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Consider the following cloud of 2D-points (data set) below

The red curve is the level set
Sy = {x: Qu(x) < v}, 7veERy

of a certain polynomial Q4 € R[xy, x2] of degree 2d.

¥ Notice that S, captures quite well the shape of the cloud. J
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Not a coincidence!

= , low degree d for Qy is often enough to get a
pretty good idea of the shape of Q2 (at least in dimension
p=23)
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Cook up your own convincing example

Perform the following simple operations on a preferred cloud of

2D-points: So let d =2, p = 2 and s(d) = (°}7).

o Letvg(x)" = (1,x1,x0, X2, x1 X2, ..., xgxZ ', x§). be the
vector of all monomials x| x} of total degree i + j < d
@ Form the real symmetric matrix of size s(d)

N
My = D Velx(i) va(x(i))
i=1

where the sum is over all points (X(/))j=1..n C RR? of the
data set.
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So the matrix N - My reads:

1 x1(7) X2(/) (P x(i)?

x()  xa(P oxalxe()  oxa@® o xa(i) xe(i)®
Z Xg(i) Xq (I)Xg(l) X2(i)2 Xq (I)2X2(I) . Xg(l.)d"_1
() X)) ()™ )P .. x(i)
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2" Note that typically, My is what is called the MOMENT-matrix
of the empirical measure

N
N ._ l25 )
H’ T N X(I)
i=1

associated with a sample of size N, drawn according to an
unknown measure ..

’¥" The (usual) notation dy(; stands for the DIRAC measure
supported at the point x(/) of R2.
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@ Next, form the SOS polynomial:

X = Qu(x) = vg(x)" M" vg(x).

_ 2 dy m—1
= (1, X1, X2, X7, ..., X3 ) M

@ Plot some level sets
S, = {xeR?: Qu(x) = 7}
for some values of -, the thick one representing the

particular value y = (%37).
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The Christoffel function Ay : RP — R, is the reciprocal
X— Qu(x)"", ¥YxeRP
of the SOS polynomial Q.

K& |t has a rich history in
and
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The Christoffel function Ay : RP — R, is the reciprocal
X— Qu(x)"", ¥YxeRP
of the SOS polynomial Q.

K& |t has a rich history in
and

2" Among main contributors: Nevai, Totik, Kréo, Lubinsky,
Simon, ...

=" .. The CF seems to be not so well-known in data analysis
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A refresher on orthogonal polynomials

Let 1 be a (positive) measure supported on a compact set
Q C RP with nonempty interior.

A family (P,)aene C R[X] is orthonormal w.r.t. 1 if

/ Po(X) Ps(x) p(dX) = da—p, Va,B€NP.
Q

’¥" Here d,—g is the standard Kronecker symbol
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How to construct a family (P, )qene

Let NP := {a € NP : 3", o < t} and suppose that all moments

Lo ::/Qxad,u, VaENgt,

are available.

’” Then one may construct an orthonormal family (Pa)aene
from determinants of associated with /.
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The moment matrix My(1) is the real symmetric matrix with
rows and columns indexed by (xa)aeNZ, and with entries

My(1) (e, B) = /Qanrﬂ di = pasp, Yo,B€ NZ.

K& |llustrative example in dimension 2:

1 X X
_ | 1 moo w0 pot

M (1) o= X1 o peo  H41
Xo ot H11 fo2

is the moment matrix of ;. of "degree d=1".
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One way to construct polynomials orthonormal w.r.t. i
Fix an ordering of NP (e.g. lexicographic ordering)
(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),...
~——

degree0 degreel degree2

Then Pyy(x) = 1 for all X = (x1, x2) € R2.

Qio(X) := det( “’?0 /;}10 > = Xi — w1o.

oo M40 Mo
Qo1(X) = det | 10 poo  fi11
1 X X

= J0k11 — ot 2o — X1 (Hookt1 — Htokor) + Xa (fookizo — 130)
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One way to construct polynomials orthonormal w.r.t. i
Fix an ordering of NP (e.g. lexicographic ordering)
(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),...
~——

degree0 degreel degree2

Then Pyy(x) = 1 for all X = (x1, x2) € R2.

Qio(X) := det( “’?0 /;}10 > = Xi — w1o.

oo K10 fot
Qo1(X) := det | p10 po0  fi11
1 X X

= pq0k1 — Hotfizo — X1 (oot — profior) + X (Hookizo — 150)
2" Then normalize, i.e. P1g = 0Qqq With 6 such that

92/0120@ =1.
Q

and similarly with Pyq = 0 Qp4.
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Similarly,

Hoo  H10 Mot H20
H10 K20 H11 H30

Mol HA1 Ho2  H21
1 X X2 X2

on(X) = det

, [0 [10 ot
= Xfdet | pio p20 pa1 | =X (o) + X ()= ()
Mot p11 - Ho2

and Pyg =0 ng with 6 such that

02/ ngd/l/ =1.
Q
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The vector space R[x]y viewed as a subspace of L?(;) is a
Reproducing Kernel Hilbert Space (RKHS).
Its reproducing kernel

(x,y) = Ki(x,y) == > Pa(x . VX, yERP,

la|<d

is called the Christoffel-Darboux kernel.
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The reproducing property

X q(x) = /Q KE(%,y) q(y) di(y), ¥q € R[Xq. J

1" yseful to determinate the best degree-d L?(1)-polynomial
approximation

inf ||f_ qHLZ(/L)

geR[x]y
of f € L2(y1). Indeed:
fao
X G(X) = / f(y 1) Pa(X) € RXg
erNp
— in ||f—
argqergg[g]d\\ qlli2()

v
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/(f—@)zdu —~ 0 asd— oo
Q

or, equivalently: N
dll—>moo Hf— fd”Lz(u) =0.
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Recall that the support Q2 of ;. is compact with nonempty
interior, and let (P,).cne be a family of orthonormal
polynomials w.r.t. ..

Theorem
The Christoffel function N} : RP — R is defined by:

Er M) = D Palé)? = KE(L,0), VEERP,

la]<d

and it also satisfies the variational property:

A (E) = /Pzd P( , VEERP.
al®) Pénﬂg[r;]d " '
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Recall that the support Q2 of ;. is compact with nonempty
interior, and let (P,).cne be a family of orthonormal
polynomials w.r.t. ..

Theorem
The Christoffel function N} : RP — R is defined by:

fl—>/\‘§( )_1 = Z’Da( )2:K5(7 )7 v ERpa

la]<d

and it also satisfies the variational property:

A (E) = /Pzd P( , VEERP.
al®) Pénﬂg[r;]d " '

5" Alternatively

NG(E) ™! = () Mg (1) 7T vg(C), Ve ERP.
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Notice that we can also write:

2
M = Kie = 3 e,

loj<d ¢

where the vector of coefficients of the polynomial Q, is the
normalized eigenvector of My(1.) associated with the (positive)
eigenvalue \, >0

Jean B. Lasserre semidefinite characterization



B5" Importantly, and crucial for applications, the Christoffel
function identifies the support 2 of the underlying measure .

Let the support Q) of 1. be compact with nonempty interior.
Then:

@ Forallx € int(Q2): K} (x,x) = O(dP).

@ Forallx € int(RP \ Q): KJ(x,X) = Q(exp(ad)) for some
a > 0.

IS" |n particular, as d — oo,

dP Niy(x) — 0 very fast whenever x ¢ Q.
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Typical growth rates for K/ (x,x) = AL(x)~".

exp(aVd
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Some other properties

@ Under some (restrictive) assumption on Q and p
Jim s(d)AG(€) = fu() (€)™

where w is the density of an
intrinsically associated with €.

For instance with p = 1 and Q = [—1,1], w(¢) = /1 — €2
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Some other properties

@ Under some (restrictive) assumption on Q and p
lim s(d) Ny(€) = £.(&)w(€)™
d—o0

where w is the density of an

intrinsically associated with €.

For instance with p =1 and Q = [-1,1], w(&) = /1 — €2,
@ If x and v have same support Q2 and respective densities f,

and f, w.r.t. Lebesgue measure on €, positive on €2, then:

o MO ()
d=oo AG(€)  £(§)°

VEEQ.

1F" useful for
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If Q is not and is supported on a real variety
V C RP, then for sufficiently large degree d:

d — rank(My) = g(d)

where g € R[t] is the associated with V and
whose degree provides the dimension of V.

So one may use the of the moment matrix My to identify
the dimension of the underlying variety.

15" yseful for manifold learning.
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The Christoffel function can also be used in several important
applications of Machine Learning (e.g. ,
, ). In this case the measure 1 is
the empirical probability measure 1N associated with a
C C RP (the data of interest).
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The Christoffel function can also be used in several important
applications of Machine Learning (e.g. ,
, ). In this case the measure 1 is
the empirical probability measure 1N associated with a
C C RP (the data of interest).

I Computing /\ZN requires over the data & J

Jean B. Lasserre semidefinite characterization



The Christoffel function can also be used in several important
applications of Machine Learning (e.g. ,
, ). In this case the measure 1 is
the empirical probability measure 1N associated with a
C C RP (the data of interest).

I Computing /\ZN requires over the data & J
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" Rank-one update

Updating the Christoffel function when the cloud of N points
one additional point & is added to the cloud of N points is easy.

N
(N+1) " = "6y + 6 = NN + ¢
i=

By Sherman-Morrison’s rank-one update formula

(N+ 1) Mg(" )™ = (NMg(") + va(€)va(€)T) ™
= (NMg(")™" —
A Mg (1Y) T g (§)va(€) Mg (M) !
N2 1 4 vg(€)Mg(pV)~Tva(€)

v
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and therefore

IZ” one obtains the simple update formula:

KMN 2
N1 1/\# (x) = 1N AL (x) — Lx’ﬁ) X
+ N(1 —l—/\g (x))
1 1o 1 Ny ()P

TN © = e

N A ()
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IE” For instance one may decide to classify as outliers all points

N o —1
& such that A; (¢) < (p;; ) .
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¢ such that A% (¢) < (P£9) ™.

IE” For instance one may decide to classify as outliers all pointsJ
p

5" Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques,
(the degree d), and
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¢ such that A“" (¢) < (P£9) ™"

IE” For instance one may decide to classify as outliers all pointsJ
p

5" Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques,
(the degree d), and

" |ass. & Pauwels (2016) Sorting out typicality via the
inverse moment matrix SOS polynomial,

Lass. & Pauwels (2019) The empirical Christoffel functlon with
applications in data analysis,
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Promising results in a recent collaboration with:

- L. Travé, K. Ducharlet (LAAS-CNRS) and the Carl
Berger-Levrault company for in data
analysis of wireless sensors network used in several

applications (e.g.
in airports (data in form of temporal series), &

I¥" K. Ducharlet, L. Travé, J.B. Lasserre, M.V. Le Lann, Y.
Miloudi. Leveraging the Christoffel Function for Outlier
Detection in Data Streams, in preparation.
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Manifold learning

" A measure ;. on compact set Q is completely determined by
its moments and therefore it should not be a surprise that its
moment matrix My() contains a lot of information.
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Manifold learning

" A measure ;. on compact set Q is completely determined by
its moments and therefore it should not be a surprise that its
moment matrix My() contains a lot of information.

We have already seen that its inverse My(1:)~" defines the
Christoffel function.
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Manifold learning

" A measure ;. on compact set Q is completely determined by
its moments and therefore it should not be a surprise that its
moment matrix My() contains a lot of information.

We have already seen that its inverse My(1:)~" defines the
Christoffel function.

2" When . is finitely supported (i.e., Q is a finite set), then for
sufficiently large d, the kernel of My(1)! identifies the
of a corresponding of R[x].

'Lass J.B., M. Laurent, P. Rostalski (2008) Semidefinite characterization
and computation of zero-dimensional real radical ideals,
, pp. 607-647.
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More generally, if 2 is contained in a real algebraic variety V,
then for sufficiently large d, the kernel of My(1:) contains
vectors of coefficients of polynomials that vanish on V.

In fact and remarkably,

rank Mg (1) = p(d)

for some univariate polynomial p (the Hilbert polynomial
associated with the algebraic variety) which is of degree ¢ if t is
the dimension of the variety.

For instance t = p — 1 if the support is contained in the sphere
SP—1 of RP.

.
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For e > 0 sulfficiently small, the e-perturbed Christoffel function
X = Ag(X) = Va(X) (Mg(p) + ) 7" vg(X)
identifies correctly the support of Q.

If the real algebraic variety V O Q is irreducible, the empirical
version of the CF (from a sample of data points on )

X Ay (X) = V(%) (Ma(u™) + e 1) vg(x)

also does it with probability 1.

5" Pauwels E., Putinar M., Lass. J.B. (2021). Data analysis
from empirical moments and the Christoffel function, Found.
Comput. Math. 21, pp. 243-273.
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For instance let Q ¢ SP~1 (the Euclidean unit sphere of RP)

While the kernel identifies SP~1, the Christoffel function
identifies Q ¢ SP—1.
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BS” Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated
in the moment matrix Mg(1).
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BS” Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated
in the moment matrix Mg(1).

%" They can be exploited to extract various useful information
on the data set.
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BS” Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated
in the moment matrix Mg(1).

%" They can be exploited to extract various useful information
on the data set.

¥ |n addition, extraction of this information can be done via
quite simple linear algebra techniques.
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I~ However

for non modest dimension of data, matrix inversion of M;1 does
not scale well ...

4

Jean B. Lasserre semidefinite characterization



I~ However

for non modest dimension of data, matrix inversion of M51 does
not scale well ...

B2~ On the other hand

for evaluation A(£) at a point ¢ € RP, the variational formulation

K — 2 p
N(©) Péan[r;]d /P du: P( 1}, VeeRP.

is the simple quadratic programming problem.

min {p"Mgp : vg()Tp =1},
pE cRs(d)

which can be solved quite efficiently.
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Other non-polynomial kernels, some popular in ML (e.g.
Gaussian kernels), can be very efficient, to provide a large
class of functions on which efficient calculation in large
dimension is possible. However they are not related (at least
directly) to an underlying measure supported on the data
points.
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Other non-polynomial kernels, some popular in ML (e.g.
Gaussian kernels), can be very efficient, to provide a large
class of functions on which efficient calculation in large
dimension is possible. However they are not related (at least
directly) to an underlying measure supported on the data
points.

IE” Again, a of the CD-kernel is its deep
connexion with the underlying measure.

@ It not only "encodes" the cloud of data points,

@ but it also captures many essential features of the more
complex measure supported on those data points.
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Other non-polynomial kernels, some popular in ML (e.g.
Gaussian kernels), can be very efficient, to provide a large
class of functions on which efficient calculation in large
dimension is possible. However they are not related (at least
directly) to an underlying measure supported on the data
points.

IE” Again, a of the CD-kernel is its deep
connexion with the underlying measure.

@ It not only "encodes" the cloud of data points,

@ but it also captures many essential features of the more
complex measure supported on those data points.

I¥" Should be seen as another item in the arsenal of kernel
methods in ML.
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We claim that the CF provides a simple and easy to use tool
(no tuning nor optimization involved) which can help solve
problems not only in data analysis, but also in approximation
and interpolation of (possibly discontinuous) functions.

Outlier detection Interpolation Recovery
— A :
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Some applications outside data analysis

A generic problem

Recover an unknown function f ;: Q — R from the sole
knowledge of scalars

oy = / x* f(x) dé(x), a €N, |o|+j < 2d
Q

where Q C R is compact, d is fixed and ¢ is some given
measure on .

I¥" f can be discontinuous and one would like to attenuate a
classical Gibbs phenomenon as much as possible.
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A typical Gibbs phenomenon occurs whenever one
approximates a discontinuous function (in blue) by a polynomial

(in red).
1.2 T T T
A AN yA
0.8 -
0.6
04 -
0.2
0 .
-1 0.5 0 0.5 1
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Applications:

@ Recovery of functions (optimal solutions of optimal control
problems, non-linear PDEs, etc.) from optimal solutions of
SDP-relaxations of the

@ density approximation
@ interpolation
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Ex: Application in optimal control

Consider the optimal control problem(OCP):

min/1 h(X(t), u(t)) dt
u Jo

x(t) = f(x(t),u(t)), te][0,1], + control/state constraints

In the moment-SOS approach for optimal control one solves a
of increasing size.

Jean B. Lasserre semidefinite characterization



Ex: Application in optimal control
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min/1 h(X(t), u(t)) dt
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Series on Optimization and its Applications — Vol. 4

The Moment-S0S
Engineering is almost endless. Initially designed for solving H

e e L e et Hierarchy

¥ G’ applie 12 sobing any Istan

whose description only involves semi. 2 a Lectures in Probability, Statistics,
et cominsof sohing a equence ( hirachy of convex COTRITRONE] Ceometsy, ContPel

s a semidefinite program whose size increases in the hierarchy. and Nonlinear PDEs

The goal of this book is to describe in a unified and detailed
manner how this methodology applies to solving various
problems in different areas ranging from Optimization,
Probability, Statistics, Signal Processing, Computational
Geometry, Control, Optimal Control and Analysis of a
certain class of nonlincar PDEs. For each application,
this unconventional methodology differs from traditional

approaches and provides an unusual viewpoint. Each chaper Milan Korda

i vt tied s Mo s op Didier Henrion
bl Jean B. Lasserre
The exposition s kept at an appropriate level of detail 1o aid

the different levels of readers not necessarily familiar with
these tools, o better know and understand this methodology,

Lassorro
—_

World Scientific ‘
D wardecentic.com NS worid scientific

0252he 1SS 2399-1593
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At an optimal solution of the one
obtains an approximation

’
Zo Bk N /XO‘ utk du(x,u, t) = / x(1)* u(t)’t* dt J
0

of the moments up to order 2d, of the measure ;. supported on
an optimal trajectory {(x(t),u(t)) : t € [0, 1]} of the OCP.

2" Such a measure 1 is called the occupation measure “up to
time 1" associated with the trajectory {(x(t),u(t)) : t € [0, 1]} of
the OCP.
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Once z, 5 x has been computed, it remains to recover the
functions t — x;(t), u;(t) from z, 3 «,

Foreachi=1,...,n, recover the function f : [0,1] — R:

t—f(t) == x;(t), tel0,1]

from knowledge of the pseudo-moments z, s .

5" In fact for each /, one only needs to use z, o x with a; =0
for all j # i, that is, moments of the marginal of 1. on (x;, t)
(which is a measure on R?).

1" Same thing to recover t — f(t) = u;(t) foreachj=1,...,m.
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Back to our recovery problem

Recall that we want to recover an unknown function f: Q — R
from the sole knowledge of moments

hoj = / Xy dj(X,y), acNiy:la| +)<2d
QxR

= /xo‘f(x)jd</)(x), a €Ny lal+j<2d
Q

of the measure

n = 5{f(x)}(dy) ¢(dX) on Q2 xR

with marginal ¢ on ©, and supported on the graph

A = {(x,f(x)) : xeQ} off.
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Recall that the Christoffel function A/, is a very appropriate tool
to identify the (compact) support A of a measure ., from the
sole knowledge of finitely many moments of ;. (up to degree d).

Take home message

’¥" Hence the Christoffel function A} is quite appropriate for
approximating f from finitely many moments of /.

Indeed the support A of 1 is precisely the graph
{(x,f(x)) : x € Q}of ..
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in a standard use of the CD kernel

to recover f : [0,1] — R, one considers the univariate measure
on [0,1]

du(x) = f(x)1p,17(x) dx

and its moments

1 .
u/:/ x f(x)dx, j=0,1,...
0

2" Notice that the support Q = [0, 1] of . provides no
information on the density f of 1.
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whereas in a non-standard use of the CD kernel

to recover f : [0,1] — R, we consider the bivariate measure

du(X,¥) = dgrxy(dy) 1p0,11(x) dx
with support A C [0, 1] x [0, M], and its moments

. . 1 . .
pij = /X’y/du(X,}/) —/ x'f(xydx, ij=0,1,...
0
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In the standard use of CD-kernel, one approximates
f:[0,1] — R by its projection on R[x], C L2([0, 1]):

X (/ f(y) dy) (x),

with an orthonormal basis (L)jen of L2([0, 1]).

hea

o

01
v NS
o
o 02 04

Ex: Chebyshev interpolant

IE" Typical Gibbs phenomenon occurs.
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The function f, is a polynomial and also reads

1
h(x) = /O KA(x,y) f(y) dy

where \ is Lebesgue measure on [0, 1], and

n

Kh(x,y) = > Li(x)Li(y)

i=0

is the Christoffel-Darboux (CD) kernel associated with \.

¥~ So this standard "use" of the CD kernel does not avoid the
Gibbs phenomenon.
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Alternative Positive Kernels with better convergence properties
have been proposed, still in the same framework:

Féjer, Jackson kernels, etc.

() of the CD kernel is LOST
° (e.g when approximating a density)
o than the CD kernel, in

particular uniform convergence (for continuous functions)
on arbitrary compact subsets

5" F, Kirchner, E. de Klerk. Construction of multivariate
polynomial approximation kernels via semidefinite
programming arxiv:2203.05892

Jean B. Lasserre semidefinite characterization



In a non standard use of CD-kernel

1¥” we rather consider the graph A ¢ R? of f, i.e., the set

A= {(x,f(x): xel[01]=91.

and the measure

du(x,y) = ox)(dy) 1p0,17(x) dx

whose (degenerate) support is A  R2.
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Again, why should we do that as it implies going to R? instead
of staying in R? J

I~ . because

@ The support of 1 is the graph A of f, and
@ The CF (x,y) — An(x,y) of pu!
@ Hence the CF (x,y) — An(x,y) f!
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Interpolation

So suppose that you are given point evaluations {f(x;)};<n of
an unknown function f on [0, 1], and again let

Va(x,y) = (1,%,y, X%, xy, y% ..., xy?= " y9).

5~ Compute the degree-d empirical moment matrix:

N
a(1) = D val((xi, F(xi) Va(xi, 1))

i=1

of the empirical measure dyu(x, y) := N Z, 1 Ox(i),f(x(i)) ON R?,
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Recovery by our non-standard use of CD-kernel

Assume that is given the moment matrix My(1:) of the measure

du(X,y) = d(rx)y(dy) o(dx)

on the graph A = {(x, f(x)) : x € Q} of the function f : Q — R,
and supycq |f(X)| < M.

Let e > 0 and X be Lebesgue measure on Q x [-M, M]
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@ ¥ Compute the Christoffel function

1

ll‘78

X Ny (%, )" = va(%,y) Mg (i + e X)) vg(x, ).
Alternatively

X A=, y) ™" = va(%,y) T (Mg (i) + )~ va(x, ).
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@ ¥ Compute the Christoffel function

1

ll‘78

X Ny (%, )" = va(%,y) Mg (i + e X)) vg(x, ).
Alternatively

X A=, y) ™" = va(%,y) T (Mg (i) + )~ va(x, ).

@ Approximate f by

X fy(X) := arg myin Ny (%, y) "
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@ ¥ Compute the Christoffel function

€ 1

X = NS (X, y) 7 o= (X, ) TMg (i 4+ \) 7T vg (X, y)

Alternatively

X A=, y) ™" = va(%,y) T (Mg (i) + )~ va(x, ).

@ Approximate f by

X fy(X) := arg myin Ny (%, y) "

=" minimize a univariate polynomial! (easy)
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e = 28~V

ensures convergence properties for bounded measurable
functions, e.g. pointwise on open sets with no point of
discontinuity.

Convergence properties as d 1

o=

o F on open sets with no point of
discontinuity, and so .

° I at a rate O(d~"/2) for Lipschitz
continuous f. )

Jean B. Lasserre semidefinite characterization



2" Again note the central role played by the Moment Matrix!

S. Marx, E. Pauwels, T. Weisser, D. Henrion, J.B. Lass.
Semi-algebraic approximation using Christoffel-Darboux kernel,
Constructive Approximation, 2021
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In black (left) the approximation with moments of order 2 and in
black (right) the approximation with moments of order 4 (and ¢
is quite small)

" Observe the absence of any Gibbs phenomenon ...
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It is important to observe that the function
ts fy.(X) = arg myin Nyt (%, y) ™!

is not a polynomial, but rather a semi-algebraic function, and
therefore may capture discontinuities ...!

v

IE” Actually, the above step function is the arg min of an SOS of
degree 6.
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Ex: Interpolation
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Below : Recovery of a (discontinuous) solution of the Burgers
Equation from knowledge of approximate moments of the
occupation measure supported on the solution.

<
| \ ;u;.‘lh' s
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What if not all moments are available?

As is the case in density approximation, suppose that the
function f : [0, 1] — R to approximate is only known via its
Fourier-Legendre coefficients

1 .
Wi A :/ x'f(x)dx, i=0,1,...
0
and we do not have access to other moments
1 . .
pij = / x'f(xYdx, j>1;,i=01,...
0

of the measure 1.(d(x, ¥)) = d¢x)(dy) 1jo,1(X) dx
————

o(dx)
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By moment-matrix completion

Recall that ¢ = (¢;)jen is the moment-sequence of Lebesgue
measure ¢ on [0, 1], and consider the semidefinite programs
indexed by n € N:
P,: igf {©n(¢) : Mp(p) = 0O

bio = ¢i (= pio), 1€N

Vit = pin €N},
where the inf is over all P = (/g/;,-,j),-’jeNg , and
©p is a certain sparsity inducing linear functional.

(™" An n-truncation of the diagonal of the infinite moment
matrix M(z)))
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For every measure v on [0,1] x R, let v = (v;); jen be the
sequence of its moments.

Theorem
(i) For every n € N,

On(p) < On(v),

for all measures v on [0, 1] x R whose moment-sequence v is a
feasible solution of P,.
(ii) Let 1" be an optimal solution of P,. Then

lim 07 = iy = /[Oﬂx"f(x)fdx, Vij=0,1,...

n—oo

I~ Hence one may approximate f accurately from finitely
moments 4, ; as described earlier.

2" D. Henrion & J.B. Lass. Graph recovery from incomplete
moment information (2021),
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Christoffel function and Positive polynomials

Let 2 C R" be the basic semi-algebraic set (with nonempty
interior)

Q:={xeR": gi(x) >0, j=1,...,m}

with g; € R[X]4 and let s; = [deg(g;)/2]. Let go = 1 with s = 0.

With t fixed, its associated quadratic module

Q(Q) = {Zo—jg,- ;o€ X[X]i—s } C R[X]
j=0

is a convex cone with nonempty interior,
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and with dual cone

Q) == {yeR® :M_g(giy) =0, j=0,...,m},

where s(t) = ("11).

Notice that if M¢( )~" = 0 for all t

one may define a family of polynomials (P, )aenn C R[X]
orthonormal w.r.t. y, meaning that

L,V(POL'PB):JQZ,87 aaﬂENn7

and exactly as for measures, the Christoffel function A}

X — A(x ZP

la|<t

4
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Theorem
For every p € int(Q¢(Q2)) there exists y € int(Q¢(Q2)*) such that

p) = 3 (Vi (0 Mi(g 1) Ve (%)) gi(x)

M= 1043

I
o

A (x) " gi(x)
J

where (g - y) is the sequence of pseudo-moments

(@ V)a =) Gy Yoy, a€N' (ifg(x)=3, gyx).
Y

In addition L,(p) = Y ("4-9).

n

Jean B. Lasserre semidefinite characterization



The proof combines

-I¥" aresult by Nesterov on a one-to-one correspondence
between int(Q:(2)) and int(Q:(Q2)*), and

- I the fact that

Vi () TM(g7y) ™ Ve (X) = AT G (%)
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In other words:

In Putinar certificate

m
p = ZU] gj? Uj € R[x]t—S/‘ )
j=0

of strict positivity on €,

=" one may always choose the SOS weights o; in the form

oj(x) = ALG()", j=0,....m,

for some sequence of pseudo-moments y € int(Q:(2)*).
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In other words:

In Putinar certificate

m
p = ZU] gj? Uj € R[x]t—S/‘ )
j=0

of strict positivity on €,

=" one may always choose the SOS weights o; in the form

oj(x) = ALG()", j=0,....m,

for some sequence of pseudo-moments y € int(Q:(2)*).

IE” Question: Given p, what is the related linear functional y?
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Disintegration

Recall that if 11 is @ measure on a Borel set Q := X x Y, then it
disintegrates as

du(x,y) = j(dy|x) ¢(dx)

conditional marginal

with marginal ¢ on X and conditional /i(dy|x) on Y given x € X.
v
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Let du(x, y) be a measure on Q C R” x R, with marginal ¢ on
R", and such that My(x) > 0.

Theorem (Lass (2022))
The Christoffel function (x, y) — Ny(x, y) disintegrates into

Ng(X,y) = N"(X) - A (y), Y(x.y),

for some measure vy 4 on R.

I valid even for linear functionals 1. € R[x, y]* with no
representing measure. More details in:

J.B. Lass (2022) On the Christoffel function and classification in
data analysis, Comptes Rendus Mathematiques

J.B. Lass (2022) A disintegration of the Christoffel function,
Comptes Rendus Mathematiques
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THANK YOU!
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