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Outline of the talk

Integer Semidefinite Programs (ISDPs)

Chvátal-Gomory procedure for ISDPs

A Branch-and-Cut algorithm for ISDPs

Case study: the Quadratic Traveling Salesman Problem
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Integer semidefinite programs

Sn := {X ∈ Rn×n : X = X⊤}
⟨·, ·⟩ . . . the trace inner product

Integer SemiDefinite Program (ISDP) in standard primal form:

(PISDP)

min ⟨C,X⟩
s.t. ⟨Ai,X⟩ = bi for all i ∈ [m],

X ⪰ 0, X ∈ Zn×n,

where C,Ai ∈ Sn, b ∈ Rm.

ISDP in standard dual form:

(DISDP)

max b⊤x

s.t. C−
m∑
i=1

Aixi ⪰ 0, x ∈ Zm.
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Integer semidefinite programs

Here, we (mostly) consider ISDPs in dual form:

max b⊤x

s.t. C−
m∑
i=1

Aixi ⪰ 0, x ∈ Zm.

if x ∈ Zm1 × Rm2 s.t. m1 +m2 = m ⇝ mixed–integer SDP (MISDP)

MISDPs:

are (in general) NP-hard problems

find applications: truss topology optimization, signal processing, control
systems, etc.
in combinatorial optimization
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Example: BQPs and ISDPs
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Binary Quadratic Problems & ISDPs

Given

cost matrix Q ∈ Sn

A ∈ Rm×n and b = (bi ) ∈ Rm

Binary Quadratic Problem (BQP):

min x⊤Qx

s.t. Ax = b

x ∈ {0, 1}n.

Examples:

max-cut, stable set problem, quadratic assignment problem, graph coloring,
graph partition problem, bandwidth problem, etc.
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Binary Quadratic Problems & ISDPs

rewrite the objective function:

x⊤Qx = ⟨Q, xx⊤⟩ = ⟨Q,X⟩,

where X = xx⊤

reformulated BQP:

min ⟨Q,X⟩
s.t. Ax = b

diag(X) = x(
1 x⊤

x X

)
⪰ 0, rank

(
1 x⊤

x X

)
= 1,

where diag : Sn → Rn maps a matrix to a vector containing its diag. entries.
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Binary Quadratic Problems & ISDPs

rank constraint can be replaced by another notion of exactness (!)

Thm (Djukanović and Rendl, Letchford and Sørensen)

Let X ∈ {0, 1}n×n be a symmetric matrix.

Then X ⪰ 0 if and only if X =
∑k

i=1 xixi
⊤ for some xi ∈ {0, 1}n, i ∈ [k].

Lemma (de Meijer, S.)

Let X̄ =

(
1 diag(X)⊤

diag(X) X

)
⪰ 0. Then rank(X̄) = 1 ⇔ X ∈ {0, 1}n×n.

BQP ⇔ BSDP



min ⟨Q,X⟩
s.t. Ax = b

diag(X) = x

X ∈ {0, 1}n×n,

(
1 x⊤

x X

)
⪰ 0
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The Chvátal-Gomory closure
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The Chvátal-Gomory closure

C ⊆ Rm be a compact convex set

CI := Conv(C ∩ Zm) . . . integer hull of C

the Chvátal-Gomory (CG) closure of C :

c(C ) :=
⋂

(c,d)∈Zm×R
C⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ ⌊d⌋

}

the inequalities that define c(C ) are known as Chvátal-Gomory cuts

Let C (0) := C and

C (k+1) := c(C (k)), where C (k) is the kth CG closure of C , k ∈ Z+

this leads to:

CI ⊆ . . . ⊆ C (k+1) ⊆ C (k) ⊆ . . . ⊆ C (0) = C
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Let C (0) := C and

C (k+1) := c(C (k)), where C (k) is the kth CG closure of C , k ∈ Z+

this leads to:

CI ⊆ . . . ⊆ C (k+1) ⊆ C (k) ⊆ . . . ⊆ C (0) = C

SotirovR (TiU) The CG Procedure for ISDPs 10 / 36
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The Chvátal-Gomory closure (cont.)

CI ⊆ . . . ⊆ C (k+1) ⊆ C (k) ⊆ . . . ⊆ C (0) = C

the smallest k for which CI = C (k) is known as the Chvátal rank of C

finite Chvátal rank is proven for:

bounded real polyhedra – Chvátal
unbounded rational polyhedra – Schrijver
irrational polytopes – Dunkel, Schulz
bounded conic representable sets – Çezik, Iyengar
rational ellipsoids Dey and Vielma
strictly convex bodies – Dadush, Dey, Vielma
compact convex sets – Braun, Pokutta and Dadush, Dey, Vielma

SotirovR (TiU) The CG Procedure for ISDPs 11 / 36
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the Chvátal-Gomory closure of spectrahedra
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The Chvátal-Gomory closure of spectrahedra

ISDP in standard dual form:

(DISDP)

max b⊤x

s.t. C−
m∑
i=1

Aixi ⪰ 0, x ∈ Zm

underlying spectrahedron:

P :=

{
x ∈ Rm : C−

m∑
i=1

Aixi ⪰ 0

}

Recall: D ⪰ 0 iff ⟨D,U⟩ ≥ 0 for all U ∈ Sn
+ := {X ∈ Sn : X ⪰ 0}

P =
⋂

U∈Sn
+

{
x ∈ Rm :

m∑
i=1

xi ⟨Ai,U⟩ ≤ ⟨C,U⟩

}
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The Chvátal-Gomory closure of spectrahedra

ISDP in standard dual form:

(DISDP)

max b⊤x

s.t. C−
m∑
i=1

Aixi ⪰ 0, x ∈ Zm

underlying spectrahedron:

P :=

{
x ∈ Rm : C−

m∑
i=1

Aixi ⪰ 0

}

Recall: D ⪰ 0 iff ⟨D,U⟩ ≥ 0 for all U ∈ Sn
+ := {X ∈ Sn : X ⪰ 0}

P =
⋂

U∈Sn
+

{
x ∈ Rm :

m∑
i=1

xi ⟨Ai,U⟩ ≤ ⟨C,U⟩

}

SotirovR (TiU) The CG Procedure for ISDPs 13 / 36
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The Chvátal-Gomory closure of spectrahedra (cont.)

P is a closed convex set: P =
⋂

(c,d)∈Rm+1

P⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ d

}

Theorem (de Meijer, S.)

Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be a non-empty spectrahedron.

Let (c, d) ∈ Rm+1 be such that P ⊆ {x ∈ Rm : c⊤x ≤ d}.
Then, ∃U ∈ Sn

+ such that ⟨Ai,U⟩ = ci for all i ∈ [m] and ⟨C,U⟩ ≤ d .

the Chvátal-Gomory closure of P:

c(P) =
⋂

U∈Sn
+ s.t.

⟨Ai,U⟩∈Z, i∈[m]

{
x ∈ Rm :

m∑
i=1

xi ⟨Ai,U⟩ ≤ ⌊⟨C,U⟩⌋

}
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The Chvátal-Gomory closure of spectrahedra (cont.)

P is a closed convex set: P =
⋂

(c,d)∈Rm+1

P⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ d

}

Theorem (de Meijer, S.)

Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be a non-empty spectrahedron.

Let (c, d) ∈ Rm+1 be such that P ⊆ {x ∈ Rm : c⊤x ≤ d}.

Then, ∃U ∈ Sn
+ such that ⟨Ai,U⟩ = ci for all i ∈ [m] and ⟨C,U⟩ ≤ d .
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The Chvátal-Gomory closure of spectrahedra (cont.)

P is a closed convex set: P =
⋂

(c,d)∈Rm+1

P⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ d

}

Theorem (de Meijer, S.)

Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be a non-empty spectrahedron.

Let (c, d) ∈ Rm+1 be such that P ⊆ {x ∈ Rm : c⊤x ≤ d}.
Then, ∃U ∈ Sn

+ such that ⟨Ai,U⟩ = ci for all i ∈ [m] and ⟨C,U⟩ ≤ d .
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Chvátal-Gomory cuts for spectrahedra

a Chvátal-Gomory cut:

m∑
i=1

xi ⟨Ai,U⟩ ≤ ⌊⟨C,U⟩⌋, U ∈ Sn
+ s.t. ⟨Ai,U⟩ ∈ Z, ∀i ∈ [m]

Chvátal-Gomory cuts for binary conic programs are introduced:
Çezik and Iyengar, Cuts for mixed 0-1 conic programming. Math. Program., 104, 2005.

Separation of CG cuts for conic problems is posted as an open problem by
Çezik–Iyengar.
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a Chvátal-Gomory cut:

m∑
i=1

xi ⟨Ai,U⟩ ≤ ⌊⟨C,U⟩⌋, U ∈ Sn
+ s.t. ⟨Ai,U⟩ ∈ Z, ∀i ∈ [m]
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Some results on CG cuts and spectrahedra

CG closure of bounded spectrahedron is a rational polytope.
Dadush, Dey and Vielma, On the Chvátal-Gomory closure of a compact convex

set. Math. Program., 145, 2014.

Homogeneity property of CG closure:
Let H be a supporting hyperplane of bounded spectrahedron P. Then

c(P ∩ H) = c(P) ∩ H.

Simplified proof for bounded spectrahedra by de Meijer and S.

A closed-form expression for the CG closure of some bounded spectrahedra
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A closed-form expression for c(P)

for rational polyhedra: closed-form expression for c(P) follows from a total
dual integral (TDI) representation of the linear system

Total dual integrality for SDPs ?
De Carli Silva and Tunçel. A notion on total dual integrality for convex, semidefinite, and

extended formulations. SIAM J. Discrete Math., 34, 2018.

Total dual integrality for SDPs ?

Definiton (Property (PZ))

A matrix X ∈ S+
n satisfies integrality property (PZ) if

X =
∑
S⊆[n]

yS1S1S
⊤ for some y : P([n]) → Z+,

where 1S is the indicator vector of S , and P([n]) the set of all subsets of [n].

Definiton (Total dual integrality for SDPs)

An LMI C−
∑m

i=1 Aixi ⪰ 0 is called totally dual integral if, for every b ∈ Zm,

the SDP dual to sup
{
b⊤x : C−

∑m
i=1 Aixi ⪰ 0

}
has an optimal solution

satisfying property (PZ) whenever it has an optimal solution.
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A closed-form expression for c(P) (cont.)

Theorem (de Meijer and S.)

Let P =
{
x ∈ Rm : C−

∑m
i=1 Aixi ⪰ 0

}
with Ai ∈ Zn×n ∩ Sn for all i ∈ [m]

s.t. C−
∑m

i=1 Aixi ⪰ 0 is totally dual integral and satisfies Slater’s condition.

Then
c(P) = Q := {x ∈ Rm : Bx ≤ d} ,

where B ∈ ZP([n])×m and d ∈ ZP([n]) s.t.

BS,i :=
〈
Ai,1S1S

⊤〉 and dS :=
⌊〈
C,1S1S

⊤〉⌋ ,
for all S ⊆ [n] and i ∈ [m].

If C is s.t. ⟨C,1S1S
⊤⟩ ∈ Z for all S ⊆ [n], then c(P) = P.

For any rational polyhedron there exists a TDI system that describes P.
Is there such analogue for spectrahedra?
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on exploiting CG cuts for spectrahedra . . .
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A CG-based branch-and-cut algorithm for ISDPs

B&C algorithm for solving ISDPs that exploits CG cuts of the spectrahedron

our algorithm extends the work of:
Kobayashi and Takano. A B&C algorithm for solving mixed-integer semidefinite

optimization problems. Comput. Optim. Appl., 75, 2020.
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A CG-based branch-and-cut algorithm for ISDPs

P :=
{
x ∈ Rm : C−

∑m
i=1 Aixi ⪰ 0

}

define F :=
{
x ∈ Rm : diag

(
C−

∑m
i=1 Aixi

)
≥ 0

}
the B&C algorithm starts with the ILP:

max
{
b⊤x : x ∈ F ∩ Zm

}
and uses dynamic constraint generation (lazy constraint callback)

Whenever x̂ ∈ Zm is found in the branching tree

=⇒ check if C−
∑m

i=1 Aix̂i ⪰ 0 satisfied

If so, x̂ feasible for (DISDP).
If not, then generate cut(s).
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

Kobayashi–Takano: Let d be an eigenvector corresponding to the smallest
eigenvalue of C−

∑m
i=1 Aix̂i . Then, add the cut:〈

C−
m∑
i=1

Aixi ,dd
⊤

〉
≥ 0 ⇐⇒

m∑
i=1

⟨Ai,dd
⊤⟩xi ≤ ⟨C,dd⊤⟩

=⇒ x̂ is separated from P

Our approach: Let U ∈ Sn
+, ⟨Ai,U⟩ ∈ Z for all i ∈ [m]

s.t.
∑m

i=1⟨Ai,U⟩x̂i > ⌊⟨C,U⟩⌋.

Then, add the CG cut:

m∑
i=1

⟨Ai,U⟩xi ≤ ⌊⟨C,U⟩⌋

Can one do even better?
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

let U ∈ Sn
+, ⟨Ai,U⟩ ∈ Z, ∀i ∈ [m]

Note that
⌊⟨C,U⟩⌋ ≥ max

{∑m
i=1⟨Ai,U⟩xi :

∑m
i=1⟨Ai,U⟩xi ≤ ⟨C,U⟩, x ∈ Zm

}
Assume that P ∩ Zm is contained in S ⊆ Zm and find

⌊⟨C,U⟩⌋S ≥ max
{∑m

i=1⟨Ai,U⟩xi :
∑m

i=1⟨Ai,U⟩xi ≤ ⟨C,U⟩, x ∈ S
}

which leads to the Strengthened Chvátal-Gomory (S-CG) cut

m∑
i=1

⟨Ai,U⟩xi ≤ ⌊⟨C,U⟩⌋S

S-CG cuts are introduced for rational polyhedra:
Dash, Günlük, Lee. On a generalization of the CG closure. Math. Program., 192, 2022
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m∑
i=1

⟨Ai,U⟩xi ≤ ⌊⟨C,U⟩⌋S

S-CG cuts are introduced for rational polyhedra:
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A CG-based branch-and-cut algorithm for ISDPs (cont.)

Algorithm 1: CG-based B&C algorithm for solving (DISDP)

Input: C,Ai, i ∈ [m], S
1 Initialize F =

{
x ∈ Rm : diag

(
C−

∑m
i=1 Aixi

)
≥ 0

}
.

2 B&B procedure: Start or continue the B&B algorithm for solving the MILP

max
{
b⊤x : x ∈ F ∩ Zm

}
using the callback function at each node in the tree.

3 Callback procedure: if an integer point x̂ ∈ F is found then
4 if λmin

(
C−

∑m
i=1 Aix̂i

)
< 0 then

5 Call SeparationRoutine(C,A1, . . . ,Am, S , x̂) which provides Uj, j ∈ [K ].
6 Add the cuts

m∑
i=1

⟨Ai,Uj⟩xi ≤ ⌊⟨C,Uj⟩⌋S for j ∈ [K ] to F .

7 else
8 Use x̂ to cut off other nodes in the branching tree.
9 end

10 Return to Step 2

11 end

Output: x̂,OPT := b⊤x
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Separation routines?

SeparationRoutine is

. . . a generic routine for binary SDPs, based on

Thm (Djukanović and Rendl, Letchford and Sørensen)

Let X ∈ {0, 1}n×n. Then X ⪰ 0 ⇔ X =
∑k

i=1 xixi
⊤ for xi ∈ {0, 1}n, i ∈ [k].

. . . a problem-specific routine for constructing S-CG cuts for given a
optimization problem.
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Thm (Djukanović and Rendl, Letchford and Sørensen)

Let X ∈ {0, 1}n×n. Then X ⪰ 0 ⇔ X =
∑k

i=1 xixi
⊤ for xi ∈ {0, 1}n, i ∈ [k].

. . . a problem-specific routine for constructing S-CG cuts for given a
optimization problem.

SotirovR (TiU) The CG Procedure for ISDPs 25 / 36



application of the CG-based B&C algorithm . . .
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ISDP for the Quadratic Traveling Salesman Problem

G = (V ,A) . . . directed simple graph

V . . . vertex set, n = |V |
A . . . arcs set, m = |A|

the set of tour matrices:

Tn(G ) :=
{
XC ∈ {0, 1}n×n : xCij = 1 iff (i , j) ∈ C for Hamiltonian cycle C

}
the set of the 2-arcs of G :

A := {(i , j , k) : (i , j), (j , k) ∈ A, |{i , j , k}| = 3}

Q = (qijk) ∈ Rn×n×n s.t. qijk = 0 if (i , j , k) /∈ A . . . cost matrix
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ISDP for the Quadratic Traveling Salesman Problem

the Quadratic Traveling Salesman Problem:

QTSP(Q,G ) := min
X∈Tn(G)

n∑
i,j,k=1

qijkxijxjk

linearize the objective: yijk := xijxjk and introduce coupling constraints:

xij =
∑
k∈N:

(k,i,j)∈A

ykij =
∑
k∈N:

(i,j,k)∈A

yijk ∀(i , j) ∈ A

formulation of the QTSP:

QTSP(Q,G ) :=min
∑n

i,j,k=1
qijkyijk

s.t. coupling constriants

yijk ≥ 0 ∀(i , j , k) ∈ A
X ∈ Tn(G )
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ISDP for the QTSP

ISDP for the QTSP:

min
n∑

i,j,k=1

qijkyijk

s.t. coupling constriants

βIn + αJn −
1

2

(
(X+ X(2)) + (X+ X(2))⊤

)
⪰ 0

yijk ≥ 0 ∀(i , j , k) ∈ A
X, X(2) ∈ Πn,

where α ≥ (2− cos
(
2π
n

)
)/n, cos

(
2π
n

)
≤ β < 2

and Πn is the set of permutation matrices

SotirovR (TiU) The CG Procedure for ISDPs 29 / 36



Chvátal-Gomory cuts for the ISDPs of the QTSP

the SDP constraint:

βIn + αJn −
1

2

(
(X+ X(2)) + (X+ X(2))⊤

)
⪰ 0

Our B&C algorithm starts optimizing over:

F :=
{
(y,X,X(2)) ∈ RA

+ × Πn × Πn : coupling constriants
}

If an integer solution (ŷ, X̂, X̂(2)) is found in the branching tree, then check

λmin

(
βIn + αJn − 1

2

(
(X̂+ X̂(2)) + (X̂+ X̂(2))⊤

))
≥ 0.

If so, then X̂ ∈ Tn(G) and we have found a solution for the QTSP.

If not, then X̂ is the adjacency matrix of a directed node-disjoint cycle cover.

⇛ Generate dual matrices to cut off the current solution.

we provide 6 classes of CG-cuts for the ISDP of the QTSP
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Numerical results

We . . .

. . . test various settings that include different cuts

. . . implement our algorithm in Julia and use Gurobi as MILP solver

. . . test our B&C algorithm on 492 instances

. . . compare our solver with Kobayashi-Takano, SCIP-SDP, YALMIP

Our algorithm significantly outperforms alternative solvers . . .

in computational times - we are hundreds time faster than alternatives

in size of instances that we can solve

⇛ We solve all instances within 5 minutes.

⇛ Our largest QTSP instance has 2646 vertices and 5172 arcs.

Is this an efficient procedure for solving general ISDPs?
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Summary

In this talk, we . . .

derived binary SDP formulation for BQPs.

presented the CG procedure for integer SDPs.

introduced a CG-based B&C algorithm for ISDPs.

discussed implementation of our algorithm for the QTSP.

. . . pointed to several open problems . . . for future (current) research . . .

The talk is based on:
de Meijer and Sotirov, The Chvátal-Gomory-Gomory Procedure for Integer SDPs with

Applications in Combinatorial Optimization, https://arxiv.org/abs/2201.10224
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Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

⇛ find integer eigenvectors corr. to negative eigenvalues of

βIn + αJn − 1
2

(
(X̂+ X̂(2) + (X̂+ X̂(2))⊤

)

Let {S1, . . . ,Sk} be the partition of V implied by the cycle covers in X̂, then

v j
i :=

{
n − |Sj | if i ∈ Sj

−|Sj | if i /∈ Sj ,
∀j ∈ [k]

〈
vj(vj)⊤, βIn + αJn − 1

2 ((X̂+ X̂(2)) + (X̂+ X̂(2))⊤)
〉
< 0 for all j ∈ [k]

For all j ∈ [k] construct the following CG cuts:〈
vj(vj)⊤,X+ X(2)

〉
≤

⌊
⟨vj(vj)⊤, βIn + αJn⟩

⌋
we provide 6 classes of CG-cuts for the ISDP of the QTSP
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Chvátal-Gomory cuts for the ISDPs of the QTSP (cont.)

CG cut of with dual multiplier U = 1S1S
⊤:∑

i∈S, j∈S

xij ≤ |S | − 1, ∀S ⊂ N, 2 ≤ |S | < n

S-CG cut with dual multiplier U = 1S1S
⊤ and∑

k∈N:(i,k,j)∈A yikj − x
(2)
ij = 0, ∀i , j ∈ S , each with dual multiplier 1,

and −yikj ≤ 0 ∀(i , k, j) ∈ A, each with dual multiplier 1∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤ |S | − 1, ∀S ⊂ N, 2 ≤ |S | < 1

2
n
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