ...arcs set, m = |A|

@ the set of tour matrices:
To(G) == {XC € {0,1}™" : x,-f = 1iff (i,j) € C for Hamiltonian cycle C}
@ the set of the 2-arcs of G:
A= A{(ig, k) = (1.4): G k) € A {7 J, kY = 3}

° Q= (gjx) € R™™ " st. gy = 0 if (i,j, k) ¢ A ...cost matrix
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ISDP for the Quadratic Traveling Salesman Problem

the Quadratic Traveling Salesman Problem:

TSP(Q, G) ik Xi
QTSP(Q, emTLnG) ;lqjkxjxjk
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ISDP for the Quadratic Traveling Salesman Problem

the Quadratic Traveling Salesman Problem:

TSP(Q, G) e
QTSP(Q. ) = min - ;lqjkxmk

@ linearize the objective: yji := Xjxjc and introduce coupling constraints:

Xij = Z Yiij = Z yig Y(i,j) €A

keN: keN:
(k,ij)eA (ij,k)eA
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|
ISDP for the Quadratic Traveling Salesman Problem

the Quadratic Traveling Salesman Problem:

TSP(Q, G) e
QTSP(Q. ) = min - ;lqjkxmk

@ linearize the objective: yji := Xjxjc and introduce coupling constraints:

Xij = Z Yiij = Z yig Y(i,j) €A

keN: keN:
(k,ij)eA (ij,k)eA

o formulation of the QTSP:
QTSP(Q, G) ‘= min Zi,j,k:l Qijk Yijk

s.t. coupling constriants
Yig 20 V(i j k)€ A
X e T,(G)
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ISDP for the QTSP

ISDP for the QTSP:

n
Z qijkYijk

ihj k=1

s.t. coupling constriants
Bla +ada — ((x+x< )+ (X+XD)T) =0
)/l:ik 2 0 V(’v./a k) € A
X, X® en,,

where o > (2 — cos (22))/n, cos (2£) < 3 < 2

and I, is the set of permutation matrices
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Chvatal-Gomory cuts for the ISDPs of the QTSP

@ the SDP constraint:

Bln + ad — % ((x +X@) (X + x<2>)T) =0

SotirovR (TiU) The CG Procedure for ISDPs 30/36



|
Chvatal-Gomory cuts for the ISDPs of the QTSP

@ the SDP constraint:
1
B+ ady = 5 (X +X@) + (X +XP)T) = 0
@ Our B&C algorithm starts optimizing over:

F = {(y,X7X(2)) € Rf x M, x M, : coupling constriants}

SotirovR (TiU) The CG Procedure for ISDPs 30/36



|
Chvatal-Gomory cuts for the ISDPs of the QTSP

@ the SDP constraint:
Bly+ adn— = ((x+x( )+ (X+X®)T) =0
@ Our B&C algorithm starts optimizing over:
F = {(y,X,X(z)) € Rf x M, x M, : coupling constriants}

o If an integer solution (§, X, X)) is found in the branching tree, then check
Amin (m +ady— 1 (( + X@) 4 (X + X@)T )) > 0.
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Chvatal-Gomory cuts for the ISDPs of the QTSP

@ the SDP constraint:
Bly+ oy — = ((x+x( >)+(x+x(2))T) >0
@ Our B&C algorithm starts optimizing over:

F = {(y,X7X(2)) € Rf x M, x M, : coupling constriants}

o If an integer solution (§, X, X)) is found in the branching tree, then check

A

m.n(ﬁl +ad, 77(( £ R@) 4 (X 4+ X@)T )) > 0.

o If so, then X € 7,(G) and we have found a solution for the QTSP.

o If not, then X is the adjacency matrix of a directed node-disjoint cycle cover.
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Chvatal-Gomory cuts for the ISDPs of the QTSP

@ the SDP constraint:
Bly+ oy — = ((x+x( >)+(x+x(2))T) >0
@ Our B&C algorithm starts optimizing over:

F = {(y,X7X(2)) € Rf x M, x M, : coupling constriants}

o If an integer solution (§, X, X)) is found in the branching tree, then check

A

m.n(ﬁl +ad, 77(( £ R@) 4 (X 4+ X@)T )) > 0.

o If so, then X € 7,(G) and we have found a solution for the QTSP.
o If not, then X is the adjacency matrix of a directed node-disjoint cycle cover.

= Generate dual matrices to cut off the current solution.
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Chvatal-Gomory cuts for the ISDPs of the QTSP

@ the SDP constraint:
Bly+ oy — = ((x+x( >)+(x+x(2))T) >0
@ Our B&C algorithm starts optimizing over:

F = {(y,X7X(2)) € Rf x M, x M, : coupling constriants}

o If an integer solution (§, X, X)) is found in the branching tree, then check

A

m.n(ﬁl +ad, 77(( £ R@) 4 (X 4+ X@)T )) > 0.

o If so, then X € 7,(G) and we have found a solution for the QTSP.
o If not, then X is the adjacency matrix of a directed node-disjoint cycle cover.

= Generate dual matrices to cut off the current solution.

@ we provide 6 classes of CG-cuts for the ISDP of the QTSP
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Numerical results

We ...
@ ...test various settings that include different cuts
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..compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Our algorithm significantly outperforms alternative solvers ...

@ in computational times - we are hundreds time faster than alternatives
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Numerical results

We .
@ ...test various settings that include different cuts
@ ...implement our algorithm in Julia and use Gurobi as MILP solver
@ ...test our B&C algorithm on 492 instances
o .

..compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Our algorithm significantly outperforms alternative solvers ...

@ in computational times - we are hundreds time faster than alternatives
@ in size of instances that we can solve

= We solve all instances within 5 minutes.
= Our largest QTSP instance has 2646 vertices and 5172 arcs.

IS THIS AN EFFICIENT PROCEDURE FOR SOLVING GENERAL ISDPs?
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Summary

In this talk, we ...
@ derived binary SDP formulation for BQPs.
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Summary

In this talk, we ...
@ derived binary SDP formulation for BQPs.

@ presented the CG procedure for integer SDPs.
@ introduced a CG-based B&C algorithm for ISDPs.

@ discussed implementation of our algorithm for the QTSP.

@ ...pointed to several open problems ... for future (current) research ...

The talk is based on:
de Meijer and Sotirov, The Chvatal-Gomory-Gomory Procedure for Integer SDPs with
Applications in Combinatorial Optimization, https://arxiv.org/abs/2201.10224
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Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

= find integer eigenvectors corr. to negative eigenvalues of
Bla + adn — 3 (X 4+ X 4 (X +X@)T)
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Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

= find integer eigenvectors corr. to negative eigenvalues of
Bla + adn — 3 (X 4+ X 4 (X +X@)T)

o Let {Sy,..., Sk} be the partition of V implied by the cycle covers in X, then

g BITES
—I1S1 ifigs,
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-
Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

= find integer eigenvectors corr. to negative eigenvalues of
Bla + adn — 3 (X 4+ X 4 (X +X@)T)

o Let {Sy,..., Sk} be the partition of V implied by the cycle covers in X, then

do= Tl ES
sl g

<vi(vi)T, Bl + ady — H(X + X®) 4+ (X + )“((2>)T)> <0 for all j € [K]
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Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

= find integer eigenvectors corr. to negative eigenvalues of
Bl +ady — 1 ((X +X® 4 (X + X(2>)T)

o Let {Sy,..., Sk} be the partition of V implied by the cycle covers in X, then

i-:_{n—|5j| ifies; vj € K]

—ISil - ifig S,

(Vi(W)T, Bla + ada = J((X + X®) + (X + XD)T)) < 0 for all j € [K]

@ For all j € [k] construct the following CG cuts:

<vj(vj)T, X+ X(2)> < L(vj(vj)T, Bln + adn) |
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Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

= find integer eigenvectors corr. to negative eigenvalues of
Bl +ady — 1 ((X +X® 4 (X + X(2>)T)

o Let {Sy,..., Sk} be the partition of V implied by the cycle covers in X, then

i-:_{n—|5j| ifies; vj € K]

—ISil - ifig S,

(Vi(W)T, Bla + ada = J((X + X®) + (X + XD)T)) < 0 for all j € [K]

@ For all j € [k] construct the following CG cuts:
<vj(vj)T, X+ X(2)> < L(vj(vj)T, Bln + adn) |

@ we provide 6 classes of CG-cuts for the ISDP of the QTSP
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Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

e CG cut of with dual multiplier U = 1g1g':

> o <IS|-1, VSCN2<|S|<n
i€S, jeS
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Chvatal-Gomory cuts for the ISDPs of the QTSP (cont.)

e CG cut of with dual multiplier U = 1g1g':

> o <IS|-1, VSCN2<|S|<n
i€S, jeS

@ S-CG cut with dual multiplier U = 1slg' and
S e iiieaVig — X2 =0, Vi, j € S, each with dual multiplier 1,
and —yp; <0 V(i k,j) € A, each with dual multiplier 1

ZXU+Z Z yikj§|5|713 VSCN,2§|5|<%H

i€s i€S keN\S:
ies JES (ikj)eA
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