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Trace polynomials

Elements of T = T(x)
Symmetric nc vars x = (x1,...,x,) & sums of trace products T
f= xlxzx% — tr(xp) tr(xqx7) tr(x%xz)xle eT
with x1x; # xpx1, involution (xqx2)* = xpx7
tr(f) = tr(x3xp) — tr(xp) tr(xyx0)? tr(x3xp) € T
* = x3xox; — tr(x) tr(xpx0) tr(xFxo) x1x2

f*f hermitian square
S CSymT x; operators from finite von Neumann algebra
Constraints Dg = {x :s(x) >0, Vse S}
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Primer on von Neumann algebras

B(H) bounded linear operators on Hilbert space #H

A C B(H) is von Neumann algebra iff

m closed in strong operator topology (locally convex
generated by the seminorms ps(x) = ||x¢||, ¢ € H)

m contains Idy
Examples: B(H), C"*" when H = C"
Commutant A" = elements commuting with elements of A
If A= B(H) then A’ = Cldy, V*Trivial commutant” = factor

A=L2(X,u)isavNain L2(X, )
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Primer on von Neumann algebras

Linear functional T on A is positive if T(x*x) > 0forallx € A
Faithful if T(x*x) =0 = x = 0 State if positive & 7(1) =1
Tracial if T(xy) = t(yx)

Tracial vNa = vNa A equipped with a tracial state T
Example: L®(X, u) with 7, = [, fdu

V" Factor types vNa (with trivial commutant)

m Type |: isomorphic to some B(H) = I, isomorphic to
C™" or I, when dim H = oo

m Type ll;: co-dim tracial vNa
m More complicated ones!
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Optimization over T: special cases

m Eigenvalue optimization V" no traces [Helton-McCallough
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=sup{A:f(x)—A1=0, VxeDs}
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=sup{A:f(x)—A1=0, VxeDs}

V" POP for scalar variables [Lasserre, Parrilo 01]
m Trace optimization V" cost = ¥ of traces + no traces in the
constraints [Calfuta-Klep-Povh-Burgdorf 12-13]

trmin = inf{tr(f(x)) : x € Ds}

m Finite-dimensional matrices [Klep-Spenko-Volcic 18]:

f > 0onDg = f has weighted SOHS decomposition
m Univ case [Klep-Pascoe-Volcic 21]: f = 0 = f = SOHS/SOHS
m Multilinear case [Huber 21]
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“Pillars” of quantum physics: violations imply that properties
(e.g. entanglement) can’t be represented by classical physics

Conditional joint probabilities (correlations):
P(a,b|s,t) := P (Alice answers a, Bob answers b|Alice is asked
s, Bob is asked )

Deterministic (= classical) strategies:
P(als),P(b|t) € {0,1} = P(a,b|s,t) = P(a|s)P(b]t) € {0,1}

classical correlations = convex combinations of deterministic
correlations
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Linear inequalities in the correlations P(a, b|s, t) & marginals P(als),
P(b|t), valid for all classical correlations: Bell polytope

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by
quantum systems:

—P,(1]0) — P,(1]0) 4+ P(1,1]0,0) + P(1,1]0,1) + P(1,1]1,0) — P(1,1]1,1) < 0

Alice & Bob share a bipartite quantum state ¥ and they answer s, t
by performing quantum measurements on their part of ¥:

P(a,bls,t) = ¥*XY'¥, P(als) = ¥*X*¥, P(b|t) = ¥*Y'¥
X¢,Y? are bounded operators on separable Hilbert spaces s.t.:
X0YP = YPxe, X0Xo=XY, Yy =v?
XX =y =0, Y xi=Y Y =1
a b

“Mathematically”: inequality on eigenvalues of noncommutative
polynomials

Victor Magron Trace polynomial optimization with applications in quantum information 7/22



Motivation: Bell inequalities

Entanglement in quantum mechanics
— upper bounds for violation levels of Bell inequalities
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Motivation: Bell inequalities

Entanglement in quantum mechanics
— upper bounds for violation levels of Bell inequalities

[Pozas et al 19] extension — identify correlations not attainable
in entanglement-swapping scenario (quantum teleportation)

Quantum physics operators x;, y; satisfy causal constraints:

tr(x1x211Y2) — tr(x1x2) tr(y1y2) = 0.
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st f(x)—A1=0, VxeDg

M(S) Archimedean quadratic module: N — Y; x? = 0

Theorem: NC Putinar’s representation [Helton-McCullough 02]
f=00nDg = f+eec M(S),foralle >0

NC variant of Lasserre’s Hierarchy for A in:
¥V replace “f — A1 3= 00nDs” by f — A1 € M(S),
f—=A1 =Y, hih; + Y Y, tists with 1y, ts; of bounded degrees
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Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

Victor Magron Trace polynomial optimization with applications in quantum information 10/22



Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS

Victor Magron Trace polynomial optimization with applications in quantum information 10/22



Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

Victor Magron Trace polynomial optimization with applications in quantum information 10/22



Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

GooD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz!

Victor Magron Trace polynomial optimization with applications in quantum information 10/22



Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

GooD NEWS: there is an NC analog of the sparse Putinar’s

Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar "78, Voiculescu '85]

Victor Magron Trace polynomial optimization with applications in quantum information 10/22



Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

GooD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar "78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

f = Y fr. fx depends on x(I)

f>0o0nDg f= ;(S;&Sk,‘ + 2 tji*gjtji>
S

Each g depends on some I § ! _ _ ]I]k

RIP holds for (Ij) — Ski Sees varsin

Ball constraints for each x(1I;) tji "sees” vars from g;
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Sparse eigenvalue optimization

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + X6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
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Sparse eigenvalue optimization

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + x6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5
Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
VI = {x1, %2, X3, X4 3}
level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
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f = xl(x4 + x5 + x6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
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level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
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Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}

VI — {x1,x2,x3, X3}
level sparse
2 0.2550008
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f=x1(x4 + x5+ x6) + x2(x4 + X5 — X¢) + x3(x4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}

VI — {x1,x2,x3, X3}
level sparse
2 0.2550008
0.2511592

0.2508917
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Sparse eigenvalue optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(x4 + x5+ x6) + x2(x4 + X5 — X¢) + x3(x4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}

VI — {x1,x2,x3, X3}
level sparse
2 0.2550008
0.2511592

0.2508917
0.2508763
0.2508753977180

OOk WOW

PERFORMANCE m,
NP
g\ \/U

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)

(1 hour)

VS ACCURACY
©
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Trace optimization



Trace optimization

trn = inf{tr(£(x)) : x € Ds)

=sup m
st tr(f(x)—m) >0, VxeDg
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Trace optimization

trn = inf{tr(£(x)) : x € Ds)

=sup m
st tr(f(x)—m) >0, VxeDsg

I

tr, ., = minimal trace over the union of type — II; vN algebras

1T
min

V" Disproving Connes’ embedding conjecture: tr ! < trpin
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Trace optimization

trn = inf{tr(£(x)) : x € Ds)

=sup m
st tr(f(x)—m) >0, VxeDsg

I “— minimal trace over the union of type — II; vN algebras

tI.min
NS . » . . it
¥" Disproving Connes’ embedding conjecture: tr | < trmin

Converging hierarchy with cyclic quadratic modules:
'V replace “tr(f —m) = 00on Dy by f — m1 € MY(S),

MY¢(S), = polynomials with same trace as some from M(S),
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Trace optimization

trn = inf{tr(£(x)) : x € Ds)

=sup m
st tr(f(x)—m) >0, VxeDsg

11 . .
tr, ., = minimal trace over the union of type — II; vN algebras
11

¥ Disproving Connes’ embedding conjecture: tr, < trmin
Converging hierarchy with cyclic quadratic modules:
'V replace “tr(f —m) = 00on Dy by f — m1 € MY(S),

MY¢(S), = polynomials with same trace as some from M(S),

How to extend it to sums of trace products T?
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Kadison-Dubois representation theorem

Xm = {¢: T — R | ¢ homomorphism, p(M) C Rxo, ¢(1) =1}
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Kadison-Dubois representation theorem

Xm = {¢: T — R | ¢ homomorphism, p(M) C Rxo, ¢(1) =1}

Theorem: Kadison-Dubois [Marshall 08]

Given an Archimedean quadratic module M C T & f € T:

Voexm ¢(f) =0 & Ve>0 f+ee M
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Representation of positive elements of T

For S C T, “augment” S with traces of hermitian squares:

S(N) = SU{tr(pp*) | p € R(x)} U{N* —tr(=®) [ ke N} C T
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Representation of positive elements of T

For S C T, “augment” S with traces of hermitian squares:
S(N) = Su{tr(pp*) | p € R(x)}U{NF —tr(xi*) [k eEN} C T
Elements of M(S(N)) are

pls p3(N* - tr(szk)) tr(aa®)

forseS,pieT,acT
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Representation of positive elements of T

For S C T, “augment” S with traces of hermitian squares:
S(N) = Su{tr(pp*) | p € R(x)JU{N* —tr(x3*) [keN} C T
Elements of M(S(N)) are

pls p3(N* - tr(szk)) tr(aa®)

forseS,pieT,acT
Lemma [Klep-M.-Volcic 20]

M(S(N)) is archimedean
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Representation of positive elements of T

For S C T, “augment” S with traces of hermitian squares:
S(N) = Su{tr(pp*) | p € R(x)JU{N* —tr(x3*) [keN} C T
Elements of M(S(N)) are

pls p3(N* - tr(szk)) tr(aa®)

forseS,pieT,acT
Lemma [Klep-M.-Volcic 20]

M(S(N)) is archimedean

By induction: V word w, m + tr(w) € M(S(N)) for some m > 0
w=1x* — NF41 +2tr(x;~‘) = (NF - tr(x]zk)) +tr ((x;‘ +1)?)

]
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Representation of positive elements of T

S(N)=SU{tr(pp™) | p € R(x)FUN  —tr(xi) [k e N} C T
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Representation of positive elements of T

S(N)=SU{tr(pp™) | p € R(x)FUN  —tr(xi) [k e N} C T

SINl=SU{N-x}}CT
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Representation of positive elements of T

S(N) = sU{tr(pp*) | p € R} U{N" —tr(xi") [k e N} C T

SINl=SU{N-x}}CT

Theorem [Klep-M.-Volcic 20]

f>00n DEEN] & f+ee M(S(N))foralle >0

Victor Magron Trace polynomial optimization with applications in quantum information 15/22



SDP hierarchies



Tracial words & moment matrices

T-words = {[T; tr(u;)v : u;, v words } and T-words
tr(x;)? is a T-word, tr(x1)x; is a T-word
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Tracial words & moment matrices

T-words = {[T; tr(u;)v : u;, v words } and T-words
tr(x1)? is a T-word, tr(x;)x; is a T-word
V" Tracial degree = up to cyclic equivalence

WT = vector of T-words of with tracial degree < r
n = 1: WI contains 1, xy, x3, tr(xy), tr(x3), tr(x1 ) x;
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Tracial words & moment matrices

T-words = {[T; tr(u;)v : u;, v words } and T-words
tr(x1)? is a T-word, tr(x;)x; is a T-word
V" Tracial degree = up to cyclic equivalence

WT = vector of T-words of with tracial degree < r
n = 1: WI contains 1, xy, x3, tr(xy), tr(x3), tr(x1 ) x;

Tracial moment matrix M (L) for a linear functional L : T — RR:
m indexed by W[
m (M7 (L))uo = L(tr(u*0))
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Tracial words & moment matrices

T-words = {[T; tr(u;)v : u;, v words } and T-words
tr(x1)? is a T-word, tr(x;)x; is a T-word
V" Tracial degree = up to cyclic equivalence

WT = vector of T-words of with tracial degree < r
n = 1: WI contains 1, xy, x3, tr(xy), tr(x3), tr(x1 ) x;

Tracial moment matrix M (L) for a linear functional L : T — RR:
m indexed by W[
m (M7 (L))uo = L(tr(u*0))

Trace localizing matrix M (sL) for s € T:
m indexed by WT
m (MY (sL)),, = L(tr(u*sv))
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SDP hierarchy for T

Reminder:

S(N) =SU {tr(pp*) | p € R(x)} U{N* —tr(x) [ ke N} C T
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SDP hierarchy for T

Reminder:
S(N) =SU {tr(pp*) | p € R(x)} U{N* —tr(x) [ ke N} C T

SINJ=SU{N-x}CT
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SDP hierarchy for T

Reminder:
S(N) =SU {tr(pp*) | p € R(x)} U{N* —tr(x) [ ke N} C T

SINJ=SU{N-x}CT

min

Trace minimization: fI = inf{f(x):x € DEEN]}
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SDP hierarchy for T

Reminder:
S(N) =SU {tr(pp*) | p € R(x)} U{N* —tr(x) [ ke N} C T

SINJ=SU{N-x}CT

Trace minimization: fI = inf{f(x):x € DEEN]}

M(S(N)), = {prsi :5; € S(N), p; € T, deg(p?s;) < Zr}
Elements of M(S(N)), are

p3s p%(Nk—tr(sz-k)) tr(aa®)

forseS,pieT,acT

Victor Magron Trace polynomial optimization with applications in quantum information 17 /22



SDP hierarchy for T

Lower bounds hierarchy: f, = sup{m | f —m € M(S(N)),}
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SDP hierarchy for T

Lower bounds hierarchy: f, = sup{m | f —m € M(S(N)),}
Dual with moment matrices:

inf  L(f)
linear L
st. (MNL))uo = (MI(L))w. whenever tr(u*v) = tr(w*z)
(M](L))11 =1
M/ (L) =0,
M}, (sL) =0, forallses

MT (N} = tr(x2)) L) 5 0

Victor Magron Trace polynomial optimization with applications in quantum information 18 /22



SDP hierarchy for T

Lower bounds hierarchy: f, = sup{m | f —m € M(S(N)),}
Dual with moment matrices:

Anf  L(f)
linear L
st. (MY(L))uo=(MY(L))w. whenever tr(u*v) = tr(w*z)
(M ()11 =1
M (L) =0,
M}, (sL) =0, forallses

Theorem [Klep-M.-Volcic 20]

There is no duality gap and f, — o

min @S ¥ — 0
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SDP hierarchy for T

S CSymT
¥ Reduction from the general trace setting to the pure trace

S={tr(asa*) |s€S, acTCT
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SDP hierarchy for T

S CSymT
¥ Reduction from the general trace setting to the pure trace

S={tr(asa*) |s€S, acTCT

M(S(N)), = {ZP?Si/ pi €T, deg(pisi) < 27}

Lower bounds hierarchy: f, = sup{m | f —m € M(S(N)),}
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SDP hierarchy for T

S CSymT
¥ Reduction from the general trace setting to the pure trace

S={tr(asa*) |s€S, acTCT

M(S(N))r = {ZP?S:‘/ pi €T, deg(pisi) < 27}
;
Lower bounds hierarchy: f, = sup{m | f —m € M(5(N)),}

Theorem [Klep-M.-Volcic 20]

There is no duality gap and ﬁ — U asr — oo

min
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Polynomial Bell inequalities



Polynomial Bell inequalities

CLASSICAL WORLD
P (A1®B1+A1 @B+ Ay ®B1 — A2 ®@By)p <2

for separable states ¥ € R* @ R* and matrices Aj, B; satisfying
A;!‘:A]-,AJZ:I,B;*:B]»,B]?:I

Victor Magron Trace polynomial optimization with applications in quantum information 20/22



Polynomial Bell inequalities

CLASSICAL WORLD
P (A1®B1+A1 @B+ Ay ®B1 — A2 ®@By)p <2

for separable states ¢ € R* @ R* and matrices Aj, B; satisfying
A;!‘:A]-,AJZ.:I,B;*:B]»,B]?:I

TSIRELSON’S BOUND for maximally entangled states
P = ﬁz;{:lej@@j € RF @ Rk
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Polynomial Bell inequalities

CLASSICAL WORLD
P (A1®B1+A1 @B+ Ay ®B1 — A2 ®@By)p <2

for separable states ¢ € R* @ R* and matrices Aj, B; satisfying
A;!‘:A]-,AJZ.:I,B;*:B]»,B]?:I

TSIRELSON’S BOUND for maximally entangled states
= ﬁz};l e;®@e; E RFORF = ¢*(X®Y)yp = tr(XY)
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Polynomial Bell inequalities

CLASSICAL WORLD
P (A1®B1+A1 @B+ Ay ®B1 — A2 ®@By)p <2

for separable states ¢ € R* @ R* and matrices Aj, B; satisfying
A;!‘:A]-,AJZ.:I,B;*:B]»,B]?:I

TSIRELSON’S BOUND for maximally entangled states
= ﬁz};l e;®@e; E RFORF = ¢*(X®Y)yp = tr(XY)

2 — 2\/§ = trmax{a1b1 + a1by + axb; — axby a]Z = b]2 = 1}
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Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

covy(X,Y) =9 (X@Y)p — ¢ (X Dy -p*"(IY)y
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Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) 1= g (X@Y)p — " (X2 Dp-p* (I Y)y

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . ..
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Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) 1= g (X@Y)p — " (X2 Dp-p* (I Y)y

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COle(Az, Bz) — COle(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . . .5 for one maximally entangled state

V" 2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

V" 2nd sparse SDP gives also 5 ... 10 times faster
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Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials
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