A New Result on SOS-certificates for Copositive Matrices

Luis Felipe Vargas,

Monique Laurent and Markus Schweighofer

Workshop on Semidefinite and Polynomial Optimization

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : x^T M x \ge 0 \text{ for } x \ge 0 \}$$

$$COP_n = \{ M \in S^n : x^T M x \ge 0 \text{ for } x \ge 0 \}$$
$$COP_n = \{ M \in S^n : (x^{\circ 2})^T M x^{\circ 2} \ge 0 \text{ for } x \in \mathbb{R}^n \}$$
$$x^{\circ 2} = (x_1^2, x_2^2, \dots, x_n^2)$$

$$COP_n = \{ M \in S^n : x^T M x \ge 0 \text{ for } x \ge 0 \}$$
$$COP_n = \{ M \in S^n : (x^{\circ 2})^T M x^{\circ 2} \ge 0 \text{ for } x \in \mathbb{R}^n \}$$
$$x^{\circ 2} = (x_1^2, x_2^2, \dots, x_n^2)$$

- ▶ Hard problems can be encoded as Opt. over COP_n
- Every nonconvex quadratic program involving continuous and binary variables can be modelled as a linear program over the Copositive cone [Burer, 2009]

$$COP_n = \{ M \in \mathcal{S}^n : x^T M x \ge 0 \text{ for } x \ge 0 \}$$

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : (x^{\circ 2})^T M x^{\circ 2} \ge 0 \text{ for } x \in \mathbb{R}^n \}$$

$$x^{\circ 2} = (x_1^2, x_2^2, \dots, x_n^2)$$

- ▶ Hard problems can be encoded as Opt. over COP_n
- Every nonconvex quadratic program involving continuous and binary variables can be modelled as a linear program over the Copositive cone [Burer, 2009]
- Determining whether a matrix is copositive is hard

In this talk:

 Certificates for copositive matrices with sums of squares of polynomials

Example: Graph Matrices

Given a graph G = (V, E), $S \subseteq V$ is stable if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

► NP-complete

Example: Graph Matrices

Given a graph G = (V, E), $S \subseteq V$ is **stable** if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

NP-complete

de Klerk-Pasechnik 2002 (Motzkin-Straus 65'):

$$\alpha(G) = \min t \text{ s.t } t(A_G + I) - J \in \operatorname{COP}_n$$

Example: Graph Matrices

Given a graph G = (V, E), $S \subseteq V$ is stable if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

► NP-complete

de Klerk-Pasechnik 2002 (Motzkin-Straus 65'):

$$\alpha(G) = \min t \text{ s.t } t(A_G + I) - J \in \operatorname{COP}_n$$

The matrix $M_G := \alpha(G)(A_G + I) - J$ is copositive and satisfies many nice properties.

$$\operatorname{COP}_{n} = \left\{ M \in S^{n} : (x^{\circ 2})^{T} M x^{\circ 2} \geq 0 \quad \forall x \in \mathbb{R}^{n} \right\}$$

$$\operatorname{COP}_{n} = \left\{ M \in S^{n} : (x^{\circ 2})^{T} M x^{\circ 2} \geq 0 \quad \forall x \in \mathbb{R}^{n} \right\}$$

Def. $p \in \mathbb{R}[x]$ is a sum of squares (SOS) if $p = \sum_j q_j^2$ for some $q_j \in \mathbb{R}[x]$. If the polynomial $(x^{\circ 2})^T M x^{\circ 2}$ is SOS, then $M \in \text{COP}_n$

$$\operatorname{COP}_{n} = \left\{ M \in S^{n} : (x^{\circ 2})^{T} M x^{\circ 2} \geq 0 \quad \forall x \in \mathbb{R}^{n} \right\}$$

Def. $p \in \mathbb{R}[x]$ is a sum of squares (SOS) if $p = \sum_j q_j^2$ for some $q_j \in \mathbb{R}[x]$. If the polynomial $(x^{\circ 2})^T M x^{\circ 2}$ is SOS, then $M \in \text{COP}_n$

▶ If $M \in \text{COP}_4$ then $(x^{\circ 2})^T M x^{\circ 2}$ is SOS (Diananda 63')

$$\operatorname{COP}_n = \left\{ M \in S^n : (x^{\circ 2})^T M x^{\circ 2} \ge 0 \quad \forall x \in \mathbb{R}^n \right\}$$

Def. $p \in \mathbb{R}[x]$ is a sum of squares (SOS) if $p = \sum_j q_j^2$ for some $q_j \in \mathbb{R}[x]$. If the polynomial $(x^{\circ 2})^T M x^{\circ 2}$ is SOS, then $M \in \text{COP}_n$

▶ If $M \in \text{COP}_4$ then $(x^{\circ 2})^T M x^{\circ 2}$ is SOS (Diananda 63')

For the $n \ge 5$, the Horn matrix:

and $(x^{\circ 2})^T H x^{\circ 2}$ is not SOS.

[Choi-Lam 76']

$$\operatorname{COP}_{n} = \left\{ M \in S^{n} : (x^{\circ 2})^{T} M x^{\circ 2} \geq 0 \quad \forall x \in \mathbb{R}^{n} \right\}$$

Def. $p \in \mathbb{R}[x]$ is a sum of squares (SOS) if $p = \sum_j q_j^2$ for some $q_j \in \mathbb{R}[x]$. If the polynomial $(x^{\circ 2})^T M x^{\circ 2}$ is SOS, then $M \in \text{COP}_n$

▶ If $M \in \text{COP}_4$ then $(x^{\circ 2})^T M x^{\circ 2}$ is SOS (Diananda 63')

For the $n \ge 5$, the Horn matrix:

and $(x^{\circ 2})^T H x^{\circ 2}$ is not SOS. [Choi-Lam 76']

But,
$$(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2)(x^{\circ 2})^T H x^{\circ 2}$$
 is SOS [Parrilo 2000]

Observe that this implies $H \in \text{COP}_5$.

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

Def. *M* is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some *r*

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

▶ If $M \in \text{COP}_4$, then M is SOS-certifiable (with r = 0)

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

- ▶ If $M \in \text{COP}_4$, then M is SOS-certifiable (with r = 0)
- ▶ If $M \in int(COP_n)$, then M is SOS-certifiable

Theorem (Reznick 95')

Let p homogeneous polynomial and p > 0 on $\mathbb{R}^n \setminus \{0\}$ then $p(x)(\sum x_i^2)^r$ is SOS for some $r \in \mathbb{N}$.

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

▶ If
$$M \in \text{COP}_4$$
, then M is SOS-certifiable (with $r = 0$)

▶ If $M \in int(COP_n)$, then M is SOS-certifiable

Based on that certificate Parrilo (2000) propose the cones $\mathcal{K}_n^{(r)}$ for approximating COP_n :

$$\mathcal{K}_n^{(r)} = \{ M \in \mathcal{S}^n : (\sum_{i=1}^n x_i^2)^r (x^{\circ 2})^T M x^{\circ 2} \text{ is SOS} \}$$

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

▶ If
$$M \in \text{COP}_4$$
, then M is SOS-certifiable (with $r = 0$)

▶ If $M \in int(COP_n)$, then M is SOS-certifiable

Based on that certificate Parrilo (2000) propose the cones $\mathcal{K}_n^{(r)}$ for approximating COP_n :

$$\mathcal{K}_n^{(r)} = \{ M \in \mathcal{S}^n : (\sum_{i=1}^n x_i^2)^r (x^{\circ 2})^T M x^{\circ 2} \text{ is SOS} \}$$

M is SOS-certifiable iff $M \in \bigcup_{r \ge 0} \mathcal{K}_n^{(r)}$.

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

▶ If
$$M \in \text{COP}_4$$
, then M is SOS-certifiable (with $r = 0$)

▶ If $M \in int(COP_n)$, then M is SOS-certifiable

Based on that certificate Parrilo (2000) propose the cones $\mathcal{K}_n^{(r)}$ for approximating COP_n :

$$\mathcal{K}_n^{(r)} = \{ M \in \mathcal{S}^n : (\sum_{i=1}^n x_i^2)^r (x^{\circ 2})^T M x^{\circ 2} \text{ is SOS} \}$$

M is SOS-certifiable iff $M \in \bigcup_{r\geq 0} \mathcal{K}_n^{(r)}$.

de Klerk and Pasechnik 02' use the cones to give the bounds $\vartheta^{(r)}(G) \to \alpha(G)$

Def. M is SOS-certifiable if $(\sum_{i=1}^{n} x_i^2)^r (x^{\circ 2})^T M x^{\circ 2}$ is SOS for some r

▶ Obs. If *M* is SOS-certifiable then $M \in COP_n$

▶ If
$$M \in \text{COP}_4$$
, then M is SOS-certifiable (with $r = 0$)

▶ If $M \in int(COP_n)$, then M is SOS-certifiable

Based on that certificate Parrilo (2000) propose the cones $\mathcal{K}_n^{(r)}$ for approximating COP_n :

$$\mathcal{K}_n^{(r)} = \{ M \in \mathcal{S}^n : (\sum_{i=1}^n x_i^2)^r (x^{\circ 2})^T M x^{\circ 2} \text{ is SOS} \}$$

M is SOS-certifiable iff $M \in \bigcup_{r \ge 0} \mathcal{K}_n^{(r)}$.

de Klerk and Pasechnik 02' use the cones to give the bounds $\vartheta^{(r)}(G) \to \alpha(G)$

Are all copositive matrices SOS-certifiable?

Main Result #1

Theorem (Laurent-Schweighofer-V 22'+)

Every 5 × 5 copositive matrix is SOS-certifiable. That is, $\text{COP}_5 = \bigcup_{r>0} \mathcal{K}_5^{(r)}$

Main Result #1

Theorem (Laurent-Schweighofer-V 22'+)

Every 5 × 5 copositive matrix is SOS-certifiable. That is, $\text{COP}_5 = \bigcup_{r>0} \mathcal{K}_5^{(r)}$

► Also, for any n ≥ 6 there exist matrices M ∈ COP_n that are not SOS-certifiable (L-V '22)

Main Result #1

Theorem (Laurent-Schweighofer-V 22'+)

Every 5 × 5 copositive matrix is SOS-certifiable. That is, $\text{COP}_5 = \bigcup_{r>0} \mathcal{K}_5^{(r)}$

► Also, for any n ≥ 6 there exist matrices M ∈ COP_n that are not SOS-certifiable (L-V '22)

Some related results:

- ▶ $\operatorname{COP}_5 \neq \mathcal{K}_n^{(r)}$ for any $r \in \mathbb{N}$. [Dickinson-Dür-Gijben-Hildebrand 12']
- COP₅ is not the projection of a spectrahedra [Bodirsky-Kummer-Thom22']
- Every 5 × 5 copositive matrix with all-ones diagonal is SOS-certifiable (with r = 1) [DDGH 12']
- Conjecture* [DDGH 12']: Every copositive matrix with all-ones diagonal is SOS-certifiable

Constructing non SOS-certifiable copositive matrices

Theorem (L-V '21)

Let $M \in \text{COP}_n$ and assume that $M \notin \mathcal{K}_n^{(0)}$, i.e, $(x^{\circ 2})^T M x^{\circ 2}$ is not SOS. Then

$$M' := \left(egin{array}{c|c} M & 0 \ \hline 0 & 0 \end{array}
ight).$$

is copositive and non SOS-certifiable. Hence, there are 6×6 non SOS-certifiable copositive matrices. Theorem (L-V '21)

Let $M \in \text{COP}_n$ and assume that $M \notin \mathcal{K}_n^{(0)}$, i.e, $(x^{\circ 2})^T M x^{\circ 2}$ is not SOS. Then

$$M' := \left(egin{array}{c|c} M & 0 \ \hline 0 & 0 \end{array}
ight).$$

is copositive and non SOS-certifiable. Hence, there are 6×6 non SOS-certifiable copositive matrices.

Proof.

Assume $M' \in \mathcal{K}_n^{(r)}$, so that $(\sum_{i=1}^n x_i^2 + y^2)^r ((x^{\circ 2})^T M x^{\circ 2})$ is SOS.

Setting y = 1, The least degree homogeneous part is equal to $(x^{\circ 2})^T M x^{\circ 2}$, and it should be a SOS. Contradiction.

Theorem (L-V '21)

Let $M \in \text{COP}_n$ and assume that $M \notin \mathcal{K}_n^{(0)}$, i.e, $(x^{\circ 2})^T M x^{\circ 2}$ is not SOS. Then

$$M' := \left(egin{array}{c|c} M & 0 \ \hline 0 & 0 \end{array}
ight).$$

is copositive and non SOS-certifiable. Hence, there are 6×6 non SOS-certifiable copositive matrices.

Proof.

Assume $M' \in \mathcal{K}_n^{(r)}$, so that $(\sum_{i=1}^n x_i^2 + y^2)^r ((x^{\circ 2})^T M x^{\circ 2})$ is SOS.

Setting y = 1, The least degree homogeneous part is equal to $(x^{\circ 2})^T M x^{\circ 2}$, and it should be a SOS. Contradiction.

Using a similar argument we obtain that the matrix

$$M':=egin{pmatrix} H&0\ \hline 0&1&-1\ \hline -1&1 \end{pmatrix}$$

is not SOS-certifiable. This disproves Conjecture*.

Link to Lasserre-type SOS certificates

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : x^T M x \ge 0 \text{ for } x \in \Delta \}$$

We say that M is Δ -certifiable if

$$x^T M x = \underbrace{\sigma}_{SOS} + \sum_{i=1}^n x_i \underbrace{\sigma_i}_{SOS} + u(x) (\sum_{i=1}^n x_i - 1),$$

for some $\sigma, \sigma_i \in \mathsf{SOS}$ and $u(x) \in \mathbb{R}[x]$

Link to Lasserre-type SOS certificates

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : x^T M x \ge 0 \text{ for } x \in \Delta \}$$

We say that M is Δ -certifiable if

$$x^{T}Mx = \underbrace{\sigma}_{SOS} + \sum_{i=1}^{n} x_{i} \underbrace{\sigma_{i}}_{SOS} + u(x)(\sum_{i=1}^{n} x_{i} - 1),$$

for some $\sigma, \sigma_i \in SOS$ and $u(x) \in \mathbb{R}[x]$

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : (x^{\circ 2})^T M x^{\circ 2} \ge 0 \text{ for } x \in \mathbb{S}^{n-1} \}$$

We say that M is S-certifiable if

$$(x^{\circ 2})^T M x^{\circ 2} = \underbrace{\sigma}_{SOS} + u(x) (\sum_{i=1}^n x_i^2 - 1),$$

for some $\sigma \in SOS$ and $u(x) \in \mathbb{R}[x]$

Link to Lasserre-type SOS certificates

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : x^T M x \ge 0 \text{ for } x \in \Delta \}$$

We say that M is Δ -certifiable if

$$x^{T}Mx = \underbrace{\sigma}_{SOS} + \sum_{i=1}^{n} x_{i} \underbrace{\sigma_{i}}_{SOS} + u(x)(\sum_{i=1}^{n} x_{i} - 1),$$

for some $\sigma, \sigma_i \in SOS$ and $u(x) \in \mathbb{R}[x]$

$$\operatorname{COP}_n = \{ M \in \mathcal{S}^n : (x^{\circ 2})^T M x^{\circ 2} \ge 0 \text{ for } x \in \mathbb{S}^{n-1} \}$$

We say that M is S-certifiable if

$$(x^{\circ 2})^T M x^{\circ 2} = \underbrace{\sigma}_{SOS} + u(x) (\sum_{i=1}^n x_i^2 - 1),$$

for some $\sigma \in SOS$ and $u(x) \in \mathbb{R}[x]$

Theorem. follows from [Parrilo-de Klerk-Laurent 02'] and [Laurent-V 22']

M is Δ -certifiable \Longrightarrow M is \mathbb{S} -certifiable \iff M is SOS-certifiable

Theorem (Laurent-V 22')

Every 5×5 copositive matrix is SOS-certifiable if and only if DHD is SOS-certifiable for all D positive diagonal.

Theorem (Laurent-V 22')

Every 5×5 copositive matrix is SOS-certifiable if and only if DHD is SOS-certifiable for all D positive diagonal.

Sketch of the proof:

- **1.** The extreme rays of COP₅ are fully described [Hildebrand 12']
- 2. Every extreme matrix that is not of the form *DHD* is Δ -certifiable, and thus SOS-certifiable.
- **3.** For this we use sufficient conditions for finite convergence of Lasserre hierarchies [Marshall-Nie 09'-12']

Theorem (Laurent-V 22')

Every 5×5 copositive matrix is SOS-certifiable if and only if DHD is SOS-certifiable for all D positive diagonal.

Sketch of the proof:

- **1.** The extreme rays of COP₅ are fully described [Hildebrand 12']
- 2. Every extreme matrix that is not of the form *DHD* is Δ -certifiable, and thus SOS-certifiable.
- **3.** For this we use sufficient conditions for finite convergence of Lasserre hierarchies [Marshall-Nie 09'-12']
- (!) *H* is SOS-certifiable but not Δ -certifiable

Pure states-reformulation

Let $D = \text{diag}(d_1, d_2, \dots, d_5)$ be a positive diagonal matrix **To show**: *DHD* is SOS-certifiable, or equivalently, *DHD* is S-certifiable, that is,

$$(x^{\circ 2})^T DHDx^{\circ 2} \in \Sigma + (\sum_{i=1}^5 x_i^2 - 1)$$

or equivalently, after replacing $x_i
ightarrow rac{x_i}{\sqrt{d_i}}$,

$$(x^{\circ 2})^T H x^{\circ 2} \in \Sigma + (\sum_{i=1}^5 d_i x_i^2 - 1)$$
 for all $d_i > 0$?

Membership in preorderings?

Membership in preorderings: Theory of Pure States

Let
$$M = \Sigma + (\sum_{i=1}^{5} d_i x_i^2 - 1)$$
 $S := \{x \in \mathbb{R}^n : \sum d_i x_i^2 = 1\}$

Membership in preorderings: Theory of Pure States

Let
$$M = \Sigma + (\sum_{i=1}^{5} d_i x_i^2 - 1)$$
 $S := \{x \in \mathbb{R}^n : \sum d_i x_i^2 = 1\}$

From [Burgdof, Scheiderer, Schweighofer 12']:

- Let $f \ge 0$ on S
- ► Assume there exists a "unit" u ∈ M with the "same behavior" of f around the zero set.

$$\implies f \in M$$

Membership in preorderings: Theory of Pure States

Let
$$M = \Sigma + (\sum_{i=1}^{5} d_i x_i^2 - 1)$$
 $S := \{x \in \mathbb{R}^n : \sum d_i x_i^2 = 1\}$

From [Burgdof, Scheiderer, Schweighofer 12']:

- Let $f \ge 0$ on S
- ► Assume there exists a "unit" u ∈ M with the "same behavior" of f around the zero set.

$$\implies f \in M$$

plus extra conditions

Taking $f = (x^{\circ 2})^T H x$ and $u = (\sum_{i=1}^5 x_i^2) f$ we obtain that $f \in M$

Theorem (Schweighofer-V 22'+)

DHD is SOS-certifiable for any positive diagonal matrix D. Hence, every 5×5 copositive matrix is SOS-certifiable.

Let
$$G = (V = [n], E)$$
.
 $M_G = \alpha(G)(A_G + I) - J \in COP_n$

 $f_G(x) := (x^{\circ 2})^T M_G x^{\circ 2} \ge 0$ on \mathbb{R}^n .

Let
$$G = (V = [n], E)$$
.
 $M_G = \alpha(G)(A_G + I) - J \in \operatorname{COP}_n$
 $f_G(x) := (x^{\circ 2})^T M_G x^{\circ 2} \ge 0 \text{ on } \mathbb{R}^n$.

Conjecture 1 (de Klerk-Pasechnik 2002) $(\sum_{i=1}^{n} x_i^2)^{\alpha(G)-1} f_G(x)$ is SOS

Let G = (V = [n], E). $M_G = \alpha(G)(A_G + I) - J \in COP_n$ $f_G(x) := (x^{\circ 2})^T M_G x^{\circ 2} \ge 0 \text{ on } \mathbb{R}^n$. **Conjecture 1 (de Klerk-Pasechnik 2002)** $(\sum_{i=1}^n x_i^2)^{\alpha(G)-1} f_G(x) \text{ is SOS}$

Def. Let $G \oplus i$ the graph obtained by adding the isolated node *i* to *G*.

Lemma[Laurent-V 22'] (Gvozdenović-L 07'):

If $(M_H \text{ is SOS-certifiable} \implies M_{H \oplus i} \text{ is SOS-certifiable})$ then M_G is SOS-certifiable for every graph G.

Let G = (V = [n], E). $M_G = \alpha(G)(A_G + I) - J \in COP_n$ $f_G(x) := (x^{\circ 2})^T M_G x^{\circ 2} \ge 0 \text{ on } \mathbb{R}^n$. **Conjecture 1 (de Klerk-Pasechnik 2002)** $(\sum_{i=1}^n x_i^2)^{\alpha(G)-1} f_G(x) \text{ is SOS}$

Def. Let $G \oplus i$ the graph obtained by adding the isolated node *i* to *G*.

Lemma[Laurent-V 22'] (Gvozdenović-L 07'):

If $(M_H \text{ is SOS-certifiable} \implies M_{H \oplus i} \text{ is SOS-certifiable})$ then M_G is SOS-certifiable for every graph G.

Theorem (Schweighofer-V 22'+) M_G is SOS-certifiable, that is, $(\sum_{i=1}^n x_i^2)^r f_G$ is SOS for some $r \in \mathbb{N}$.

Let G = (V = [n], E). $M_G = \alpha(G)(A_G + I) - J \in COP_n$ $f_G(x) := (x^{\circ 2})^T M_G x^{\circ 2} \ge 0 \text{ on } \mathbb{R}^n$. **Conjecture 1 (de Klerk-Pasechnik 2002)** $(\sum_{i=1}^n x_i^2)^{\alpha(G)-1} f_G(x) \text{ is SOS}$

Def. Let $G \oplus i$ the graph obtained by adding the isolated node *i* to *G*.

Lemma[Laurent-V 22'] (Gvozdenović-L 07'):

If $(M_H \text{ is SOS-certifiable} \implies M_{H \oplus i} \text{ is SOS-certifiable})$ then M_G is SOS-certifiable for every graph G.

Theorem (Schweighofer-V 22'+) M_G is SOS-certifiable, that is, $(\sum_{i=1}^n x_i^2)^r f_G$ is SOS for some $r \in \mathbb{N}$.

Thanks!