A semidefinite program for least distortion embeddings of flat tori into Hilbert spaces

Frank Vallentin

University of Cologne, Germany

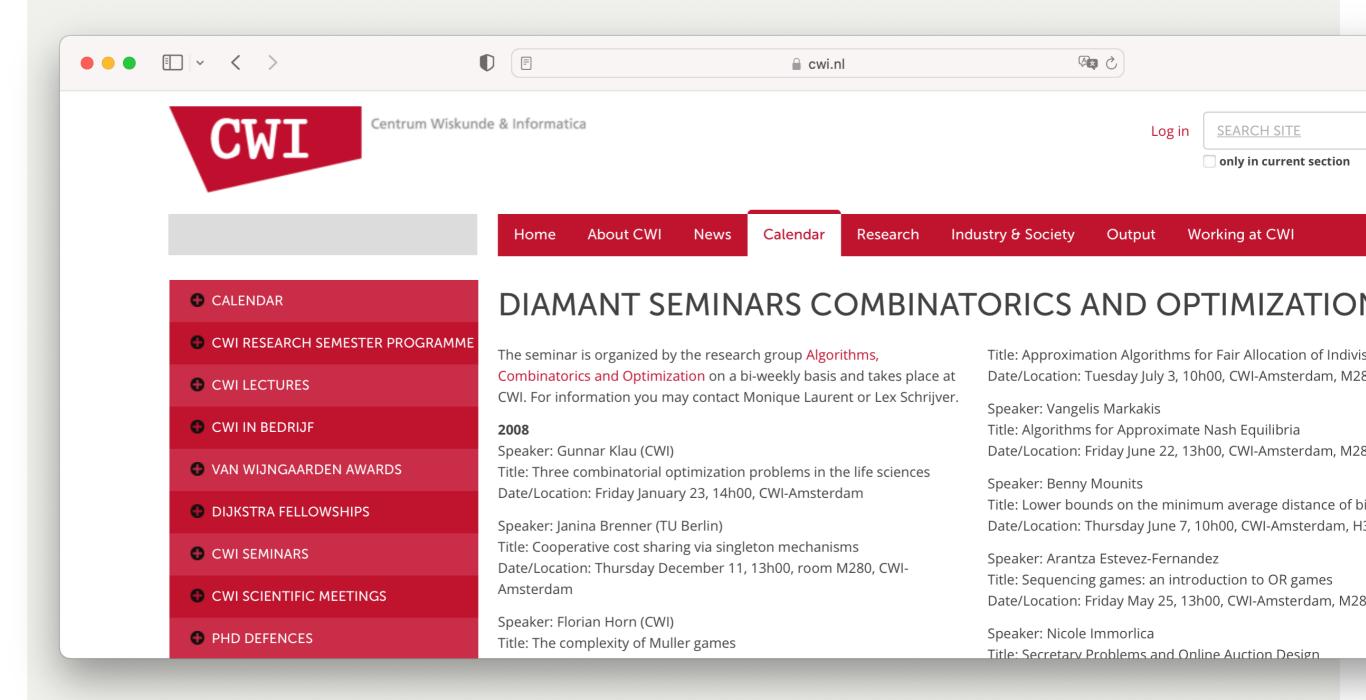
based on joint work with Arne Heimendahl, Moritz Lücke, Marc Christian Zimmermann

CWI Workshop
Semidefinite and Polynomial Optimization
August 29, 2022

The beginning of the story

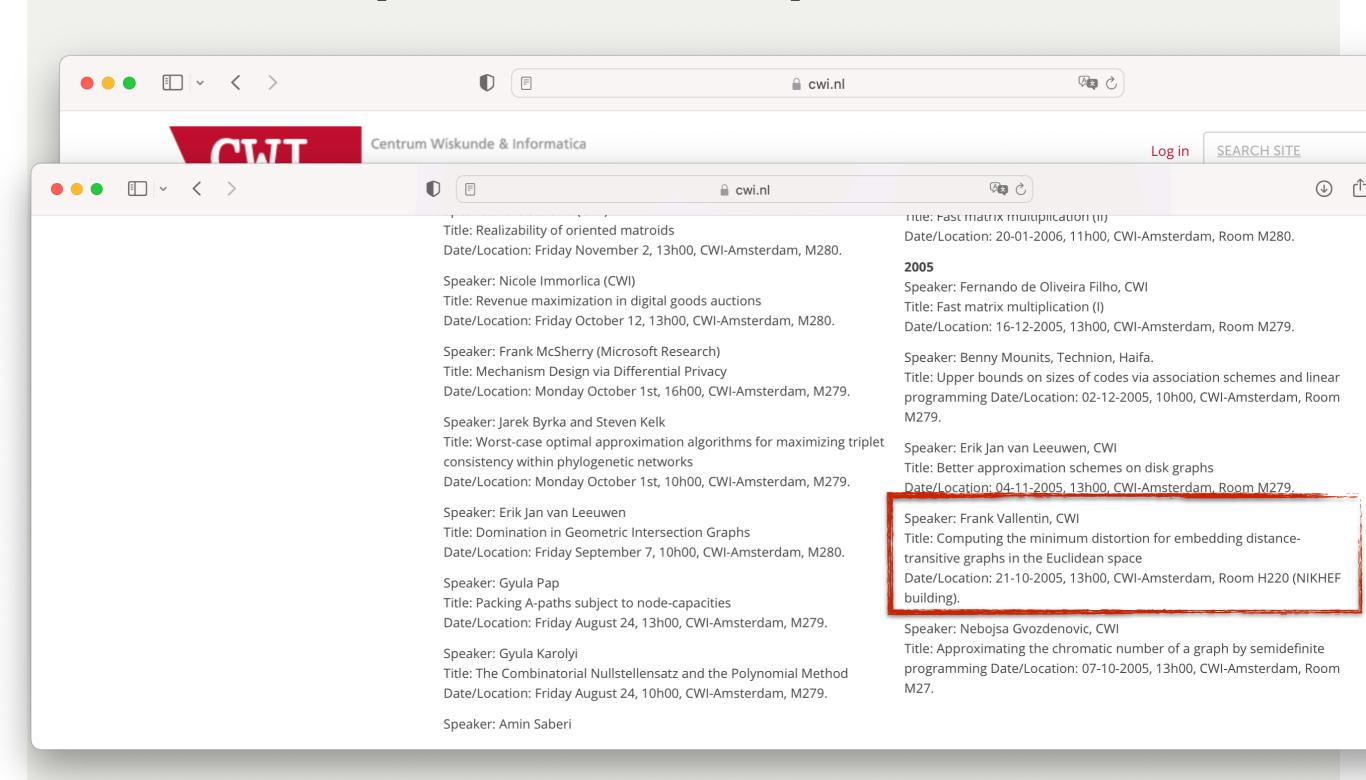
The beginning of the story

https://www.cwi.nl/events/past/Diamantseminars



The beginning of the story

https://www.cwi.nl/events/past/Diamantseminars



Notes from October 21, 2005

Notes from October 21, 2005

OPTIMAL EMBEDDINGS OF DISTANCE TRANSITIVE GRAPHS INTO EUCLIDEAN SPACES

FRANK VALLENTIN

- 1. PROBLEM, MOTIVATION AND SOME BACKGROUND
- 1.1. **Problem.** Let (X, d) be a finite metric space. Find an *isometric embedding* into n-dimensional Euclidean space. This is a map $\varrho: X \to \mathbb{R}^n$ with

$$\forall x, y \in X : d(x, y) = \|\rho(x) - \rho(y)\|,$$

where the norm of $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is

$$\|(x_1,\ldots,x_n)\| = \sqrt{x_1^2 + \cdots + x_n^2}.$$

- 1.2. **Applications.** Visualization of DNA data, Voronoi cells for fingerprint data, Design of approximation algorithms for the sparsest cut problem, . . .
- 1.3. **Bad News.** There is no isometric embedding into any n-dimensional Euclidean space for $X = \{\alpha, \beta, \gamma, \delta\}$ with

$$d(\alpha, \beta) = d(\beta, \gamma) = d(\gamma, \delta) = d(\delta, \alpha) = 1$$

and

$$d(\alpha, \gamma) = d(\beta, \delta) = 2.$$

1.4. Good News.

Definition 1.1. Let $\varrho: X \to \mathbb{R}^n$ an embedding. The embedding has distortion $D = \frac{\beta}{\alpha}$ if

$$\forall x, y \in X : \alpha d(x, y) \le \|\varrho(x) - \varrho(y)\| \le \beta d(x, y).$$

Denote by $c_2(X, d)$ the minimal possible distortion of (X, d) into any n-dimensional Euclidean space. An embedding of (X, d) attaining distortion $c_2(X, d)$ is called *optimal embedding*.

Example 1.2. The "square embedding" has distortion $\sqrt{2}$ where $\beta = 1$ and $\alpha = \frac{2}{\sqrt{2}}$. We shall

I. Least distortion embeddings of (finite) metric spaces

- II. Flat tori
- III. SDP perspective

given: (X, d) metric space

goal: find Hilbert space H and injective map $\varphi: X \to H$ so that distortion (φ) is minimized.

given: (X, d) metric space

goal: find Hilbert space H and injective map $\varphi: X \to H$ so that distortion(φ) is minimized.

 $distortion(\varphi) = expansion(\varphi) \cdot contraction(\varphi)$

expansion(
$$\varphi$$
) = $\sup_{\substack{x,y \in X \\ x \neq y}} \frac{\|\varphi(x) - \varphi(y)\|}{d(x,y)}$
contraction(φ) = $\sup_{\substack{x,y \in X \\ x \neq y}} \frac{d(x,y)}{\|\varphi(x) - \varphi(y)\|}$

contraction
$$(\varphi) = \sup_{x \neq y} \frac{d(x,y)}{\|\varphi(x) - \varphi(y)\|}$$

given: (X, d) metric space

goal: find Hilbert space H and injective map $\varphi: X \to H$ so that $\operatorname{distortion}(\varphi)$ is minimized.

 $\operatorname{distortion}(\varphi) = \operatorname{expansion}(\varphi) \cdot \operatorname{contraction}(\varphi)$ $\operatorname{expansion}(\varphi) = \sup_{\substack{x,y \in X \\ x \neq y}} \frac{\|\varphi(x) - \varphi(y)\|}{d(x,y)}$ $\operatorname{contraction}(\varphi) = \sup_{\substack{x,y \in X \\ x \neq y}} \frac{d(x,y)}{\|\varphi(x) - \varphi(y)\|}$

bad news: not always possible

(not even for the square graph)

bad news: not always possible (not even for the square graph)

least distortion: $c_2(X, d) = \inf_{\varphi: X \to H} \operatorname{distortion}(\varphi)$

bad news: not always possible (not even for the square graph)

least distortion: $c_2(X, d) = \inf_{\varphi: X \to H} \operatorname{distortion}(\varphi)$

good news: $c_2(X,d) = O(\log |X|)$ if $|X| < \infty$ (Bourgain, 1985)

High-level motivation

Least distortion is central to the "Ribe program" in functional analysis: Relate Banach space concepts (linear, normed, complete) to metric space concepts (fascinating surveys by Ball, Naor)

High-level motivation

Least distortion is central to the "Ribe program" in functional analysis: Relate Banach space concepts (linear, normed, complete) to metric space concepts (fascinating surveys by Ball, Naor)

Applications to data science and algorithm design: Data sets come equipped with a natural similarity metric but not with a linear structure. Now embed the data into Banach space with least distortion and exploit the linear structure.

Can determine $c_2(X, d)$ efficiently by a semidefinite program

Can determine $c_2(X, d)$ efficiently by a semidefinite program

primal SDP

Scale φ so that contraction $(\varphi) = 1$ and set $\varphi(x) \cdot \varphi(y) = Q_{xy}$

$$c_2(X,d)^2 = \inf\{C : C \in \mathbb{R}_+, Q \in \mathcal{S}_+^X,$$

$$d(x,y)^2 \le Q_{xx} - 2Q_{xy} + Q_{yy} \le Cd(x,y)^2 \text{ for } x, y \in X\},$$

Can determine $c_2(X, d)$ efficiently by a semidefinite program

primal SDP

Scale φ so that contraction $(\varphi) = 1$ and set $\varphi(x) \cdot \varphi(y) = Q_{xy}$

$$c_2(X,d)^2 = \inf\{C : C \in \mathbb{R}_+, Q \in \mathcal{S}_+^X,$$

$$d(x,y)^2 \le Q_{xx} - 2Q_{xy} + Q_{yy} \le Cd(x,y)^2 \text{ for } x, y \in X\},$$

dual SDP: systematic way to derive lower bounds for $c_2(X, d)$

$$c_2(X,d)^2 = \sup \left\{ \frac{\sum_{i,j=1:Y_{ij}>0}^n Y_{ij} d(x_i, x_j)^2}{-\sum_{i,j=1:Y_{ij}<0}^n Y_{ij} d(x_i, x_j)^2} : Y \in \mathcal{S}_+^n, Y \mathbf{e} = 0 \right\}.$$

Can determine $c_2(X, d)$ efficiently by a semidefinite program

primal SDP

Scale φ so that contraction $(\varphi) = 1$ and set $\varphi(x) \cdot \varphi(y) = Q_{xy}$

$$c_2(X,d)^2 = \inf\{C : C \in \mathbb{R}_+, Q \in \mathcal{S}_+^X,$$

$$d(x,y)^2 \le Q_{xx} - 2Q_{xy} + Q_{yy} \le Cd(x,y)^2 \text{ for } x, y \in X\},$$

dual SDP: systematic way to derive lower bounds for $c_2(X, d)$

$$c_2(X,d)^2 = \sup \left\{ \frac{\sum_{i,j=1:Y_{ij}>0}^n Y_{ij} d(x_i,x_j)^2}{-\sum_{i,j=1:Y_{ij}<0}^n Y_{ij} d(x_i,x_j)^2} : Y \in \mathcal{S}_+^n, Y\mathbf{e} = 0 \right\}.$$

weak duality: $Y_{ij} > 0$ only for most contracted pairs

 $Y_{ij} < 0$ only for most expanded pairs

Using the dual

$$c_2(X,d)^2 = \sup \left\{ \frac{\sum_{i,j=1:Y_{ij}>0}^n Y_{ij} d(x_i, x_j)^2}{-\sum_{i,j=1:Y_{ij}<0}^n Y_{ij} d(x_i, x_j)^2} : Y \in \mathcal{S}_+^n, Y \mathbf{e} = 0 \right\}.$$

Using the dual

$$c_2(X,d)^2 = \sup \left\{ \frac{\sum_{i,j=1:Y_{ij}>0}^n Y_{ij} d(x_i, x_j)^2}{-\sum_{i,j=1:Y_{ij}<0}^n Y_{ij} d(x_i, x_j)^2} : Y \in \mathcal{S}_+^n, Y \mathbf{e} = 0 \right\}.$$

Linial, Magen, 2000: If (X, d) comes from a graph, then most expanded pairs come from adjacent vertices, but most contracted pairs are mysterious.

Using the dual

$$c_2(X,d)^2 = \sup \left\{ \frac{\sum_{i,j=1:Y_{ij}>0}^n Y_{ij} d(x_i, x_j)^2}{-\sum_{i,j=1:Y_{ij}<0}^n Y_{ij} d(x_i, x_j)^2} : Y \in \mathcal{S}_+^n, Y \mathbf{e} = 0 \right\}.$$

Linial, Magen, 2000: If (X, d) comes from a graph, then most expanded pairs come from adjacent vertices, but most contracted pairs are mysterious.

The positive semidefinite matrix

$$Y = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix} = (1, -1, 1, -1)^{t} (1, -1, 1, -1)$$

proves that the "square embedding" is optimal. We have $c_2(X,d)^2 \leq 2$ due to the existence of the embedding and we have

$$c_2(X,d)^2 \ge \frac{\sum_{i,j=1:Y_{ij}>0}^4 Y_{ij} d(x_i,x_j)^2}{-\sum_{i,j=1:Y_{ij}<0}^4 Y_{ij} d(x_i,x_j)^2} = \frac{4 \cdot 2^2 \cdot 1}{8 \cdot 1^2 \cdot (-(-1))} = 2.$$

Using the dual: References

dual SDP has been used to find least distortion embeddings of several graph classes:

Linial, Magen, 2000: product of cycles and expander graphs (in particular Bourgain's result is tight)

Linial, Magen, Naor, 2002: graphs of high girth

Vallentin, 2008: strongly regular graphs, distance regular graphs (extended by Kobayashi, Kondo, 2015, Cioabă, Gupta, Ihringer, Kurihara, 2021)

I. Least distortion embeddings of finite metric spaces

II. Flat tori

III. SDP perspective

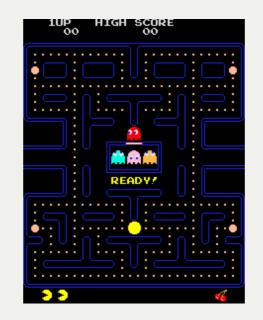
$$b_1, \ldots, b_n$$
 basis of \mathbb{R}^n

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$
 lattice

$$T = \mathbb{R}^n/L$$
 flat torus

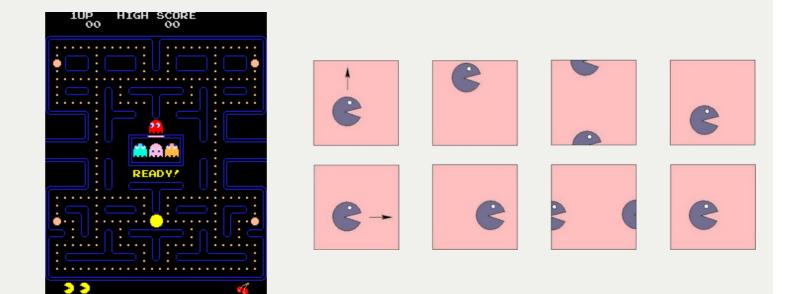
$$d_{\mathbb{R}^n/L}(x,y) = \min_{v \in L} |x - y - v|.$$

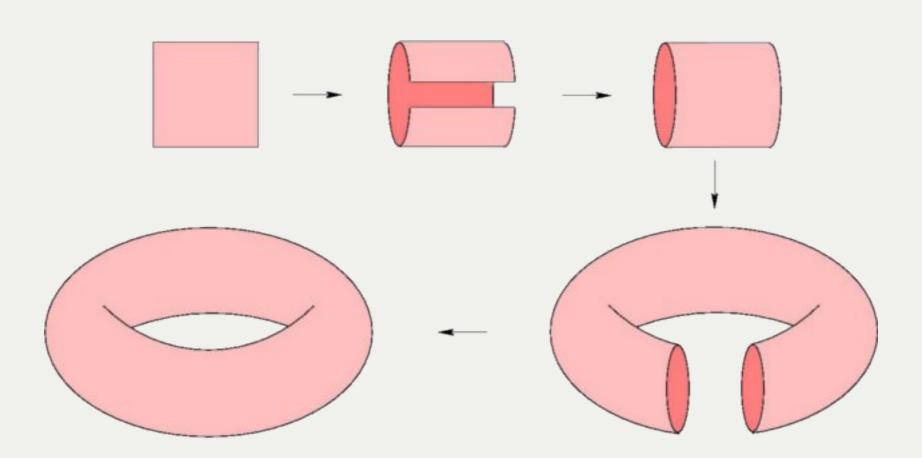
$$b_1, \dots, b_n$$
 basis of \mathbb{R}^n
 $L = \mathbb{Z}b_1 + \dots + \mathbb{Z}b_n$ lattice
 $T = \mathbb{R}^n/L$ flat torus
 $d_{\mathbb{R}^n/L}(x,y) = \min_{v \in L} |x-y-v|$.





 b_1, \dots, b_n basis of \mathbb{R}^n $L = \mathbb{Z}b_1 + \dots + \mathbb{Z}b_n$ lattice $T = \mathbb{R}^n/L$ flat torus $d_{\mathbb{R}^n/L}(x,y) = \min_{v \in L} |x-y-v|$.





from: http://hevea-project.fr

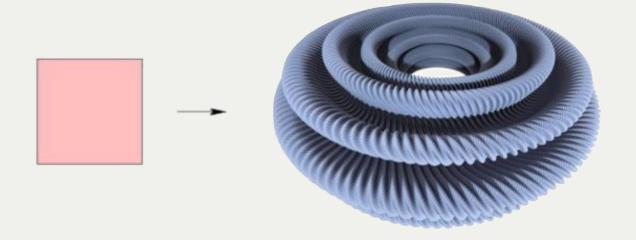
first discussed by Khot, Naor, 2006

 $c_2(\mathbb{R}^n/L) = \inf\{\text{distortion}(\varphi) : \varphi \colon \mathbb{R}^n/L \to H \text{ for some Hilbert space } H, \varphi \text{ injective}\}.$

first discussed by Khot, Naor, 2006

 $c_2(\mathbb{R}^n/L) = \inf\{\text{distortion}(\varphi) : \varphi \colon \mathbb{R}^n/L \to H \text{ for some Hilbert space } H, \varphi \text{ injective}\}.$

in contrast to Nash's embedding theorem

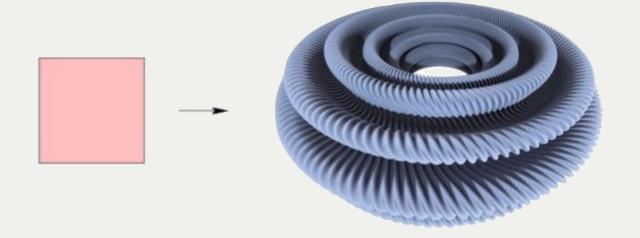


from: http://hevea-project.fr

first discussed by Khot, Naor, 2006

 $c_2(\mathbb{R}^n/L) = \inf\{\text{distortion}(\varphi) : \varphi \colon \mathbb{R}^n/L \to H \text{ for some Hilbert space } H, \varphi \text{ injective}\}.$

in contrast to Nash's embedding theorem



from: http://hevea-project.fr

Potential applications: complexity of lattice problems, like closest vector problem

Standard embedding of standard torus

Standard embedding of standard torus

$$\varphi: \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^{2n}$$

$$\varphi(x_1,\ldots,x_n)=(\cos 2\pi x_1,\sin 2\pi x_1,\ldots,\cos 2\pi x_n,\sin 2\pi x_n).$$

will see: φ is optimal with distortion $(\varphi) = \pi/2$

Standard embedding of standard torus

$$\varphi: \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^{2n}$$

$$\varphi(x_1,\ldots,x_n)=(\cos 2\pi x_1,\sin 2\pi x_1,\ldots,\cos 2\pi x_n,\sin 2\pi x_n).$$

will see: φ is optimal with distortion(φ) = $\pi/2$

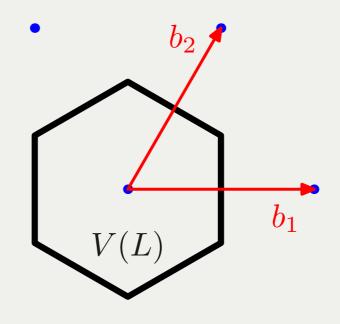
$$n = 1$$

$$\frac{1}{2} \quad 0 \quad \varepsilon \quad \frac{1}{2}$$

$$\operatorname{contraction}(\varphi) = \frac{1/2}{\|\varphi(0) - \varphi(1/2)\|} = 1/4$$

$$\operatorname{expansion}(\varphi) = \frac{\|\varphi(0) - \varphi(\varepsilon)\|}{\varepsilon} = \frac{\sqrt{2 - 2\cos(2\pi\varepsilon)}}{\varepsilon} \to 2\pi$$

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$
 lattice



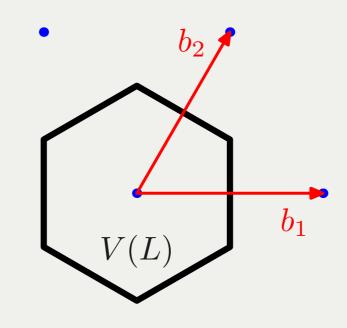
$$V(L)$$
 = Voronoi cell

$$\lambda(L) = 2 \cdot \text{inradius of } V(L)$$

$$\mu(L)$$
 = circumradius of $V(L)$

 $L^* = \{ y \in \mathbb{R}^n : x \cdot y \in \mathbb{Z} \text{ for all } x \in L \} \text{ dual lattice}$

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$
 lattice



$$V(L)$$
 = Voronoi cell

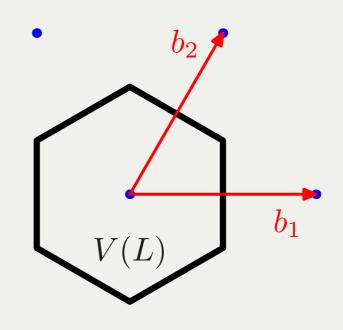
$$\lambda(L) = 2 \cdot \text{inradius of } V(L)$$

$$\mu(L)$$
 = circumradius of $V(L)$

$$L^* = \{ y \in \mathbb{R}^n : x \cdot y \in \mathbb{Z} \text{ for all } x \in L \} \text{ dual lattice}$$

Theorem. (Khot, Naor, 2006)
$$c_2(\mathbb{R}^n/L) = \Omega\left(\frac{\lambda(L^*)\sqrt{n}}{\mu(L^*)}\right)$$
.

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$
 lattice



$$V(L)$$
 = Voronoi cell

$$\lambda(L) = 2 \cdot \text{inradius of } V(L)$$

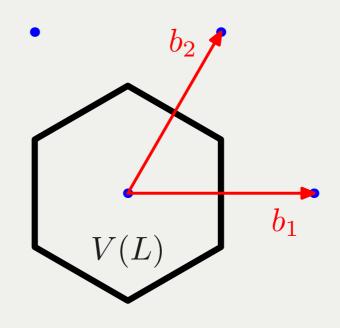
$$\mu(L)$$
 = circumradius of $V(L)$

$$L^* = \{ y \in \mathbb{R}^n : x \cdot y \in \mathbb{Z} \text{ for all } x \in L \} \text{ dual lattice}$$

Theorem. (Khot, Naor, 2006)
$$c_2(\mathbb{R}^n/L) = \Omega\left(\frac{\lambda(L^*)\sqrt{n}}{\mu(L^*)}\right)$$
.

Theorem. (Butler, 1973) $\exists L_n \text{ with } \lambda(L_n)/\mu(L_n) = \text{const}$

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$
 lattice



$$V(L)$$
 = Voronoi cell

$$\lambda(L) = 2 \cdot \text{inradius of } V(L)$$

$$\mu(L)$$
 = circumradius of $V(L)$

$$L^* = \{ y \in \mathbb{R}^n : x \cdot y \in \mathbb{Z} \text{ for all } x \in L \} \text{ dual lattice}$$

Theorem. (Khot, Naor, 2006)
$$c_2(\mathbb{R}^n/L) = \Omega\left(\frac{\lambda(L^*)\sqrt{n}}{\mu(L^*)}\right)$$
.

Theorem. (Butler, 1973) $\exists L_n \text{ with } \lambda(L_n)/\mu(L_n) = \text{const}$

Corollary.
$$c_2(\mathbb{R}^n/L_n) = \Omega(\sqrt{n})$$

Theorem. Haviv, Regev, 2010

$$c_2(\mathbb{R}^n/L) \ge \frac{\lambda(L^*)\mu(L)}{4\sqrt{n}},$$

Theorem. Haviv, Regev, 2010

$$c_2(\mathbb{R}^n/L) \ge \frac{\lambda(L^*)\mu(L)}{4\sqrt{n}},$$

improvement over
$$c_2(\mathbb{R}^n/L) = \Omega\left(\frac{\lambda(L^*)\sqrt{n}}{\mu(L^*)}\right)$$
.

because
$$\mu(L)\mu(L^*) \ge \Omega(n)$$

because
$$\mu(L) = \Omega(\sqrt{n}(\text{vol } L)^{1/n})$$

$$c_2(\mathbb{R}^n/L) \ge \frac{\lambda(L^*)\mu(L)}{4\sqrt{n}},$$

improvement over
$$c_2(\mathbb{R}^n/L) = \Omega\left(\frac{\lambda(L^*)\sqrt{n}}{\mu(L^*)}\right)$$
.

because
$$\mu(L)\mu(L^*) \ge \Omega(n)$$

because
$$\mu(L) = \Omega(\sqrt{n}(\text{vol } L)^{1/n})$$

almost tight lower bound

$$c_2(\mathbb{R}^n/L) = O(\sqrt{n\log n})$$

I. Least distortion embeddings of finite metric spaces

II. Flat tori

III.SDP perspective

Recall: SDP for finite metric spaces

Recall: SDP for finite metric spaces

$$c_2(X,d)^2 = \inf\{C : C \in \mathbb{R}_+, Q \in \mathcal{S}_+^X,$$

$$d(x,y)^2 \le Q_{xx} - 2Q_{xy} + Q_{yy} \le Cd(x,y)^2 \text{ for } x, y \in X\},$$

$$\varphi: X \to \mathbb{R}^X \qquad \varphi(x) \cdot \varphi(y) = Q_{xy}$$

Recall: SDP for finite metric spaces

$$c_2(X,d)^2 = \inf\{C : C \in \mathbb{R}_+, Q \in \mathcal{S}_+^X, d(x,y)^2 \le Q_{xx} - 2Q_{xy} + Q_{yy} \le Cd(x,y)^2 \text{ for } x, y \in X\},$$

$$\varphi: X \to \mathbb{R}^X \qquad \varphi(x) \cdot \varphi(y) = Q_{xy}$$

Want: similar SDP for flat torus

 $c_2(\mathbb{R}^n/L) = \inf\{\text{distortion}(\varphi) : \varphi \colon \mathbb{R}^n/L \to H \text{ for some Hilbert space } H, \varphi \text{ injective}\}.$

First problem: How do we optimize over all Hilbert spaces?

First problem: How do we optimize over all Hilbert spaces?

Moore's theorem (1916): There exist a Hilbert space H and a map φ : $\mathbb{R}^n/L \to H$ if and only if there is a positive definite kernel Q so that

$$Q: \mathbb{R}^n/L \times \mathbb{R}^n/L \to \mathbb{C}$$
 so that $Q(x,y) = (\varphi(x), \varphi(y))$ for all $x, y \in \mathbb{R}^n/L$.

Kernel Q is called positive definite if and only if for all $N \in \mathbb{N}$ and for all $x_1, \ldots, x_N \in \mathbb{R}^n/L$ the matrix $(Q(x_i, x_j))_{1 \leq i,j \leq \mathbb{N}} \in \mathbb{C}^{N \times N}$ is Hermitian and positive semidefinite.

First problem: How do we optimize over all Hilbert spaces?

Moore's theorem (1916): There exist a Hilbert space H and a map φ : $\mathbb{R}^n/L \to H$ if and only if there is a positive definite kernel Q so that

$$Q: \mathbb{R}^n/L \times \mathbb{R}^n/L \to \mathbb{C}$$
 so that $Q(x,y) = (\varphi(x), \varphi(y))$ for all $x, y \in \mathbb{R}^n/L$.

Kernel Q is called positive definite if and only if for all $N \in \mathbb{N}$ and for all $x_1, \ldots, x_N \in \mathbb{R}^n/L$ the matrix $(Q(x_i, x_j))_{1 \leq i,j \leq \mathbb{N}} \in \mathbb{C}^{N \times N}$ is Hermitian and positive semidefinite.

This gives:

$$c_2(\mathbb{R}^n/L)^2 = \inf\{C : C \in \mathbb{R}_+, Q \text{ positive definite},$$

$$d_{\mathbb{R}^n/L}(x,y)^2 \leq Q(x,x) - 2\Re(Q(x,y)) + Q(y,y)$$

$$\leq Cd_{\mathbb{R}^n/L}(x,y)^2 \text{ for all } x,y \in \mathbb{R}^n/L\}$$

$$c_2(\mathbb{R}^n/L)^2 = \inf\{C : C \in \mathbb{R}_+, Q \text{ positive definite},$$

$$d_{\mathbb{R}^n/L}(x,y)^2 \leq Q(x,x) - 2\Re(Q(x,y)) + Q(y,y)$$

$$\leq Cd_{\mathbb{R}^n/L}(x,y)^2 \text{ for all } x,y \in \mathbb{R}^n/L\}$$

$$c_2(\mathbb{R}^n/L)^2 = \inf\{C : C \in \mathbb{R}_+, Q \text{ positive definite},$$

$$d_{\mathbb{R}^n/L}(x,y)^2 \leq Q(x,x) - 2\Re(Q(x,y)) + Q(y,y)$$

$$\leq Cd_{\mathbb{R}^n/L}(x,y)^2 \text{ for all } x,y \in \mathbb{R}^n/L\}$$

take group average
$$\overline{Q}(x,y) = \frac{1}{\operatorname{vol}(\mathbb{R}^n/L)} \int_{\mathbb{R}^n/L} Q(x-z,y-z) \, dz.$$

$$c_2(\mathbb{R}^n/L)^2 = \inf\{C : C \in \mathbb{R}_+, Q \text{ positive definite},$$

$$d_{\mathbb{R}^n/L}(x,y)^2 \leq Q(x,x) - 2\Re(Q(x,y)) + Q(y,y)$$

$$\leq Cd_{\mathbb{R}^n/L}(x,y)^2 \text{ for all } x,y \in \mathbb{R}^n/L\}$$

take group average
$$\overline{Q}(x,y) = \frac{1}{\operatorname{vol}(\mathbb{R}^n/L)} \int_{\mathbb{R}^n/L} Q(x-z,y-z) \, dz.$$

- benefits: $\bullet \overline{Q}$ is continuous
 - \overline{Q} depends only on x-y

$$c_2(\mathbb{R}^n/L)^2 = \inf\{C : C \in \mathbb{R}_+, Q \text{ positive definite},$$

$$d_{\mathbb{R}^n/L}(x,y)^2 \leq Q(x,x) - 2\Re(Q(x,y)) + Q(y,y)$$

$$\leq Cd_{\mathbb{R}^n/L}(x,y)^2 \text{ for all } x,y \in \mathbb{R}^n/L\}$$

take group average
$$\overline{Q}(x,y) = \frac{1}{\operatorname{vol}(\mathbb{R}^n/L)} \int_{\mathbb{R}^n/L} Q(x-z,y-z) \, dz.$$

benefits: $\bullet \overline{Q}$ is continuous

• \overline{Q} depends only on x-y

so: \exists continuous positive type function $f: \mathbb{R}^n/L \to \mathbb{R}$

with
$$\overline{Q}(x,y) = f(x-y)$$

$$c_2(\mathbb{R}^n/L)^2 = \inf\{C : C \in \mathbb{R}_+, f : \mathbb{R}^n/L \to \mathbb{R} \text{ continuous and of positive type,}$$

$$|x|^2 \le 2(f(0) - f(x)) \le C|x|^2 \text{ for all } x \in V(L)\}.$$

More benefits

• can parametrize f by Fourier coefficients (Bochner's theorem)

 $f:\mathbb{R}^n/L\to\mathbb{C}$ is of positive type if and only if all its Fourier coefficients

$$\widehat{f}(u) = \int_{\mathbb{R}^n/L} f(x)e^{-2\pi i u^{\mathsf{T}} x} \, dx,$$

with $u \in L^*$ are nonnegative and lie in

$$\ell^1(L^*) = \left\{ z \colon L^* \to \mathbb{C} : \sum_{u \in L^*} |z(u)| < \infty \right\}.$$

More benefits

 \bullet can parametrize f by Fourier coefficients (Bochner's theorem)

 $f:\mathbb{R}^n/L\to\mathbb{C}$ is of positive type if and only if all its Fourier coefficients

$$\widehat{f}(u) = \int_{\mathbb{R}^n/L} f(x)e^{-2\pi i u^{\mathsf{T}} x} \, dx,$$

with $u \in L^*$ are nonnegative and lie in

$$\ell^1(L^*) = \left\{ z \colon L^* \to \mathbb{C} : \sum_{u \in L^*} |z(u)| < \infty \right\}.$$

This gives: infinite-dimesional LP

$$c_2(\mathbb{R}^n/L)^2 = \inf \{ C : C \in \mathbb{R}_+, z \in \ell^1(L^*), z(u) = z(-u) \ge 0 \text{ for all } u \in L^*,$$

$$|x|^2 \le 2 \sum_{u \in L^*} z(u)(1 - \cos(2\pi u^\mathsf{T} x)) \le C|x|^2$$
for all $x \in V(L)$.

• understand principal structure of Euclidean embeddings

A feasible solution of the above minimization problem (C, z) determines a Euclidean embedding φ of \mathbb{R}^n/L with distortion $\leq \sqrt{C}$ by

$$\varphi: \mathbb{R}^n/L \to \ell^2(L^*), \quad x \mapsto \left(\sqrt{z(u)}e^{2\pi i u^{\mathsf{T}}x}\right)_{u \in L^*},$$

with complex Hilbert space

$$\ell^{2}(L^{*}) = \left\{ z : L^{*} \to \mathbb{C} : \left(\sum_{u \in L^{*}} |z(u)|^{2} \right)^{1/2} < \infty \right\}.$$

• understand principal structure of Euclidean embeddings

A feasible solution of the above minimization problem (C, z) determines a Euclidean embedding φ of \mathbb{R}^n/L with distortion $\leq \sqrt{C}$ by

$$\varphi: \mathbb{R}^n/L \to \ell^2(L^*), \quad x \mapsto \left(\sqrt{z(u)}e^{2\pi i u^{\mathsf{T}}x}\right)_{u \in L^*},$$

with complex Hilbert space

$$\ell^{2}(L^{*}) = \left\{ z : L^{*} \to \mathbb{C} : \left(\sum_{u \in L^{*}} |z(u)|^{2} \right)^{1/2} < \infty \right\}.$$

• inf is max

because bounded, continuous, positive type functions are weak* compact

infinite-dimensional linear program

$$c_2(\mathbb{R}^n/L)^2 = \inf \left\{ C : C \in \mathbb{R}_+, z \in \ell^1(L^*), z(u) = z(-u) \ge 0 \text{ for all } u \in L^*, \\ |x|^2 \le 2 \sum_{u \in L^*} z(u)(1 - \cos(2\pi u^\mathsf{T} x)) \le C|x|^2 \right\}$$
for all $x \in V(L)$.

infinite-dimensional linear program

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \inf \left\{ C : C \in \mathbb{R}_{+}, z \in \ell^{1}(L^{*}), z(u) = z(-u) \geq 0 \text{ for all } u \in L^{*}, \\ |x|^{2} \leq 2 \sum_{u \in L^{*}} z(u)(1 - \cos(2\pi u^{\mathsf{T}}x)) \leq C|x|^{2}$$
 for all $x \in V(L)$.

insight: most expanded pairs only in the limit (0, x) with $x \to 0$.

infinite-dimensional linear program

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \inf \left\{ C : C \in \mathbb{R}_{+}, z \in \ell^{1}(L^{*}), z(u) = z(-u) \geq 0 \text{ for all } u \in L^{*}, \\ |x|^{2} \leq 2 \sum_{u \in L^{*}} z(u)(1 - \cos(2\pi u^{\mathsf{T}}x)) \leq C|x|^{2}$$
 for all $x \in V(L)$.

insight: most expanded pairs only in the limit (0, x) with $x \to 0$.

equivalent first order condition

$$4\pi^2 \sum_{u \in L^*} z(u)(u^\mathsf{T} x)^2 \le C|x|^2 \text{ for all } x \in \mathbb{R}^n.$$

infinite-dimensional linear program

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \inf \left\{ C : C \in \mathbb{R}_{+}, z \in \ell^{1}(L^{*}), z(u) = z(-u) \geq 0 \text{ for all } u \in L^{*}, \\ |x|^{2} \leq 2 \sum_{u \in L^{*}} z(u)(1 - \cos(2\pi u^{\mathsf{T}}x)) \leq C|x|^{2}$$
 for all $x \in V(L)$.

insight: most expanded pairs only in the limit (0, x) with $x \to 0$.

equivalent first order condition

$$4\pi^2 \sum_{u \in L^*} z(u)(u^\mathsf{T} x)^2 \le C|x|^2 \text{ for all } x \in \mathbb{R}^n.$$

equivalent to finite SDP condition

$$CI - 4\pi^2 \sum_{u \in L^*} z(u)uu^\mathsf{T} \in \mathcal{S}^n_+,$$

Next trick: Duality

Next trick: Duality

primal SDP

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \inf \left\{ C : C \in \mathbb{R}_{+}, z \in \ell^{1}(L^{*}), z(u) = z(-u) \geq 0 \text{ for all } u \in L^{*}, \\ |x|^{2} \leq 2 \sum_{u \in L^{*}} z(u)(1 - \cos(2\pi u^{\mathsf{T}}x)) \text{ for all } x \in V(L) \right.$$

$$CI - 4\pi^{2} \sum_{u \in L^{*}} z(u)uu^{\mathsf{T}} \in \mathcal{S}_{+}^{n} \right\}.$$

Next trick: Duality

primal SDP

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \inf \left\{ C : C \in \mathbb{R}_{+}, z \in \ell^{1}(L^{*}), z(u) = z(-u) \geq 0 \text{ for all } u \in L^{*}, \\ |x|^{2} \leq 2 \sum_{u \in L^{*}} z(u)(1 - \cos(2\pi u^{\mathsf{T}}x)) \text{ for all } x \in V(L) \right.$$

$$CI - 4\pi^{2} \sum_{u \in L^{*}} z(u)uu^{\mathsf{T}} \in \mathcal{S}_{+}^{n} \right\}.$$

dual SDP

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \sup \left\{ 2\pi^{2} \int_{V(L)} |x|^{2} d\nu(x) : \\ \nu \in \mathcal{M}_{+}(V(L)), Y \in \mathcal{S}_{+}^{n}, \operatorname{Tr}(Y) = 1, \\ \int_{V(L)} (1 - \cos(2\pi u^{\mathsf{T}}x)) d\nu(x) \le u^{\mathsf{T}} Y u \text{ for all } u \in L^{*} \right\}$$

 $\mathcal{M}_+(V(L))$ is the cone of Borel measures on V(L)

First application: Constant factor improvement of lower bound

First application: Constant factor improvement of lower bound

Theorem. Let L be an n-dimensional lattice, then

$$c_2(\mathbb{R}^n/L) \ge \frac{\pi\lambda(L^*)\mu(L)}{\sqrt{n}}.$$

First application: Constant factor improvement of lower bound

Theorem. Let L be an n-dimensional lattice, then

$$c_2(\mathbb{R}^n/L) \ge \frac{\pi\lambda(L^*)\mu(L)}{\sqrt{n}}.$$

Proof. Let y be a vertex of the Voronoi cell V(L) which realizes the covering radius, that is $|y| = \mu(L)$.

Choose $\nu = \frac{\lambda(L^*)^2}{2n} \delta_y$ to be a point measure supported at y and set $Y = \frac{1}{n}I$.

Then (Y, ν) is feasible for dual.

$$c_{2}(\mathbb{R}^{n}/L)^{2} = \sup \left\{ 2\pi^{2} \int_{V(L)} |x|^{2} d\nu(x) : \\ \nu \in \mathcal{M}_{+}(V(L)), Y \in \mathcal{S}_{+}^{n}, \operatorname{Tr}(Y) = 1, \\ \int_{V(L)} (1 - \cos(2\pi u^{\mathsf{T}}x)) d\nu(x) \le u^{\mathsf{T}} Y u \text{ for all } u \in L^{*} \right\}$$

Second application: Least distortion embedding of standard torus

$$\varphi: \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^{2n}$$

$$\varphi(x_1,\ldots,x_n)=(\cos 2\pi x_1,\sin 2\pi x_1,\ldots,\cos 2\pi x_n,\sin 2\pi x_n).$$

Second application: Least distortion embedding of standard torus

$$\varphi: \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{R}^{2n}$$

$$\varphi(x_1,\ldots,x_n)=(\cos 2\pi x_1,\sin 2\pi x_1,\ldots,\cos 2\pi x_n,\sin 2\pi x_n).$$

Theorem.
$$c_2(\mathbb{R}^n/\mathbb{Z}^n)=\pi/2$$

$$c_2(\mathbb{R}^n/L) \ge \frac{\pi \lambda(L^*)\mu(L)}{\sqrt{n}}$$
 is tight for $L = \mathbb{Z}^n$
$$\lambda(\mathbb{Z}^n) = 1 \text{ and } \mu(\mathbb{Z}^n) = \sqrt{n/4}$$

Third application: Least distortion embedding of 2-d flat tori

Third application: Least distortion embedding of 2-d flat tori

Theorem.

Suppose $\exists u_1, \ldots, u_k \in L^*, z_1, \ldots, z_k \geq 0$ such that $\sum_{i=1}^k z_i u_i u_i^\top = I$.

Then

$$\varphi: \mathbb{R}^n/L \to \mathbb{C}^k, \quad H(x)_r = (2\pi^2 D z_r e^{2i\pi u_r^\top x})$$

with

$$D = \max_{V(L)\setminus\{0\}} \frac{|x|^2}{\sum_{i=1}^k z_i (1 - \cos(2\pi u_i^\top x))}$$

has distortion $\sqrt{2\pi^2 D}$.

If L is two-dimensional, then φ has least distortion.

Third application: Least distortion embedding of 2-d flat tori

Theorem.

Suppose $\exists u_1, \ldots, u_k \in L^*, z_1, \ldots, z_k \geq 0$ such that $\sum_{i=1}^k z_i u_i u_i^\top = I$.

Then

$$\varphi: \mathbb{R}^n/L \to \mathbb{C}^k, \quad H(x)_r = (2\pi^2 D z_r e^{2i\pi u_r^\top x})$$

with

$$D = \max_{V(L)\setminus\{0\}} \frac{|x|^2}{\sum_{i=1}^k z_i (1 - \cos(2\pi u_i^\top x))}$$

has distortion $\sqrt{2\pi^2 D}$.

If L is two-dimensional, then φ has least distortion.

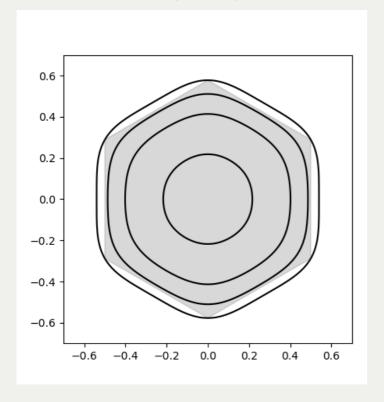
Drawback: somewhat indirect, D seems hard to determine.

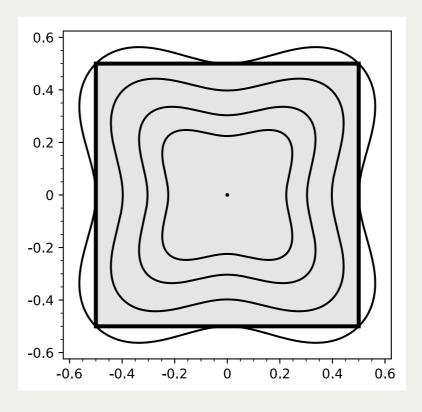
1. We do not understand most contracted pairs.

1. We do not understand most contracted pairs.

$$|x|^2 \le 2 \sum_{u \in L^*} z(u) (1 - \cos(2\pi u^\mathsf{T} x)) \text{ for all } x \in V(L)$$

Seems to be (0, y) where y vertex of Voronoi cell

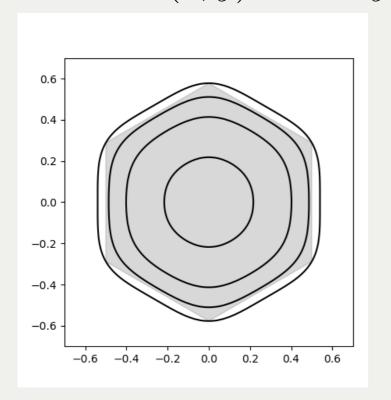


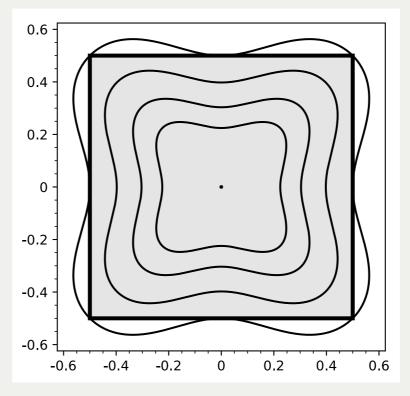


1. We do not understand most contracted pairs.

$$|x|^2 \le 2\sum_{u \in L^*} z(u)(1 - \cos(2\pi u^\mathsf{T} x)) \text{ for all } x \in V(L)$$

Seems to be (0, y) where y vertex of Voronoi cell



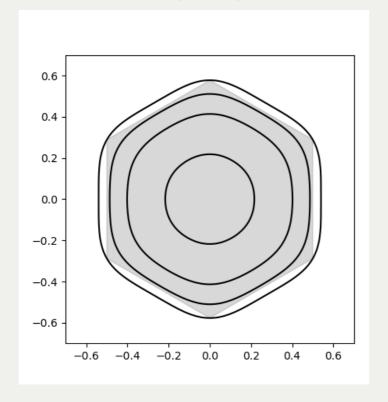


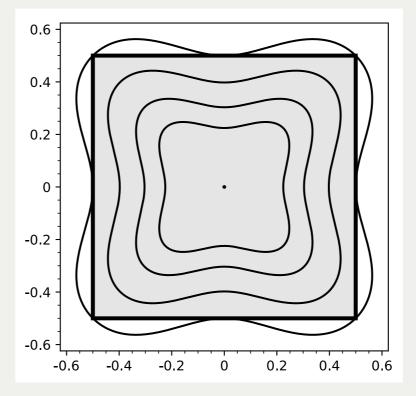
2. We do not understand the optimal Hilbert space

1. We do not understand most contracted pairs.

$$|x|^2 \le 2 \sum_{u \in L^*} z(u) (1 - \cos(2\pi u^\mathsf{T} x)) \text{ for all } x \in V(L)$$

Seems to be (0, y) where y vertex of Voronoi cell





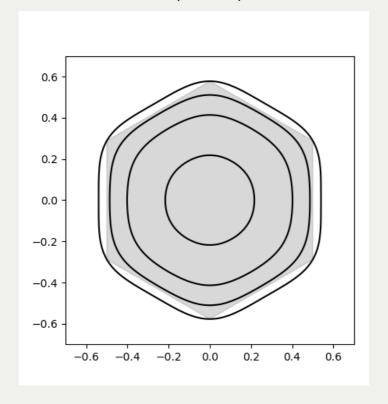
2. We do not understand the optimal Hilbert space

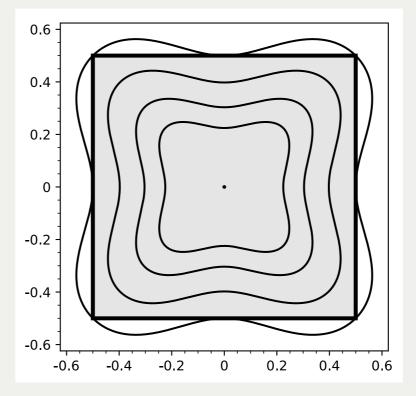
optimal $\varphi: \mathbb{R}^n/L \to l^2(L^*)$ seems to be a finite-dimensional embedding

1. We do not understand most contracted pairs.

$$|x|^2 \le 2\sum_{u \in L^*} z(u)(1 - \cos(2\pi u^\mathsf{T} x))$$
 for all $x \in V(L)$

Seems to be (0, y) where y vertex of Voronoi cell





2. We do not understand the optimal Hilbert space

optimal $\varphi: \mathbb{R}^n/L \to l^2(L^*)$ seems to be a finite-dimensional embedding

If both are true: SDP perspective would provide a finite algorithm