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(SDP) = min {(MO,Y>:
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Y =0

® Convex, useful from modeling perspective, but problem is very large ("*’;“)
¢ Quadratic matrix program

(QMP) min {g0(X) : ¢:(X) =0, Vie[m]}

XeR
where ¢; are quadratic matrix functions: ¢;(X) = (X, 4, X) +2(B;, X) + ¢
* Nonconvex, generally NP-hard, but much smaller nk
¢ Sneak peek
® SDPs with “low rank structure” can be reformulated as “easy” QMPs

® First-order method (FOM) for “easy” QMPs
. Storage-optimal, low complexity FOM for SDPs with “low rank structure”
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® “Easy” QMPs: strict complementarity
® The SDP relaxation of a QMP

Relating SDPs to QMPs

e “L ow-rank structure”: k-exact SDPs
® The Burer—Monteiro method + drawbacks of symmetry

FOM for easy QMPs

® Algorithmic ideas
e Computational results

Conclusion
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Quadratic matrix programs

(QMP) = min {qo(X): ¢:(X) =0, Vi € [m]}

X ecRnXk

Itk =1, min {go(2) : g;(z) =0, Vi € [m]}

where ¢; are quadratic functions

QMPs are hard
® Binary program z1(1—2x1)=0
® Polynomial optimization problem T1%2 = 21,2

The SDP relaxation of a QMP? Next slide.
QMP is “easy” if the SDP relaxation solves it

Related: Beck [2007], Beck et al. [2012]
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Two views of the SDP relaxation of a QMP

e Lift and relax:

(- (5 1) - e
(QMP) = min  {g0(X) : g:(X) = 0. Vi € [m]}

= min {(Mo,Y(X)) : (M, Y(X)) =0, ¥i € [m]}

Xe]Rnxk

T yeSntk
* I

<Mi,Y> =0,Vie [m]
>  min <M0,Y>Z v (* *) = 0 = (SDP)

¢ Standing assumption: (QMP) feasible and (SDP) dual strictly feasible
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Two views of the SDP relaxation of a QMP cont.

e Lagrangian aggregation: ¢;(X) = 0 and y € R™

90(X) =q +Z%% ) = q(7,X)

JEEY = (X, A ) + 2 (B0, X) + o) NN
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Two views of the SDP relaxation of a QMP cont.

e Lagrangian aggregation: ¢;(X) = 0 and y € R™

go(X) = +Z%qz = q(v, X)
{00X) — (X, AD)X) +2(B).X) + <00 b
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= min sup  q(7, = (Lagr.
i s (7, X) = (Lagr)

Wang, Kiling-Karzan Accelerated FOM for a Class of SDPs 6/25



Two views of the SDP relaxation of a QMP cont.

e Suppose (SDP) feasible and (SDP) dual strictly feasible. Then,

(SDP) = min < (Mj,Y): * X
yesntk Y = <XT Ik) =0

Lagr.) = min sup q(v, X
( ) XGRnXk’YiA(’Y)EO( )

Wang, Kiling-Karzan Accelerated FOM for a Class of SDPs 7125



Easy instances of QMPs

Yy esntk XER™XF 4 A(y)=0

(M;,Y) =0, Vi € [m]
(QMP) > min < (Mo,Y): (* 5 s g = min sup gy, X)
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Easy instances of QMPs

—

MY
(QMP) > min {(Mg,Y}: Y:(

Yy esntk XER™XF 4 A(y)=0

=0, Vi € [m]
N =g = min  sup gq(v,X)

QMP satisfies strict complementarity if, equivalently,

e dual to (Lagr.) has optimal solution v* satisfying A(~v*) > 0
e dual to (SDP) is strictly feasible and has optimal solution with rank n

e Then, QMP has unique optimal solution X* and X* is unique solution (Lagr.)
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Easy instances of QMPs cont.

X" is unique solution (Lagr.) A() =0

X* = argming(vy*, X)
XecRnxk
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Structural assumptions on SDP

(SDP) =

min
Yesntk

{(MO,Y>:

Y >0

sup {d"y: M(y) = 0}

YER™

}

Related: Alizadeh et al. [1997], Ding et al. [2021]
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e What SDPs can be rewritten as QMPs with strict complementarity?
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yesntk Y >0
= sup {d"y: M(y) = 0}
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e What SDPs can be rewritten as QMPs with strict complementarity?

Definition
An SDP is k-exact QMP-like if
e Strong duality holds, both are solvable, there exists Y* and ~+*
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(SDP) = min {(M(),Y) : (M;,Y)+d; =0, Vi € [m)] }

yesntk Y >0
= sup {d"y: M(y) = 0}
yER™

e What SDPs can be rewritten as QMPs with strict complementarity?
An SDP is k-exact QMP-like if

e Strong duality holds, both are solvable, there exists Y* and ~+*

e Strict complementarity: rank(Y*) = k£ and rank(M (v*)) = n

* Know Yj;, - 0 for some k-dimensional subspace W

Related: Alizadeh et al. [1997], Ding et al. [2021]
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From k-exact SDP to easy QMP

e WLOG W = last k-coordinates and Y};, = I, then
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From k-exact SDP to easy QMP

e WLOG W = last k-coordinates and Y};, = I, then
(M, Y)+d; =0, Vi € [m]
(SDP) = min { (My,Y): Y = (* *) =0

Yesntk * I
rank(Y) =k

— min_ {a0(X) : 4:(X) =0, Vi € [m])

= min  sup q(y,X)
XER™ XK : A(y)=0
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=  min sup <X,M(7)X +d™y

X eR(n+k) Xk o cRm

=  min sup <X, M(')/)X> +dTy
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The Burer—-Monteiro method

(SDP) =

min
YeSn+k

{<MO7Y> : ;Mi,Y) +d; =0, Vi € [m] }

=0

e Suppose SDP is k-exact

(SDP) =

min {<X,M0X>: <)~(,Mi)~(>+di:0, w}

XeRr(ntk)xk

min sup <X,M(7)X +d™y

X eR(n+k) Xk o cRm

min sup <X, M(')/)X> +dTy

XeR(MFTR)XE yeRm: M ()0

e Too much symmetry! We set X = (7' )

Related: Burer and Monteiro [2003]
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X*=argmin sup q(vy,X)
XERM ¥k 4: A(v)=0

¢ Semidefinite programs

e k-exact if can be rewritten as easy QMP
® Easy QMP reformulation =~ Burer—Monteiro with symmetry removed
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Deriving a strongly convex minimax problem

A(R") =0

and

X" =argmin sup q(v,X)
XeRnXEk ~v: A(y)>=0
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X eRnXE v: A(7)=0

e Thought experiment: By strict compl., X* is opt. of strongly conv. function

X* =argming(v*, X)
XeRnxk

Theorem (Certificate of strict compl. gives strongly conv. reform.)

Suppose v* € C C R™ and A(~) > 0 for all v € C, then

X* = arg min max q(vy, X)
XcRnxk yeC

e Strongly convex in X, no hidden PSD constraint
¢ Alg. plan: Construct C, solve strongly convex reformulation
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CautiousAGD

® How to solve strongly convex quadratic matrix minimax program?

QMMP) = min ma X
( )= min maxq(y, X)

Related: Devolder et al. [2013, 2014], Nesterov [2005, 2018]
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CautiousAGD guarantees

Theorem (CautiousAGD)
CautiousAGD produces iterates X; such that

ma; , X3) < min ma; , X))+
el o) < mgnamgra(n 20 + €

after O (log(¢ 1)) iterations, O(me~1/2) matrix-vector products per iteration
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e ~* is optimizer of dual problem, there exist (slow) algorithms (") — ~*
* Issue: How do we know close enough?
Use CautiousAGD!
e Ifv* € ¥ then CautiousAGD converges to X* rapidly
® Monitor convergence!
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CertSDP convergence behavior
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CertSDP guarantees

Theorem (CertSDP)
CertSDP produces iterates X; such that

X X7 X (X XT X, 4
<M07 < X;l‘ Ik:>> S OptSDP +€ H <<MZ7 ( XtT Ik: + dz illo S €

Related: Ding et al. [2021], Friedlander and Macédo [2016], Shinde et al. [2021], Yurtsever et al. [2021]
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¢ Storage: O(nk + m) storage

Related: Ding et al. [2021], Friedlander and Macédo [2016], Shinde et al. [2021], Yurtsever et al. [2021]
Wang, Kiling-Karzan Accelerated FOM for a Class of SDPs 19/25



CertSDP guarantees

Theorem (CertSDP)
CertSDP produces iterates X; such that

X, X7 X, (X XT Xy 4
<M07 < X;r Ik>> = OptSDP +e H <<MZ7 ( XtT I, +d; .

Iteration count: O(1) + O (log(e ™))
Iteration complexity: O(me 1) matrix-vector products per iteration

<e
2

Storage: O(nk + m) storage

Compare: O(nk + m) storage, O(e~?) iterations, O(me~1/2) per iteration

Related: Ding et al. [2021], Friedlander and Macédo [2016], Shinde et al. [2021], Yurtsever et al. [2021]
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Numerical results: experimental setup

e Random instances of distance-minimization QMP
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e Random instances of distance-minimization QMP

1 2 . . — .
cant {IIXHF L qi(X)=0,Vie [m]}

with strict complementarity
e Algorithms: CertSDP, CSSDP, SketchyCGAL*, ProxSDP, SCS
® kL =m=10,n=10% 10% 10°
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Numerical results: convergence comparisons
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Numerical results: memory usage
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Conclusion

e Summary: New FOM for k-exact SDPs

® | ow iteration complexity, cheap iterations, and low storage requirement
® Promising numerical performance as well!

e Questions:

* Rates depend polynomially on Apax (A(7*)), Amin (A(7*)).
What are the optimal rates? Lower bounds?
¢ Understanding how error propagates if Y;;, only known up to some error?

Thank you! Questions?

https://arxiv.org/abs/2206.00224
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