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Strassen, in his seminal 1969 paper

“Gaussian Elimination is Not Optimal”

sent a clear message to the scientific
community:

Natural, obvious and centuries-old
methods for solving important
computational problems may be
far from the fastest.



“Gaussian elimination is not optimal”

• multiplying n× n matrices
• inverting n× n matrices
• solving a system of n linear equations in n unknowns
• computing the determinant of an n× n matrix

Strassen proved that the obvious O(n3) algorithm for these
(equivalent) problems is far from optimal

by designing a new one which takes only O(n2.8) operations
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The possibility of obtaining even faster algorithms for these central
problems set Strassen and many other computer scientists on a
quest to obtain them, with the current record below O(n2.4)
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The quest to understand the matrix multiplication exponent ω is still
raging on.



Decades later (1986–1991) Strassen
developed his

asymptotic spectrum
Positivstellensatz / duality

While motivated by trying to
understand the complexity of matrix
multiplication, this theory is far more
general

leading to a broader framework that
suits other problems and settings.



Task

Task

Task

Central in this theory of asymptotic
spectra:

What is the cost of a task if we have to
perform it many times?

Arises in numerous parts of mathematics,
physics, economics and computer science

• matrix multiplication
• circuit complexity (with Robert Robere)

• direct-sum problems
• Shannon capacity
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1. Shannon capacity

Measures amount of information that can be transmitted over a
communication channel.

Understanding it has been an open problem in information theory
and graph theory since its introduction by Shannon in 1956.

Translates to graph theoretical problem:

channel graph

protocol independent set

repeating strong product
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Strong product

G� H

V(G� H) = V(G)× V(H)

Adjacency matrix formulation:

The adjacency matrix of G� H is the tensor product
of those of G and H



Independence number is super-multiplicative

α(G� H) ≥ α(G)α(H)

Example
α(C5) = 2

α(C�25 ) = 5

Shannon capacity

Θ(G) = supn α(G�n)1/n

Example
Θ(C5) =

√
5 (Lovász)

3.2578 ≤ Θ(C7) ≤ 3.3177 (Schrijver–Polak)

How to upper bound α (and Θ)?
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Matrix rank (Haemers bound)
Given any graph (a collection of vertices connected by edges)

an independent set is a subset of the vertices that spans no edges:


1 ∗ 0 0 ∗
∗ 1 ∗ 0 0
0 ∗ 1 ∗ 0
0 0 ∗ 1 ∗
∗ 0 0 ∗ 1

 1 on the diagonal
0 on the non-edges

Every independent set gives an identity sub-matrix
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Largest eigenvalue (Lovász theta function)
Given any graph (a collection of vertices connected by edges)

an independent set is a subset of the vertices that spans no edges:
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(and Θ too)
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Q: How good are the Haemers and Lovász bounds?



2. The asymptotic spectrum of graphs

Models graphs as points in real space

Defined as the set X of all maps F : {graphs} → R that are

1. additive under t
2. multiplicative under �

3. monotone under cohomomorphism

4. normalized to 1 on the graph with one vertex E1

Graphs as real points: G 7→ (F(G))F∈X

Examples of elements of X
• Lovász theta function ϑ
• fractional Haemers bound (Bukh–Cox)
• fractional clique cover number
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3. Duality theorem

Recall that
• Shannon capacity is a maximization: Θ(G) = supn α(G�n)1/n

• Lovász theta gives upper bound: Θ(G) ≤ ϑ(G)

Lemma
Every F ∈ X gives upper bound: Θ(G) ≤ F(G)

Q: Are the upper bounds from F ∈ X powerful enough to reach Θ?

Duality Theorem (“yes”, Zuiddam)
Shannon capacity is a minimization: Θ(G) = minF∈X F(G)
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Q: Is the duality theorem non-trivial?

Duality Theorem Θ(G) = minF∈X F(G)

Conjecture (Shannon) Θ ∈ X

Theorem (Haemers)
There are G,H for which Θ(G� H) > Θ(G)Θ(H)

Theorem (Alon)
There are G,H for which Θ(G t H) > Θ(G) + Θ(H)

Corollary Θ 6∈ X
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Q: How is the duality theorem proven?

Duality Theorem (Zuiddam) Θ(G) = minF∈X F(G)

Definition: write
• G ≤ H if there is a cohomomorphism G→ H
• G . H when G�n ≤ H�(n+o(n))

More General Duality Theorem
G . H iff F(G) ≤ F(H) for all F ∈ X

Ideas:
• Real geometry: inequalities G . H “cut out” X
• Kadison–Dubois representation theorem, Positivstellensatz
• Extension of Linear Programming Duality
• Works for any “Archimedean” preordered semiring
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4. Consequences and new directions

Theorem (“Additivity if and only if multiplicativity”, Holzman)
For any graphs G,H the following are equivalent:

(i) Θ(G t H) = Θ(G) + Θ(H)

(ii) Θ(G� H) = Θ(G)Θ(H)

(iii) There is F ∈ X such that F(G) = Θ(G) and F(H) = Θ(H)

Proof (i) ⇒ (iii)
Let F ∈ X such that Θ(G t H) = F(G t H)

Then Θ(G) + Θ(H) = Θ(G t H) = F(G t H) = F(G) + F(H)

Always: Θ(G) ≤ F(G) and Θ(H) ≤ F(H)

Therefore Θ(G) = F(G) and Θ(H) = F(H) �

(iii) ⇒ (i)
Θ(G) + Θ(H) ≤ Θ(G t H)

≤ F(G t H) = F(G) + F(H) = Θ(H) + Θ(H) �
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Example (“Theorems of Haemers and Alon are equivalent”)

Θ(G� H) > Θ(G)Θ(H) iff Θ(G t H) > Θ(G) + Θ(H)

Example (“Shannon capacity is not attained at a finite power”)
• C5 � E1 = C5

• Θ(C5 � E1) = Θ(C5) = Θ(C5)Θ(E1)

• Θ(C5 t E1) = Θ(C5) + Θ(E1) =
√
5 + 1 6= a1/n for a, n ∈ N
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More general theorem

Let G1, . . . ,Gn be graphs. The following are equivalent:

(i) For every polynomial p we have
Θ(p(G1, . . . ,Gn)) = p(Θ(G1), . . . ,Θ(Gn))

(ii) There exists a polynomial p (depending on all variables) such
that Θ(p(G1, . . . ,Gn)) = p(Θ(G1), . . . ,Θ(Gn))

(iii) There exists F ∈ X such that F(Gi) = Θ(Gi) for all i

These we can also make quantitative, relating non-additivity and
non-multiplicativity



New directions

• Topological structure of asymptotic spectra
Focus: Need to understand topological structure of Asymptotic Spectra

ConnectedDisconnected Star-Convex Convex

• Matrix Multiplication: Star-Convex  (not known if Convex)

• Shannon capacity: Connected

State of the Art:

Stronger topological structure ⇒ New algorithmic methods to attack Direct-Sum problems

Stronger topological structure ⇒ new algorithmic methods
(with Avi Wigderson)

• New notion of graph limits

(with David de Boer and Pjotr Buys)



New notion of graph limits

Can we determine Θ(C7) (say) be constructing a sequence of
graphs Gi that “converges” to C7 for which we can determine Θ(Gi)?

Theorem
For any G,H we have G . H iff for all F ∈ X we have F(G) ≤ F(H).

Definition
Distance on graphs: d(G,H) = supF∈X |F(G)− F(H)|

Theorem (de Boer, Buys, Zuiddam)
The space of graphs is not complete: there is a Cauchy sequence
that does not converge.
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Definition (Fraction graphs)
For p, q ∈ N let Ep/q be the graph with vertex set [p] and edges
between vertices with distance strictly less than q mod p.

Examples

E5/1 = E5/2 = E5/3 =

Ep/1 = p vertices, no edges

Ep/2 = cycle graph Cp

Theorem (“Fraction graphs are ordered as the rationals”)
p/q ≤ p′/q′ iff Ep/q ≤ Ep′/q′
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Tools

Graphs G,H are equivalent if G ≤ H and H ≤ G

Theorem (DB, B, Z)
Removing any subset of vertices from any fraction graph gives a
graph that is equivalent to some fraction graph

Theorem (DB, B, Z)
If G is vertex-transitive and S ⊆ V(G), then for every F ∈ X we have

F(G[S]) ≤ F(G) ≤ |V(G)|
|S|

F(G[S])



Theorem
For every irrational number r > 2 and sequence pn/qn converging
to r, the sequence Epn/qn is Cauchy but not convergent.

Proof ideas:
• Continued fraction expansion of r

a2
b2

<
a4
b4

< · · · < r < · · · < a3
b3

<
a1
b1

with anbn+1 − an+1bn = 1 for odd n
• Ean/bn minus any vertex is equivalent to Ean+1/bn+1

for odd n
• for every F ∈ X, F(Ean+1/bn+1

) ≤ F(Ean/bn) ≤ an
an−1F(Ean+1/bn+1

)

• enough to find that the Ean/bn form a Cauchy sequence
• the sequence is not convergent because the fractional clique

cover number of any graph is rational, and the fractional clique
cover number of this sequence converges to the irrational r
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Let F ∈ X or F = Θ

Theorem (Schrijver, Polak)
Q≥2 → R : p/q 7→ F(Ep/q) is left-continuous at p/q when p/q is
integer.

Proof: explicit construction of independent sets in powers of Ep/q

Theorem (De Boer, Buys, Zuiddam)
Q≥2 → R : p/q 7→ F(Ep/q) is right-continuous as every p/q

Proof: uses the methods we developed for our non-completeness
proof

We have used the ideas developed here to get new bounds on the
Shannon capacity of certain odd cycle graphs.
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Problems

• What are the elements of the asymptotic spectrum of graphs?
• What is the structure of X?
• What bounds can we obtain on the Shannon capacity via graph
limits?
• What other problems in math, CS and physics have asymptotic
spectrum duality?
• Lovász theta function for hypergraphs?



Strassen’s asymptotic spectra duality

S semiring
1 ∈ S
≤ semiring preorder
bounded, preserves N

subrank
Q(s) = max{n ∈ N : n ≤ s}

asymptotic subrank
~Q(s) = supn Q(sn)1/n

duality
~Q(s) = minF∈X F(s)

X = semiring monotones

S semiring of graphs
E1 ∈ S
≤ cohomomorphism
bounded, preserves N = {E1,E2, . . .}

independence number
Q(G) = α(G)

Shannon capacity
~Q(G) = Θ(G)

duality
Θ(G) = minF∈X F(G)

X = asymptotic spectrum of graphs


