Orthogonal Schedules



Maximal orthogonal schedules

Roel Lambers
Joint work with Frits Spieksma, Mehmet Akif Yilmiz, Viresh Patel, Jop Briét

31-08-2022

TU Eindhoven



Figure 1: Brabant



Figure 2: Clubs in Brabant

Problem: They never win.
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(a) Home/Away patterns (HAP-set)

What if we want NAC-Willem Il in a different round, without changing
the HAP-set?
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Round 3 is 'fixed" with this HAP-set.
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(a) Match schedule

Round 3 is 'fixed" with this HAP-set. Could have done better:
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(a) Alt schedule 1 (b) Alt schedule 2
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Figure 7: Alt HAP-Set
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Definition

o HAP-set: set of 2n 0 — 1-vectors of length 2n — 1.

e Schedule: set of 2n — 1 perfect matchings on 2n teams.
Two schedules S, S’ are orthogonal - SLS' if for every match {¢,t'},
scheduled in rounds r, r’ respectively, we have r # r’.

Given HAP-set H, let S(H) be all schedules compatible with H. We
define width of H as:

width(H) = Srcnszzl(%#{s €S:51S VS, S5 eS8}

The width of a HAP-set H is the order of the largest set of pair-wise
orthogonal schedules compatible with H.

Higher width = more flexibility.
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Table 1: HAP-set with width 2
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For every even n > 4, the above method creates HAP-set H with
width(#) = 2 - two compatible orthogonal schedules can be found by
rotating the rounds.
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For every even n > 4, the above method creates HAP-set H with
width(#) = 2 - two compatible orthogonal schedules can be found by
rotating the rounds.

For 2n = 6, impossible to do better. Why?

In any HAP-set, there must be 2 teams for which the HAP-set differs

only in two columns.
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Definition
Two vectors v, v/ € {0,1}2"~1 have opp(v,v') = #{i: v; # v/} = k. A
HAP-set H has opp(H) defined as:

opp(H) = {vrpi}nCH opp(v, v') on = mﬁxopp(H)

Clearly, width(#H) < opp(H) and w,, < 0, < n.
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Definition
Two vectors v, v/ € {0,1}2"~1 have opp(v,v') = #{i: v; # v/} = k. A
HAP-set H has opp(H) defined as:

o = in o ! 0p = Maxo
pp(H) i pp(v, V') n = maxopp(H)
Clearly, width(#H) < opp(H) and w,, < 0, < n.

Definition

Two schedules S, S’ are rotational orthogonal when they are orthogonal

and their rounds are a permutations of one another.

The rotational width of H is the size of the largest set of rotational
orthogonal schedules.

Xp = max rotw(H)
M
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Not difficult to see that:

rotw(H) < width(H) < opp(H)

2<x, <w,<0,<n
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Not difficult to see that:
rotw(#H) < width(H) < opp(H) 2<x,<w,<o0,<n
In fact, when nis odd, o, < n — 1!
When 2n = 6: x, = w, = o, = 2. What happens with other values of n?

Theorem
When n = 2%, x, = w, = o, = n.

Proof has two steps.

e First: show o, = n by constructing H with opp(H) = n.

e Second: Construct n rotational orthogonal schedules compatible
with n.
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Constructing HAP-set H with opp(#) = n when n = 2%,

Above HAP-set has opp(H) = n.

NB: This procedure can be generalized to create HAP-sets with opp(?) = n even in cases when n # 2k
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Round 1 | 2 | 3

Team 0 1 1|1
1 0 110

2 1 0|0

3 0 0|1
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Constructing HAP-set H with opp(#) = n when n = 2%,

Round 1 | 2 | 3 415 6 7
Team 0 1 1|1 171 1 1
1 0 1/0(/1]0 1 O
2 1 o|o|{1|1 0 O
3 0 0O|1|[1|]0 0 1
4 1 1/1(/0]0 0 O
5 0 11001 0 1
6 1 0|0|[0O|0 1 1
7 0 o|1({0|1 1 O
Above HAP-set has opp(H) = n.
NB: This procedure can be generalized to create HAP-sets with opp(#) = n even in cases when n # 2K
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Constructing the HAP-set:

e Set teams T = Zj and rounds R = Zj \ {0} - i.e., each team t and
round r is an n-bit b(t), b(r).

e In HAP-set H, team t gets assigned Home in round r when:

r-t= Z bi(r)bi(t) =0 mod 2
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Constructing the HAP-set:

e Set teams T = Zj and rounds R = Zj \ {0} - i.e., each team t and
round r is an n-bit b(t), b(r).

e In HAP-set H, team t gets assigned Home in round r when:

r-t= Z bi(r)bi(t) =0 mod 2

Only need n orthogonal schedules. Construct schedule S = (S;)qcr as
follows:

Sq={{i,j}:i+j=q}
Insight: Sy can be scheduled in round r when r - q = 1.
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Bipartite graph G = (R x R, E) with (r,q) € E when r-q =1, is regular
with degree n.
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Conclusion

What we know:

n|2|3|4]5] 6 | 7 |8]...
on | 2|2]4al4] 6 |<6]s8
wo | 212143 7 ? |8
x, |2 12]4]3|4552| 7 |8

Table 2: Known values
More questions remain:
e Can we find n for which x, # w,?

e Is it true that o, = 2| 7|7
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