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5-minute flash talk

• Semidefinite program

(SDP) = min
Y ∈Sn+k

{
⟨M0, Y ⟩ : ⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y ⪰ 0

}

• Convex, useful from modeling perspective

, but problem is very large
(
n+k+1

2

)
• Quadratic matrix program

(QMP) = min
X∈Rn×k

{q0(X) : qi(X) = 0, ∀i ∈ [m]}

where qi are quadratic matrix functions: qi(X) = ⟨X,AiX⟩+ 2 ⟨Bi, X⟩+ ci

• Nonconvex, generally NP-hard, but much smaller nk

• Sneak peek

• SDPs with “low rank structure” can be reformulated as “easy” QMPs
• First-order method (FOM) for “easy” QMPs
• −→ Storage-optimal, low complexity FOM for SDPs with “low rank structure”

Related: Beck [2007], Beck et al. [2012], Burer and Monteiro [2003], Ding et al. [2021], Yurtsever et al. [2021]
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Outline for today’s talk

• Quadratic matrix programs

• “Easy” QMPs: strict complementarity
• The SDP relaxation of a QMP

• Relating SDPs to QMPs

• “Low-rank structure”: k-exact SDPs
• The Burer–Monteiro method + drawbacks of symmetry

• FOM for easy QMPs

• Algorithmic ideas
• Computational results

• Conclusion
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1 Quadratic matrix programs

2 Relating SDPs and QMPs

3 A FOM for easy QMPs

4 Conclusion
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Quadratic matrix programs

(QMP) = min
X∈Rn×k

{q0(X) : qi(X) = 0, ∀i ∈ [m]}

qi(X) = ⟨X,AiX⟩+ 2 ⟨Bi, X⟩+ ci

• If k = 1, min
x∈Rn

{q0(x) : qi(x) = 0, ∀i ∈ [m]}

where qi are quadratic functions
• QMPs are hard

• Binary program −→ x1(1− x1) = 0
• Polynomial optimization problem −→ x1x2 = z1,2

• The SDP relaxation of a QMP?

Next slide.
• QMP is “easy” if the SDP relaxation solves it

Related: Beck [2007], Beck et al. [2012]
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Two views of the SDP relaxation of a QMP

• Lift and relax:

qi(X) = ⟨X,AiX⟩+ 2 ⟨Bi, X⟩+ ci

=

〈(
Ai Bi

B⊺
i

ci
k Ik

)
,

(
XX⊺ X
X⊺ Ik

)〉
=: ⟨Mi, Y (X)⟩

(QMP) = min
X∈Rn×k

{q0(X) : qi(X) = 0, ∀i ∈ [m]}

= min
X∈Rn×k

{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ min
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 =: (SDP)

• Standing assumption: (QMP) feasible and (SDP) dual strictly feasible
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Two views of the SDP relaxation of a QMP cont.

• Lagrangian aggregation:

qi(X̄) = 0 and γ ∈ Rm

q0(X̄) = q0(X̄) +
m∑
i=1

γiqi(X̄) =: q(γ, X̄)

q(γ,X) = ⟨X,A(γ)X⟩+ 2 ⟨B(γ), X⟩+ c(γ)

• (QMP) ≥ sup
γ∈Rm

inf
X∈Rn×k

q(γ,X)

= min
X∈Rn×k

sup
γ:A(γ)⪰0

q(γ,X) = (Lagr.)

min
X∈R2

{q0(X) : q1(X) = 0}
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Two views of the SDP relaxation of a QMP cont.

• Suppose (SDP) feasible and (SDP) dual strictly feasible. Then,

(SDP) = min
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y =

(
∗ X
X⊺ Ik

)
⪰ 0


= =

(Lagr.) = min
X∈Rn×k

sup
γ:A(γ)⪰0

q(γ,X)
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Easy instances of QMPs

(QMP) ≥ min
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = min
X∈Rn×k

sup
γ:A(γ)⪰0

q(γ,X)

Definition
QMP satisfies strict complementarity if, equivalently,

• dual to (Lagr.) has optimal solution γ∗ satisfying A(γ∗) ≻ 0

• dual to (SDP) is strictly feasible and has optimal solution with rank n

• Then, QMP has unique optimal solution X∗ and X∗ is unique solution (Lagr.)
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Easy instances of QMPs cont.

X∗ is unique solution (Lagr.) A(γ∗) ≻ 0

X∗ = argmin
X∈Rn×k

q(γ∗, X)
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1 Quadratic matrix programs

2 Relating SDPs and QMPs

3 A FOM for easy QMPs

4 Conclusion
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Structural assumptions on SDP

(SDP) = min
Y ∈Sn+k

{
⟨M0, Y ⟩ :

⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y ⪰ 0

}
= sup

γ∈Rm
{d⊺γ : M(γ) ⪰ 0}

• What SDPs can be rewritten as QMPs with strict complementarity?

Definition
An SDP is k-exact QMP-like if

• Strong duality holds, both are solvable, there exists Y ∗ and γ∗

• Strict complementarity: rank(Y ∗) = k and rank(M(γ∗)) = n

• Know Y ∗
W ≻ 0 for some k-dimensional subspace W

Related: Alizadeh et al. [1997], Ding et al. [2021]
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From k-exact SDP to easy QMP

• WLOG W = last k-coordinates and Y ∗
W = Ik, then

(SDP) = min
Y ∈Sn+k

⟨M0, Y ⟩ :

⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

rank(Y ) = k


= min

X∈Rn×k
{q0(X) : qi(X) = 0, ∀i ∈ [m]}

= min
X∈Rn×k

sup
γ:A(γ)⪰0

q(γ,X)
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The Burer–Monteiro method

(SDP) = min
Y ∈Sn+k

{
⟨M0, Y ⟩ :

⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y ⪰ 0

}

• Suppose SDP is k-exact

(SDP) = min
X̃∈R(n+k)×k

{〈
X̃,M0X̃

〉
:

〈
X̃,MiX̃

〉
+ di = 0, ∀i

}

= min
X̃∈R(n+k)×k

sup
γ∈Rm

〈
X̃,M(γ)X̃

〉
+ d⊺γ

= min
X̃∈R(n+k)×k

sup
γ∈Rm:M(γ)⪰0

〈
X̃,M(γ)X̃

〉
+ d⊺γ

• Too much symmetry!

We set X̃ =
(
X
Ik

)

Related: Burer and Monteiro [2003]
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Recap

• Quadratic matrix programs

• Easy if (Lagr.) dual has optimal solution γ∗ with A(γ∗) ≻ 0

X∗ = argmin
X∈Rn×k

sup
γ:A(γ)⪰0

q(γ,X)

• Semidefinite programs

• k-exact if can be rewritten as easy QMP
• Easy QMP reformulation ≈ Burer–Monteiro with symmetry removed

• Next: A new FOM for easy QMPs
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Deriving a strongly convex minimax problem

A(γ∗) ≻ 0 and X∗ = argmin
X∈Rn×k

sup
γ:A(γ)⪰0

q(γ,X)

• Thought experiment: By strict compl., X∗ is opt. of strongly conv. function

X∗ = argmin
X∈Rn×k

q(γ∗, X)

Theorem (Certificate of strict compl. gives strongly conv. reform.)

Suppose γ∗ ∈ C ⊆ Rm and A(γ) ≻ 0 for all γ ∈ C, then

X∗ = argmin
X∈Rn×k

max
γ∈C

q(γ,X)

• Strongly convex in X, no hidden PSD constraint
• Alg. plan: Construct C, solve strongly convex reformulation
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CautiousAGD

• How to solve strongly convex quadratic matrix minimax program?

(QMMP) = min
X∈Rn×k

max
γ∈C

q(γ,X)

• Accelerated gradient descent (AGD) method for minimax functions
• Issue: Requires solving the following prox-map in each iteration

Xt+1 = argmin
X∈Rn×k

max
γ∈C

(
L
2

∥∥∥X − X̂t

∥∥∥2
F
+
〈
∇q(γ, X̂t), X − X̂t

〉
+ q(γ, X̂t)

)

• Solve prox-map approximately and bound error in AGD

• −→ CautiousAGD

Related: Devolder et al. [2013, 2014], Nesterov [2005, 2018]
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CautiousAGD guarantees

Theorem (CautiousAGD)

CautiousAGD produces iterates Xt such that

max
γ∈C

q(γ,Xt) ≤ min
X

max
γ∈C

q(γ,X) + ϵ

after O
(
log(ϵ−1)

)
iterations, O(mϵ−1/2) matrix-vector products per iteration
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CertSDP

• How to construct C?

γ∗ ∈ C, A(γ) ≻ 0 for all γ ∈ C
• γ∗ is optimizer of dual problem, there exist (slow) algorithms γ(i) → γ∗

• Issue: How do we know close enough?

Use CautiousAGD!
• If γ∗ ∈ C(i) then CautiousAGD converges to X∗ rapidly
• Monitor convergence!

• −→ CertSDP
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• Issue: How do we know close enough?
Use CautiousAGD!

• If γ∗ ∈ C(i) then CautiousAGD converges to X∗ rapidly

• Monitor convergence!
• −→ CertSDP
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CertSDP convergence behavior
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CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates Xt such that〈
M0,

(
XtX

⊺
t Xt

X⊺
t Ik

)〉
≤ OptSDP +ϵ

∥∥∥∥(〈Mi,

(
XtX

⊺
t Xt

X⊺
t Ik

)〉
+ di

)
i

∥∥∥∥
2

≤ ϵ

• Iteration count: O(1) +O
(
log(ϵ−1)

)
• Iteration complexity: O(mϵ−1) matrix-vector products per iteration

• Storage: O(nk +m) storage

• Compare: O(nk +m) storage, O(ϵ−2) iterations, O(mϵ−1/2) per iteration

Related: Ding et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021], Yurtsever et al. [2021]
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Numerical results: experimental setup

• Random instances of distance-minimization QMP

inf
X∈Rn×k

{
∥X∥2F : qi(X) = 0, ∀i ∈ [m]

}
with strict complementarity

• Algorithms: CertSDP, CSSDP, SketchyCGAL*, ProxSDP, SCS
• k = m = 10, n = 103, 104, 105

Related: Ding et al. [2021], O’Donoghue et al. [2016], Souto et al. [2020], Yurtsever et al. [2021]
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Numerical results: convergence comparisons
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Numerical results: memory usage
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Conclusion

• Summary: New FOM for k-exact SDPs

• Low iteration complexity, cheap iterations, and low storage requirement
• Promising numerical performance as well!

• Questions:

• Rates depend polynomially on λmax(A(γ
∗)), λmin(A(γ

∗)).
What are the optimal rates? Lower bounds?

• Understanding how error propagates if Y ∗
W only known up to some error?

Thank you! Questions?

https://arxiv.org/abs/2206.00224
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