Shannon Capacity via Real Algebraic Geometry and Strassen's Positivstellensatz

Jeroen Zuiddam

Korteweg-de Vries Institute for Mathematics University of Amsterdam

Strassen, in his seminal 1969 paper

"Gaussian Elimination is Not Optimal"

sent a clear message to the scientific community:

Natural, obvious and centuries-old methods for solving important computational problems may be far from the fastest.

"Gaussian elimination is not optimal"

- multiplying $n \times n$ matrices
- inverting $n \times n$ matrices
- solving a system of n linear equations in n unknowns
- computing the determinant of an $n \times n$ matrix

"Gaussian elimination is not optimal"

- multiplying $n \times n$ matrices
- inverting $n \times n$ matrices
- solving a system of n linear equations in n unknowns
- computing the determinant of an $n \times n$ matrix

Strassen proved that the obvious $O(n^3)$ algorithm for these (equivalent) problems is far from optimal

by designing a new one which takes only $\mathcal{O}(n^{2.8})$ operations

The possibility of obtaining even faster algorithms for these central problems set Strassen and many other computer scientists on a quest to obtain them, with the current record below $O(n^{2.4})$

The quest to understand the matrix multiplication exponent ω is still raging on.

Decades later (1986–1991) Strassen developed his

asymptotic spectrum Positivstellensatz / duality

While motivated by trying to understand the complexity of matrix multiplication, this theory is far more general

leading to a broader framework that suits other problems and settings.

Central in this theory of asymptotic spectra:

What is the cost of a task if we have to perform it many times?

Central in this theory of asymptotic spectra:

What is the cost of a task if we have to perform it many times?

Arises in numerous parts of mathematics, physics, economics and computer science

- matrix multiplication
- circuit complexity (with Robert Robere)
- direct-sum problems
- Shannon capacity

- 1. Shannon capacity
- 2. The asymptotic spectrum of graphs
- 3. The asymptotic spectrum duality theorem
- 4. Consequences and new directions

1. Shannon capacity

Measures amount of information that can be transmitted over a communication channel.

Understanding it has been an open problem in information theory and graph theory since its introduction by Shannon in 1956.

Translates to graph theoretical problem:

channel	graph
protocol	independent set
repeating	strong product

Independence number

 $\alpha(C_5) = 2 \qquad \alpha(S_3) = 3 \qquad \alpha(E_4) = 4$

Strong product

 $G \boxtimes H$ $V(G \boxtimes H) = V(G) \times V(H)$

Adjacency matrix formulation:

The adjacency matrix of $G \boxtimes H$ is the tensor product of those of G and H

Independence number is super-multiplicative

$$\alpha(G \boxtimes H) \ge \alpha(G)\alpha(H)$$

Example

$$\alpha(C_5) = 2$$
$$\alpha(C_5^{\boxtimes 2}) = 5$$

Independence number is super-multiplicative

$$\alpha(G \boxtimes H) \ge \alpha(G)\alpha(H)$$

Example

$$\alpha(C_5) = 2$$
$$\alpha(C_5^{\boxtimes 2}) = 5$$

Shannon capacity

$$\Theta(G) = \sup_n \alpha(G^{\boxtimes n})^{1/n}$$

Example

$$\Theta(C_5) = \sqrt{5}$$
 (Lovász)
3.2578 $\leq \Theta(C_7) \leq 3.3177$ (Schrijver–Polak)

Independence number is super-multiplicative

$$\alpha(G \boxtimes H) \ge \alpha(G)\alpha(H)$$

Example

$$\alpha(C_5) = 2$$
$$\alpha(C_5^{\boxtimes 2}) = 5$$

Shannon capacity

$$\Theta(G) = \sup_n \alpha(G^{\boxtimes n})^{1/n}$$

Example

$$\Theta(C_5) = \sqrt{5}$$
 (Lovász)
3.2578 $\leq \Theta(C_7) \leq 3.3177$ (Schrijver-Polak)

How to upper bound α (and Θ)?

Matrix rank (Haemers bound)

Matrix rank (Haemers bound)

Every independent set gives an identity sub-matrix

Matrix rank (Haemers bound)

Every independent set gives an identity sub-matrix

Independence number α is at most rank of any such matrix (and Θ too)

Largest eigenvalue (Lovász theta function)

Largest eigenvalue (Lovász theta function)

Every independent set gives an all-ones sub-matrix

Largest eigenvalue (Lovász theta function)

Every independent set gives an all-ones sub-matrix

Independence number is at most largest eigenvalue of such matrix (and Θ too)

Q: How good are the Haemers and Lovász bounds?

Models graphs as points in real space

Models graphs as points in real space

Defined as the set X of all maps $F : {\text{graphs}} \to \mathbb{R}$ that are

- 1. additive under \sqcup
- 2. multiplicative under \boxtimes
- 3. monotone under cohomomorphism
- 4. normalized to 1 on the graph with one vertex E_1

Models graphs as points in real space

Defined as the set X of all maps $F : {\text{graphs}} \to \mathbb{R}$ that are

- 1. additive under \sqcup
- 2. multiplicative under \boxtimes
- 3. monotone under cohomomorphism
- 4. normalized to 1 on the graph with one vertex E_1

Graphs as real points: $G \mapsto (F(G))_{F \in X}$

Models graphs as points in real space

Defined as the set X of all maps $F : {\text{graphs}} \to \mathbb{R}$ that are

- 1. additive under \sqcup
- 2. multiplicative under \boxtimes
- 3. monotone under cohomomorphism
- 4. normalized to 1 on the graph with one vertex E_1

Graphs as real points: $G \mapsto (F(G))_{F \in X}$

Examples of elements of X

- Lovász theta function ϑ
- fractional Haemers bound (Bukh–Cox)
- fractional clique cover number

3. Duality theorem

Recall that

- Shannon capacity is a maximization: $\Theta(G) = \sup_n \alpha(G^{\boxtimes n})^{1/n}$
- Lovász theta gives upper bound: $\Theta(G) \leq \vartheta(G)$

3. Duality theorem

Recall that

- Shannon capacity is a maximization: $\Theta(G) = \sup_n \alpha(G^{\boxtimes n})^{1/n}$
- Lovász theta gives upper bound: $\Theta(G) \leq \vartheta(G)$

Lemma Every $F \in X$ gives upper bound: $\Theta(G) \leq F(G)$

Q: Are the upper bounds from $F \in X$ powerful enough to reach Θ ?

3. Duality theorem

Recall that

- Shannon capacity is a maximization: $\Theta(G) = \sup_n \alpha(G^{\boxtimes n})^{1/n}$
- Lovász theta gives upper bound: $\Theta(G) \leq \vartheta(G)$

Lemma Every $F \in X$ gives upper bound: $\Theta(G) \leq F(G)$

Q: Are the upper bounds from $F \in X$ powerful enough to reach Θ ?

Duality Theorem ("yes", Zuiddam) Shannon capacity is a minimization: $\Theta(G) = \min_{F \in X} F(G)$

Conjecture (Shannon) $\Theta \in X$

```
Conjecture (Shannon) \Theta \in X
```

```
Theorem (Haemers)
There are G, H for which \Theta(G \boxtimes H) > \Theta(G)\Theta(H)
```

Theorem (Alon) There are G, H for which $\Theta(G \sqcup H) > \Theta(G) + \Theta(H)$

```
Conjecture (Shannon) \Theta \in X
```

```
Theorem (Haemers)
There are G, H for which \Theta(G \boxtimes H) > \Theta(G)\Theta(H)
```

Theorem (Alon) There are G, H for which $\Theta(G \sqcup H) > \Theta(G) + \Theta(H)$

Corollary $\Theta \notin X$

Q: How is the duality theorem proven?

Duality Theorem (Zuiddam) $\Theta(G) = \min_{F \in X} F(G)$

Q: How is the duality theorem proven?

Duality Theorem (Zuiddam) $\Theta(G) = \min_{F \in X} F(G)$

Definition: write

- $G \leq H$ if there is a cohomomorphism $G \rightarrow H$
- $G \lesssim H$ when $G^{\boxtimes n} \leq H^{\boxtimes (n+o(n))}$

More General Duality Theorem $G \lesssim H$ iff $F(G) \leq F(H)$ for all $F \in X$

Ideas:

- Real geometry: inequalities $G \lesssim H$ "cut out" X
- Kadison–Dubois representation theorem, Positivstellensatz
- Extension of Linear Programming Duality
- Works for any "Archimedean" preordered semiring

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Theorem ("Additivity if and only if multiplicativity", Holzman) For any graphs G, H the following are equivalent:

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

(ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$

(iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

 $\mathsf{Proof}\ (\mathsf{i}) \Rightarrow (\mathsf{i}\mathsf{i}\mathsf{i})$

Theorem ("Additivity if and only if multiplicativity", Holzman) For any graphs G, H the following are equivalent:

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Proof (i) \Rightarrow (iii) Let $F \in X$ such that $\Theta(G \sqcup H) = F(G \sqcup H)$

Theorem ("Additivity if and only if multiplicativity", Holzman) For any graphs G, H the following are equivalent:

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Proof (i) \Rightarrow (iii) Let $F \in X$ such that $\Theta(G \sqcup H) = F(G \sqcup H)$ Then $\Theta(G) + \Theta(H) = \Theta(G \sqcup H) = F(G \sqcup H) = F(G) + F(H)$

Theorem ("Additivity if and only if multiplicativity", Holzman) For any graphs G, H the following are equivalent:

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Proof (i) \Rightarrow (iii) Let $F \in X$ such that $\Theta(G \sqcup H) = F(G \sqcup H)$ Then $\Theta(G) + \Theta(H) = \Theta(G \sqcup H) = F(G \sqcup H) = F(G) + F(H)$ Always: $\Theta(G) \leq F(G)$ and $\Theta(H) \leq F(H)$

Theorem ("Additivity if and only if multiplicativity", Holzman) For any graphs G, H the following are equivalent:

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Proof (i) \Rightarrow (iii) Let $F \in X$ such that $\Theta(G \sqcup H) = F(G \sqcup H)$ Then $\Theta(G) + \Theta(H) = \Theta(G \sqcup H) = F(G \sqcup H) = F(G) + F(H)$ Always: $\Theta(G) \leq F(G)$ and $\Theta(H) \leq F(H)$ Therefore $\Theta(G) = F(G)$ and $\Theta(H) = F(H)$

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Proof (i)
$$\Rightarrow$$
 (iii)
Let $F \in X$ such that $\Theta(G \sqcup H) = F(G \sqcup H)$
Then $\Theta(G) + \Theta(H) = \Theta(G \sqcup H) = F(G \sqcup H) = F(G) + F(H)$
Always: $\Theta(G) \leq F(G)$ and $\Theta(H) \leq F(H)$
Therefore $\Theta(G) = F(G)$ and $\Theta(H) = F(H)$
(iii) \Rightarrow (i)

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

```
Proof (i) \Rightarrow (iii)

Let F \in X such that \Theta(G \sqcup H) = F(G \sqcup H)

Then \Theta(G) + \Theta(H) = \Theta(G \sqcup H) = F(G \sqcup H) = F(G) + F(H)

Always: \Theta(G) \leq F(G) and \Theta(H) \leq F(H)

Therefore \Theta(G) = F(G) and \Theta(H) = F(H)

(iii) \Rightarrow (i)

\Theta(G) + \Theta(H) \leq \Theta(G \sqcup H)
```

(i)
$$\Theta(G \sqcup H) = \Theta(G) + \Theta(H)$$

- (ii) $\Theta(G \boxtimes H) = \Theta(G)\Theta(H)$
- (iii) There is $F \in X$ such that $F(G) = \Theta(G)$ and $F(H) = \Theta(H)$

Proof (i)
$$\Rightarrow$$
 (iii)
Let $F \in X$ such that $\Theta(G \sqcup H) = F(G \sqcup H)$
Then $\Theta(G) + \Theta(H) = \Theta(G \sqcup H) = F(G \sqcup H) = F(G) + F(H)$
Always: $\Theta(G) \leq F(G)$ and $\Theta(H) \leq F(H)$
Therefore $\Theta(G) = F(G)$ and $\Theta(H) = F(H)$
(iii) \Rightarrow (i)
 $\Theta(G) + \Theta(H) \leq \Theta(G \sqcup H)$
 $\leq F(G \sqcup H) = F(G) + F(H) = \Theta(H) + \Theta(H)$

Example ("Theorems of Haemers and Alon are equivalent") $\Theta(G \boxtimes H) > \Theta(G)\Theta(H)$ iff $\Theta(G \sqcup H) > \Theta(G) + \Theta(H)$

Example ("Theorems of Haemers and Alon are equivalent") $\Theta(G \boxtimes H) > \Theta(G)\Theta(H)$ iff $\Theta(G \sqcup H) > \Theta(G) + \Theta(H)$

Example ("Shannon capacity is not attained at a finite power")

- $C_5 \boxtimes E_1 = C_5$
- $\Theta(C_5 \boxtimes E_1) = \Theta(C_5) = \Theta(C_5)\Theta(E_1)$
- $\Theta(C_5 \sqcup E_1) = \Theta(C_5) + \Theta(E_1) = \sqrt{5} + 1 \neq a^{1/n}$ for $a, n \in \mathbb{N}$

More general theorem

Let G_1, \ldots, G_n be graphs. The following are equivalent:

- (i) For every polynomial p we have $\Theta(p(G_1, \dots, G_n)) = p(\Theta(G_1), \dots, \Theta(G_n))$
- (ii) There exists a polynomial p (depending on all variables) such that $\Theta(p(G_1, \ldots, G_n)) = p(\Theta(G_1), \ldots, \Theta(G_n))$
- (iii) There exists $F \in X$ such that $F(G_i) = \Theta(G_i)$ for all *i*

These we can also make quantitative, relating non-additivity and non-multiplicativity

New directions

• Topological structure of asymptotic spectra

Stronger topological structure \Rightarrow new algorithmic methods (with Avi Wigderson)

• New notion of graph limits

(with David de Boer and Pjotr Buys)

New notion of graph limits

Can we determine $\Theta(C_7)$ (say) be constructing a sequence of graphs G_i that "converges" to C_7 for which we can determine $\Theta(G_i)$?

New notion of graph limits

Can we determine $\Theta(C_7)$ (say) be constructing a sequence of graphs G_i that "converges" to C_7 for which we can determine $\Theta(G_i)$?

Theorem

For any G, H we have $G \leq H$ iff for all $F \in X$ we have $F(G) \leq F(H)$.

Definition

Distance on graphs: $d(G, H) = \sup_{F \in X} |F(G) - F(H)|$

New notion of graph limits

Can we determine $\Theta(C_7)$ (say) be constructing a sequence of graphs G_i that "converges" to C_7 for which we can determine $\Theta(G_i)$?

Theorem

For any G, H we have $G \leq H$ iff for all $F \in X$ we have $F(G) \leq F(H)$.

Definition

Distance on graphs: $d(G, H) = \sup_{F \in X} |F(G) - F(H)|$

Theorem (de Boer, Buys, Zuiddam)

The space of graphs is not complete: there is a Cauchy sequence that does not converge.

Definition (Fraction graphs)

For $p, q \in \mathbb{N}$ let $E_{p/q}$ be the graph with vertex set [p] and edges between vertices with distance strictly less than $q \mod p$.

Examples

 $E_{p/1} = p$ vertices, no edges

 $E_{p/2} =$ cycle graph C_p

Definition (Fraction graphs)

For $p, q \in \mathbb{N}$ let $E_{p/q}$ be the graph with vertex set [p] and edges between vertices with distance strictly less than $q \mod p$.

Examples

 $E_{p/1} = p$ vertices, no edges

 $E_{p/2} =$ cycle graph C_p

Theorem ("Fraction graphs are ordered as the rationals") $p/q \le p'/q'$ iff $E_{p/q} \le E_{p'/q'}$

Tools

```
Graphs G, H are equivalent if G \leq H and H \leq G
```

Theorem (DB, B, Z)

Removing any subset of vertices from any fraction graph gives a graph that is equivalent to some fraction graph

Theorem (DB, B, Z)

If G is vertex-transitive and $S \subseteq V(G)$, then for every $F \in X$ we have

$$F(G[S]) \leq F(G) \leq \frac{|V(G)|}{|S|}F(G[S])$$

For every irrational number r > 2 and sequence p_n/q_n converging to r, the sequence E_{p_n/q_n} is Cauchy but not convergent.

For every irrational number r > 2 and sequence p_n/q_n converging to r, the sequence E_{p_n/q_n} is Cauchy but not convergent.

Proof ideas:

• Continued fraction expansion of *r*

$$\frac{a_2}{b_2} < \frac{a_4}{b_4} < \dots < r < \dots < \frac{a_3}{b_3} < \frac{a_1}{b_1}$$

with
$$a_n b_{n+1} - a_{n+1} b_n = 1$$
 for odd n

For every irrational number r > 2 and sequence p_n/q_n converging to r, the sequence E_{p_n/q_n} is Cauchy but not convergent.

Proof ideas:

• Continued fraction expansion of *r*

$$\frac{a_2}{b_2} < \frac{a_4}{b_4} < \dots < r < \dots < \frac{a_3}{b_3} < \frac{a_1}{b_1}$$

with $a_n b_{n+1} - a_{n+1} b_n = 1$ for odd n

• E_{a_n/b_n} minus any vertex is equivalent to $E_{a_{n+1}/b_{n+1}}$ for odd n

For every irrational number r > 2 and sequence p_n/q_n converging to r, the sequence E_{p_n/q_n} is Cauchy but not convergent.

Proof ideas:

• Continued fraction expansion of *r*

$$\frac{a_2}{b_2} < \frac{a_4}{b_4} < \dots < r < \dots < \frac{a_3}{b_3} < \frac{a_1}{b_1}$$

with $a_n b_{n+1} - a_{n+1} b_n = 1$ for odd n

- E_{a_n/b_n} minus any vertex is equivalent to $E_{a_{n+1}/b_{n+1}}$ for odd n
- for every $F \in X$, $F(E_{a_{n+1}/b_{n+1}}) \le F(E_{a_n/b_n}) \le \frac{a_n}{a_n-1}F(E_{a_{n+1}/b_{n+1}})$

For every irrational number r > 2 and sequence p_n/q_n converging to r, the sequence E_{p_n/q_n} is Cauchy but not convergent.

Proof ideas:

• Continued fraction expansion of *r*

$$\frac{a_2}{b_2} < \frac{a_4}{b_4} < \dots < r < \dots < \frac{a_3}{b_3} < \frac{a_1}{b_1}$$

with $a_n b_{n+1} - a_{n+1} b_n = 1$ for odd n

- E_{a_n/b_n} minus any vertex is equivalent to $E_{a_{n+1}/b_{n+1}}$ for odd n
- for every $F \in X$, $F(E_{a_{n+1}/b_{n+1}}) \le F(E_{a_n/b_n}) \le \frac{a_n}{a_n-1}F(E_{a_{n+1}/b_{n+1}})$
- enough to find that the E_{a_n/b_n} form a Cauchy sequence

For every irrational number r > 2 and sequence p_n/q_n converging to r, the sequence E_{p_n/q_n} is Cauchy but not convergent.

Proof ideas:

• Continued fraction expansion of *r*

$$\frac{a_2}{b_2} < \frac{a_4}{b_4} < \dots < r < \dots < \frac{a_3}{b_3} < \frac{a_1}{b_1}$$

with $a_n b_{n+1} - a_{n+1} b_n = 1$ for odd n

- E_{a_n/b_n} minus any vertex is equivalent to $E_{a_{n+1}/b_{n+1}}$ for odd n
- for every $F \in X$, $F(E_{a_{n+1}/b_{n+1}}) \le F(E_{a_n/b_n}) \le \frac{a_n}{a_n-1}F(E_{a_{n+1}/b_{n+1}})$
- enough to find that the E_{a_n/b_n} form a Cauchy sequence
- the sequence is not convergent because the fractional clique cover number of any graph is rational, and the fractional clique cover number of this sequence converges to the irrational *r*

Let $F \in X$ or $F = \Theta$

Theorem (Schrijver, Polak) $\mathbb{Q}_{\geq 2} \to \mathbb{R} : p/q \mapsto F(Ep/q)$ is left-continuous at p/q when p/q is integer.

Proof: explicit construction of independent sets in powers of $E_{p/q}$

Let $F \in X$ or $F = \Theta$

Theorem (Schrijver, Polak) $\mathbb{Q}_{\geq 2} \to \mathbb{R} : p/q \mapsto F(Ep/q)$ is left-continuous at p/q when p/q is integer.

Proof: explicit construction of independent sets in powers of $E_{p/q}$

Theorem (De Boer, Buys, Zuiddam) $\mathbb{Q}_{\geq 2} \to \mathbb{R} : p/q \mapsto F(E_{p/q})$ is right-continuous as every p/qProof: uses the methods we developed for our non-completeness proof Let $F \in X$ or $F = \Theta$

Theorem (Schrijver, Polak) $\mathbb{Q}_{\geq 2} \to \mathbb{R} : p/q \mapsto F(Ep/q)$ is left-continuous at p/q when p/q is integer.

Proof: explicit construction of independent sets in powers of $E_{p/q}$

Theorem (De Boer, Buys, Zuiddam) $\mathbb{Q}_{\geq 2} \to \mathbb{R} : p/q \mapsto F(E_{p/q})$ is right-continuous as every p/qProof: uses the methods we developed for our non-completeness proof

We have used the ideas developed here to get new bounds on the Shannon capacity of certain odd cycle graphs.

Problems

- What are the elements of the asymptotic spectrum of graphs?
- What is the structure of X?
- What bounds can we obtain on the Shannon capacity via graph limits?
- What other problems in math, CS and physics have asymptotic spectrum duality?
- Lovász theta function for hypergraphs?

Strassen's asymptotic spectra duality

S semiring $1 \in S$ \leq semiring preorder bounded, preserves \mathbb{N}

subrank Q(s) = max{ $n \in \mathbb{N} : n \leq s$ }

asymptotic subrank $\widetilde{\mathrm{Q}}(s) = \sup_{n} \mathrm{Q}(s^{n})^{1/n}$

duality $\widetilde{\mathrm{Q}}(s) = \min_{F \in X} F(s)$

X = semiring monotones

 $\begin{array}{l} S \text{ semiring of graphs} \\ E_1 \in S \\ \leq \text{ cohomomorphism} \\ \text{bounded, preserves } \mathbb{N} = \{E_1, E_2, \ldots\} \end{array}$

independence number $Q(G) = \alpha(G)$

Shannon capacity $\widetilde{\mathrm{Q}}(G) = \Theta(G)$

duality $\Theta(G) = \min_{F \in X} F(G)$

X = asymptotic spectrum of graphs