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● Hilbert’s 17th problem

Given                   satisfying                            , 
does        admit a sum-of-squares (s.o.s.) 
representation                           ?

● Converse is trivial. When does equivalence hold?

● How powerful is this representation?

● Can one extend it to subsets of      ?

– Semialgebraic sets
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● Textbook counter-example

– Motzkin polynomial

Does not admit a sum-of-squares representation

Not even adding an arbitrarily large constant

T. S. Motzkin, The arithmetic-geometric inequality. 1967 Inequalities (Proc. Sympos. Wright-
Patterson Air Force Base, Ohio, 1965) pp. 205–224

But                                                   does admit a 
sos decomposition!!
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Every multivariate non-negative polynomial 
over the reals can be written as a sos of 
rational functions

But still, deciding whether
remains NP-hard

Is there a tractable approach to this question?
Semidefinite programs
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Semidefinite Programming
● But now the degree of the sos may be unbounded!!

Simplification rule

Moment matrix, 2nd order

Gröebner basis

linearizes

[Gouveia, Thomas, Convex Hulls 
of semialgebraic sets, 2012]
[Lasserre, 2001]
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● We can also add inequality constraints!

Moment matrix, 2nd order

[Gouveia, Thomas, Convex Hulls 
of semialgebraic sets, 2012]
[Lasserre, 2001]

Shifted moment matrix by x, 1st order
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● In general, we can consider
Convex hulls of semialgebraic sets

sums-of squares

Increasing the degree of 
the sos    gives more 
representability power
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● Too many degrees of freedom
● Too many approximations

– Let’s try to characterize only the statistics 
arising from quantum physics
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● Quantum correlations from operational principles?

Quantum correlations must be the NS principle plus something else...

● Non-trivial communication complexity?
● No advantage for nonlocal computation?
● Information causality?
● Macroscopic locality?
● Local orthogonality?

Q

Popescu-Rohrlich 94, Brassard et al 06, Linden et al 07, 
Pawlowski et al 09, Navascues-Wunderlich 10, Fritz et al, 13
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SdP solves this problem… kind of
● Quantum operators satisfying
● Generalization of Lasserre’s hierarchy 

to the non-commutative case

Navascués-Pironio-Acín, PRL, 2007

Sos of degree 1 “mod I”

Sos of degree 2 “mod I”

“Almost quantum” 
correlations Navascués et al, NatComms 2014

Includes most of 
the operational 
principles
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● Classical bound: Commutative sos

● Quantum bound: Non-commutative sos

● Other cases: PPT states do not violate CHSH
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quantum systems

● The complexity of the problem
Finding all Bell inequalities Convex Hull problem

scenario

Dimension of the Local Polytope

Number of vertices

[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10 377409 (1993)]

Complexity of dual description:

Examples

basically any
timescale you want

[S. Dalí The persistence
of memory (1931)]
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Some applications
We consider Bell inequalities of the form

with

Dimension depends on
 - Order of the correlators
 - #Measurements
 - #outcomes 

Does NOT depend on
 - #Parties 
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The Local polytope
● Solving for a few values of N...

What’s the physical 
significance of each 
inequality?
Are they equally relevant?



  

Bounding the LHVM set
● Main Observation



  

Bounding the LHVM set
● Main Observation



  

Bounding the LHVM set
● Main Observation

As the system becomes larger



  

Bounding the LHVM set
● Main Observation

As the system becomes larger



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?

Local 
Deterministic 
Strategy view:



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?

Local 
Deterministic 
Strategy view:



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?

Local 
Deterministic 
Strategy view:

Permutational Invariance:



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?

Local 
Deterministic 
Strategy view:

Permutational Invariance:

Only amount of each color 
becomes relevant



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?

Local 
Deterministic 
Strategy view:

Permutational Invariance:

Only amount of each color 
becomes relevant



  

Bounding the LHVM set
● Main Observation

As the system becomes larger

Where does this extra structure come from?

Local 
Deterministic 
Strategy view:

Permutational Invariance:

Only amount of each color 
becomes relevant



  

Bounding the LHVM set
● Algebraic structure at every LDS



  

Bounding the LHVM set
● Algebraic structure at every LDS



  

Bounding the LHVM set
● Algebraic structure at every LDS



  

Bounding the LHVM set
● Algebraic structure at every LDS



  

Bounding the LHVM set
● Algebraic structure at every LDS

Goal: Define a manifold interpolating the vertices of the symmetric 2-
body polytope, and compute its convex hull
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First relaxation

Computing the convex hull of a semialgebraic set is NP-hard
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Second relaxation

Solve the sos representation problem as an SDP!
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Results
● Testing all BI of a certain form with a single SDP
● If the experimental point is sufficiently nonlocal, the 

SDP outputs the Bell inequality that is violated, with 
a proof of its classical bound

● The complexity of the problem is independent of the 
system size

Approximation for N= 10 Approximation with actual 
experimental data and N=476
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correlators...

[Ongoing work with A. Aloy and M. Fadel]

Spin-nematic squeezing
Polytope approach already impractical



  

Outline
● A quantum information scientist meets 

non-negative polynomials

● Sum-of-squares representations

● Characterizing many-body correlations

● An application of sum-of-quares in 
quantum information: self-testing
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Self-testing quantum devices
● Maximally entangled states

“SATWAP inequality”, PRL 119, 040402 (2017)

Alexia
Salavrakos

Remigiusz 
Augusiak

Peter Wittek Antonio 
Acín

Stefano 
Pironio

Goal: Self-test 
the MaxEnt state
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Self-testing quantum devices
● Typical approach

– Tight Bell inequalities

LHVM

Minimal number
Optimal in what sense?

Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality

CGLMP is tight, resistant to noise, analytically 
easy... but has an important “anomaly”
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Self-testing quantum devices
● Is that surprising?

LHVM set has actually nothing to do with quantum physics; in 
particular, max. ent. States.

Tight inequality derived 
from LHVM models

Bell inequality tailored to the 
maximally entangled state

Complicated Operator-
sum-of-squares

Simple, first-degree 
operator-sum-of-squares
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Self-testing quantum devices
● Fidelity with maximally entangled 

qutrit pair

Sum-of-squares 
naturally generalizes

To higher dimensions and 
number of measurements



  

Self-testing quantum devices
● Experiment in Bristol

Science 360, 285 (2018)

R. Santagati

J. O’Brien M. Thompson L. K. OxenløweA. Laing

S. Paesani J. Wang

K. Rottwitt

Y. Ding D. Bacco

P. Skrzypczyk L. Mancinska

A. Salavrakos T. AcinR. Augusiak



  

Self-testing quantum devices
● Experiment in Bristol

• 93 active components (phase shifters).
• 16 SFWM single photon sources.

Integration of more than 500 optical 
components, including:

1 mm



  

Self-testing quantum devices
● State tomography

Ideal state:
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SATWAP Bell inequalities:

A. Salavrakos et al, PRL 119, 040402 (2017). 



  

Self-testing quantum devices
SATWAP Bell inequalities:

A. Salavrakos et al, PRL 119, 040402 (2017). 

Self-testing:
Device-independent characterisation of quantum devices 

from nonlocal correlations

Self-testing states: 
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Conclusions
● SDPs and polynomial optimization are 

ubiquitous in quantum information
● Here we showed how they yield accurate 

outer approximations to the LHVM set 
via CH of semialgebraic sets

● Approach is scalable, independent of 
the system size

● SOS certificates allow to «peek inside» 
the black box
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Outlook
● Convergence analysis
● Highly scalable approach
● Self-testing of spin-squeezed states
● Detection of nonlocality in non-Gaussian 

states
● Incorporate symmetries to the non-

commutative case  Quantum upper →
bounds

● Nonlocality depth quantification



  

Thanks for your attention!


