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OPTIMAL EMBEDDINGS OF DISTANCE TRANSITIVE GRAPHS INTO
EUCLIDEAN SPACES

FRANK VALLENTIN

1. PROBLEM, MOTIVATION AND SOME BACKGROUND

1.1. Problem. Let (X, d) be a finite metric space. Find an isometric embedding into n-dimensional
Euclidean space. This is amap o : X — R"™ with

Vr,y € X 2 d(z,y) = [le(z) — e®)l],
where the norm of (z1,...,x,) € R™is
I, .o @n)ll = yfad + - +a2.

1.2. Applications. Visualization of DNA data, Voronoi cells for fingerprint data, Design of ap-
proximation algorithms for the sparsest cut problem, ...

1.3. Bad News. There is no isometric embedding into any n-dimensional Euclidean space for
X ={a, B,7,d} with
d(e, B) = d(B,7) = d(y,9) = d(6,) = 1
and
d(a,vy) =d(B,0) = 2.
1.4. Good News.

Definition 1.1. Let p : X — R" an embedding. The embedding has distortion D = g if
Vr,y € X :ad(z,y) < |lo(z) — o(y)ll < Bd(z,y).

Denote by c2(X, d) the minimal possible distortion of (X, d) into any n-dimensional Euclidean
space. An embedding of (XX, d) attaining distortion ¢, (X, d) is called optimal embedding.

Example 1.2. The “square embedding” has distortion v/2 where 8 = 1 and @« = 2. We shall
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wish: find isometric embedding ¢, i.e. distortion(y) = 1.

bad news: not always possible
(not even for the square graph)

least distortion: c2(X,d) = inf,.x_, i distortion(y)

good news: co(X,d) = O(log|X]|) if | X| < oo (Bourgain, 1985)
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High-level motivation

Least distortion is central to the “Ribe program” in functional analysis:
Relate Banach space concepts (linear, normed, complete) to metric
space concepts (fascinating surveys by Ball, Naor)

Applications to data science and algorithm design: Data sets come
equipped with a natural similarity metric but not with a linear structure.
Now embed the data into Banach space with least distortion and exploit
the linear structure.
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Can determine ¢,(X, d) efficiently by a semidefinite program

primal SDP
Scale ¢ so that contraction(¢) =1 and set p(z) - ©(y) = Quy
c2(X,d)? =inf{C : C e R;,Q € ST,

d(z,9)* < Qua — 2Quy + Qyy < Cd(x,y)? for z,y € X},

dual SDP: systematic way to derive lower bounds for ¢,(X, d)

CQ(X,CZ)QSUP{ 5 :YES;'Z,YeO}.

weak duality:  Yi; > 0 only for most contracted pairs

Y;; < 0 only for most expanded pairs
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Using the dual

ZZj:l:Yij ~o Yijd(z;, z5)?

- ZZj:l:Yij<O Yijd(zs, ;)

CQ(X,d)ZSU.p{ 5 :YESﬁ,YeO}.

Linial, Magen, 2000: If (X, d) comes from a graph, then most expanded
pairs come from adjacent vertices, but most contracted pairs are
mysterious.

The positive semidefinite matrix

(1 -1 1 —1\
y = [ 7} _:_'11 1 = (1,-1,1,-1)%(1,-1,1, 1)

1 —1
\-1 1 -1 1)
proves that the “square embedding” is optimal. We have c3(X,d)* < 2 due to
the existence of the embedding and we have

4
Zi,jzl:Yij>O Yijd(2;, %’)2 B 4.2%.1
-3 Y;,; <0 Yid(zs,2;)2  8-17-(=(-1))

1,7=1:

=

CQ(Xv d)2 >



Using the dual: References

dual SDP has been used to find least distortion embeddings of several
graph classes:

Linial, Magen, 2000: product of cycles and expander graphs (in
particular Bourgain’s result is tight)

Linial, Magen, Naor, 2002: graphs of high girth
Vallentin, 2008: strongly regular graphs, distance regular graphs

(extended by Kobayashi, Kondo, 2015,
Cioaba, Gupta, Ihringer, Kurihara, 2021)
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Flat tori: Definition

bi,...,b, basis of R"
L = 7Zby + --- + Zb,, lattice
T = R"™/L flat torus

dn — ] — — .
Re/1(%,Y) = min |z —y — v

from: http://hevea-project.fr
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Flat tori: Euclidean embeddings

first discussed by Khot, Naor, 2006

co(R™ /L) = inf{distortion(y) : ¢: R"/L — H for some Hilbert space H, ¢ injective}.

in contrast to Nash’s embedding theorem

from: http://hevea-project.fr

Potential applications: complexity of lattice problems, like closest vector problem
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Standard embedding of standard torus

o : R"/Z" — R2"
o(x1,...,Ty) = (cos2mxy,sin2mwxy,...,C08 27Tx,, Sin 27x, ).

will see: ¢ is optimal with distortion(yp) = 7 /2

n=1
1 1 @(¢)
2 0 2 ’ #(3) 9 (0)
1/2
contraction(p) = =1/4
l(0) — (1/2))
0) — 2 —2 2

pansion(e) = 190 =0 _ V2=Zeosre) -

E E
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Flat tori can be highly non-Euclidean

o b2

L = 7by + .-+ Zb,, lattice . >

V(L) = Voronoi cell

A(L) = 2 - inradius of V(L) ) ’
p(L) = circumradius of V(L)
L*={yeR":x-yeZforall z € L} dual lattice

A(L*
Theorem. (Khot, Naor, 2006) co(R"/L) = () ( ( )\/ﬁ> .
Theorem. (Butler, 1973) 4 L,, with A(L.,)/u(L,) = const

Corollary. c3(R"/L,) = Q(y/n)
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More about Euclidean embeddings of flat tori

AL ) (L)
a/n

Theorem. Haviv, Regev, 2010 co(R™/L) >

improvement over  ¢o(R"/L) = 0 (A(ML(L){E> .

because pu(L)u(L*) > Q(n)
because (L) = Q(y/n(vol L)l/n)

almost tight lower bound

Theorem. Agarwal, Regev, Tang, 2020  ¢(R"/L) = O(\/nlogn)
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Recall: SDP for finite metric spaces

c2(X,d)* =inf{C :C eR,,Q € ST,
d(xvy)Z < Qzz — QQazy T ny < Cd(LB,y)Z for x,y € X}a

p: X = RX p(z) - o(y) = Quy

Want: similar SDP for flat torus

co(R™ /L) = inf{distortion(y) : ¢: R"/L — H for some Hilbert space H, ¢ injective}.
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First problem: How do we optimize over all Hilbert spaces?

Moore’s theorem (1916): There exist a Hilbert space H and a map ¢ :
R"™/L — H if and only if there is a positive definite kernel @ so that

Q:R"/LxR"/L — C sothat Q(z,y) = (p(x),p(y)) for all z,y € R" /L.

Kernel () is called positive definite if and only if for all N € N and for all
T1,...,on € R"/L the matrix (Q(z;,x;))1<ij<n € CV*Y is Hermitian and
positive semidefinite.

This gives:

co(R"/L)* =inf{C : C € R, Q positive definite,

Q(r,r) — 2R(Q(7,y)) + Q(y, y)

dR”/L(may)Q
Cdgn /1 (z,y)? for all z,y € R"/L}

VARVA



Our favorite trick: Symmetry reduction

ca(R"/L)* = inf{C : C € R, Q positive definite,

dpn/r(2,y)° < Qz,2) — 2R(Q(z,y)) + Q(y,y)
< Cdgn/p(z,y)? forall z,y € R"/L}
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Our favorite trick: Symmetry reduction

ca(R"/L)* = inf{C : C € R, Q positive definite,
dpn/r(z,9)? < Qz,2) — 2R(Q(z,y)) + Qy, y)
< Cdgn/p(z,y)? forall z,y € R"/L}

— 1
take group average Q(x,y) = vol(R" /L) /
R™ /L

Qlr — z,y — 2)dz.

benefits: e () is continuous

e () depends only on = — y

so: d continuous positive type function f: R"/L — R
with Q(z,y) = f(z — y)

co(R"/L)? = inf{C :C € R,, f: R"/L — R continuous and of positive type,
z|* < 2(f(0) — f(z)) < Clz|* forall z € V(L)}.
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More benefits
e can parametrize f by Fourier coefficients (Bochner’s theorem)

f:R"/L — C is of positive type if and only if all its Fourier coefficients

Flu) = / e

with v € L™ are nonnegative and lie in

( )

ML) =<2z: L* = C: Z z(u)| < o0 p .

\ ueL* J

This gives: infinite-dimesional LP

c2(R"/L)? =inf {C : C €R4,z € El(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu' z)) < C|x|?
ueL*
for all z € V(L) }.
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e understand principal structure of Euclidean embeddings

A feasible solution of the above minimization problem (C, z) determines a Eu-
clidean embedding ¢ of R™ /L with distortion < VC by

0 :R"/L = (L"), z— ( z(u)eQmuTx) .
ueL*

with complex Hilbert space

1/2
PP(L) =< z:L* = C: (Z ]z(u)2> < 00

ue L*

e Inf 1s max

because bounded, continuous, positive type functions are weak™ compact



Next trick: Understanding most expanded pairs



Next trick: Understanding most expanded pairs

infinite-dimensional linear program

c2(R"/L)? = inf {C 'CER+,zE€1(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu'z)) < Clz|?
ueL*

for all z € V(L) }.



Next trick: Understanding most expanded pairs

infinite-dimensional linear program

c2(R"/L)? = inf {C 'CER+,zE€1(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu'z)) < Clz|?
ueL*

for all z € V(L) }.

insight: most expanded pairs only in the limit (0, x) with x — O.



Next trick: Understanding most expanded pairs

infinite-dimensional linear program

c2(R"/L)? = inf {C 'CER+,zE€1(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu'z)) < Clz|?
ueL*

for all z € V(L) }.

insight: most expanded pairs only in the limit (0, x) with x — 0.

equivalent first order condition

47 Z > < C|z|? for all x € R™.
ueL*



Next trick: Understanding most expanded pairs

infinite-dimensional linear program

c2(R"/L)? = inf {C 'CER+,zE€1(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu'z)) < Clz|?
ueL*

for all z € V(L) }.

insight: most expanded pairs only in the limit (0, x) with x — 0.

equivalent first order condition

47 Z > < C|z|? for all x € R™.
ueL*

equivalent to finite SDP condition

CI — 4n* Z 2(u)uu' € ST,

ueL*
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primal SDP

c2(R™/L)? = inf {C 'CER+,Z€€1(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu'z)) for all z € V(L)
ueL*
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Next trick: Duality

primal SDP

c2(R™/L)? = inf {C 'C€R+,Z€€1(L*) z(u) = z(—u) > 0 for all u € L*,

z|? < 2 Z )(1 — cos(2mu'z)) for all z € V(L)
ueL*
CI — 47* Z 2(u)uu' € ST}
ue L

dual SDP

co(R™/L)? = sup {2772/ z|? dv(z)
V(L)
ve M (V(L)),Y € S, Tr(Y) =1,

/ (1 — cos(2mu'z)) dv(x) < u'Yu for all u € L*}
V(L)

M_(V(L)) is the cone of Borel measures on V(L)
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First application: Constant factor improvement of lower bound

Theorem. Let L be an n-dimensional lattice, then

(L)

n TA(L")p
c2(R"/L) > n

Proof. Let y be a vertex of the Voronoi cell V(L) which realizes the covering
radius, that is |y| = u(L).

)\(L*)Q
2n

Then (Y, v) is feasible for dual.

Choose v = 0, to be a point measure supported at y and set ¥ = %I .

ca(R™/L)? = sup {2772/ z|* dv(z)
V(L)

ve M (V(L)),Y € S, Tr(Y) =1,

/ (1 — cos(2mu'x)) dv(z) < u'Yu for all u € L*}
V(L)



Second application: Least distortion embedding of standard torus

o : R"/Z" — R>"
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Second application: Least distortion embedding of standard torus

o : R"/Z" — R>"

o(x1,...,Ty) = (cos2mxy,sin2wxy,...,C08 2Tx,, Sin 2L, ).

Theorem. co(R"/Z") = w/2

TA( (L)

L*
co(R™/L) > \/)ﬁ,u is tight for L = Z"
AMZ™) =1 and pu(Z") = /n/4
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Then o
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with

D = max -
VDN{0} 37 L 2;(1 — cos(2mu, x))

has distortion v 27w2D.

If L is two-dimensional, then ¢ has least distortion.



Third application: Least distortion embedding of 2-d flat tori

Theorem.
Suppose 3 ui,...,ur € L*, z1,..., 2z > 0 such that Zle zzfu,zuzT = 1.
Then o
0:R"/L - C*, H(z), = (20n°Dze*™r )
with

D = max -
VDN{0} 37 L 2;(1 — cos(2mu, x))

has distortion v 27w2D.

If L is two-dimensional, then ¢ has least distortion.

Drawback: somewhat indirect, D seems hard to determine.
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ueL*
Seems to be (0, y) where y vertex of Voronoi cell
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The end of the story: Questions and speculations

1. We do not understand most contracted pairs.

z|* < 2 Z )(1 — cos(2mu'z)) for all z € V(L)

ueL*
Seems to be (0, y) where y vertex of Voronoi cell

0.6

0.6 ]
0.4 -
0.4

0.2 1
0.2 |

0.0 + 0 -
-0.2 1 1
-0.2 A

—0.4 - ]
-0.4 -

—0.6 -

-06 -04 -0.2 0.0 0.2 0.4 0.6 -0.6 A

2. We do not understand the optimal Hilbert space

optimal ¢ : R"/L — [*(L*) seems to be a finite-dimensional embedding

If both are true: SDP perspective would provide a finite algorithm



