Orthogonal Schedules

Maximal orthogonal schedules

Roel Lambers

Joint work with Frits Spieksma, Mehmet Akif Yılmız, Viresh Patel, Jop Briët 31-08-2022

TU Eindhoven

Figure 1: Brabant

Figure 2: Clubs in Brabant

Problem: They never win.

Best of Brabant competition (BOB):

Figure 3: Participating teams

Best of Brabant competition (BOB):

Figure 3: Participating teams

Round:	1	2	3
2	H	A	H
H	A	A	
A	H	A	
A	H	H	

(a) Home/Away patterns (HAP-set)

Best of Brabant competition (BOB):

Figure 3: Participating teams

Round:	1	2	3
H	H	A	H
H	A	A	
I感	A	H	A
A	A	H	H

(b) Match schedule
(a) Home/Away patterns (HAP-set)

Best of Brabant competition (BOB):

Figure 3: Participating teams

Round:	1	2	3
H	H	A	H
H	A	A	
I感	A	H	A
A	A	H	H

(b) Match schedule
(a) Home/Away patterns (HAP-set)

What if we want NAC-Willem II in a different round, without changing the HAP-set?

(a) Match schedule

Round 3 is 'fixed' with this HAP-set.

R1	R2	R3
- - 즁	-	- - 悪
-		, - 중

(a) Match schedule

Round 3 is 'fixed' with this HAP-set. Could have done better:

(a) Alt schedule 1

(b) Alt schedule 2

Round:	1	2	3
\}	H	H	H
爱	H	A	A
(축)	A	H	A
(3)	A	A	H

Figure 7: Alt HAP-Set

Definition

- HAP-set: set of $2 n 0-1$-vectors of length $2 n-1$.
- Schedule: set of $2 n-1$ perfect matchings on $2 n$ teams.

Definition

- HAP-set: set of $2 n 0-1$-vectors of length $2 n-1$.
- Schedule: set of $2 n-1$ perfect matchings on $2 n$ teams.

Two schedules S, S^{\prime} are orthogonal $-S \perp S^{\prime}$ if for every match $\left\{t, t^{\prime}\right\}$, scheduled in rounds r, r^{\prime} respectively, we have $r \neq r^{\prime}$.

Definition

- HAP-set: set of $2 n 0-1$-vectors of length $2 n-1$.
- Schedule: set of $2 n-1$ perfect matchings on $2 n$ teams.

Two schedules S, S^{\prime} are orthogonal $-S \perp S^{\prime}$ if for every match $\left\{t, t^{\prime}\right\}$, scheduled in rounds r, r^{\prime} respectively, we have $r \neq r^{\prime}$.

Given HAP-set \mathcal{H}, let $\mathcal{S}(\mathcal{H})$ be all schedules compatible with \mathcal{H}.

Definition

- HAP-set: set of $2 n 0-1$-vectors of length $2 n-1$.
- Schedule: set of $2 n-1$ perfect matchings on $2 n$ teams.

Two schedules S, S^{\prime} are orthogonal $-S \perp S^{\prime}$ if for every match $\left\{t, t^{\prime}\right\}$, scheduled in rounds r, r^{\prime} respectively, we have $r \neq r^{\prime}$.

Given HAP-set \mathcal{H}, let $\mathcal{S}(\mathcal{H})$ be all schedules compatible with \mathcal{H}. We define width of \mathcal{H} as:

$$
\text { width }(\mathcal{H})=\max _{\mathcal{S} \subset \mathcal{S}(\mathcal{H})} \#\left\{S \in \mathcal{S}: S \perp S^{\prime} \quad \forall S, S^{\prime} \in \mathcal{S}\right\}
$$

Definition

- HAP-set: set of $2 n 0-1$-vectors of length $2 n-1$.
- Schedule: set of $2 n-1$ perfect matchings on $2 n$ teams.

Two schedules S, S^{\prime} are orthogonal $-S \perp S^{\prime}$ if for every match $\left\{t, t^{\prime}\right\}$, scheduled in rounds r, r^{\prime} respectively, we have $r \neq r^{\prime}$.

Given HAP-set \mathcal{H}, let $\mathcal{S}(\mathcal{H})$ be all schedules compatible with \mathcal{H}. We define width of \mathcal{H} as:

$$
\text { width }(\mathcal{H})=\max _{\mathcal{S} \subset \mathcal{S}(\mathcal{H})} \#\left\{S \in \mathcal{S}: S \perp S^{\prime} \quad \forall S, S^{\prime} \in \mathcal{S}\right\}
$$

The width of a HAP-set \mathcal{H} is the order of the largest set of pair-wise orthogonal schedules compatible with \mathcal{H}.

Definition

- HAP-set: set of $2 n 0-1$-vectors of length $2 n-1$.
- Schedule: set of $2 n-1$ perfect matchings on $2 n$ teams.

Two schedules S, S^{\prime} are orthogonal $-S \perp S^{\prime}$ if for every match $\left\{t, t^{\prime}\right\}$, scheduled in rounds r, r^{\prime} respectively, we have $r \neq r^{\prime}$.

Given HAP-set \mathcal{H}, let $\mathcal{S}(\mathcal{H})$ be all schedules compatible with \mathcal{H}. We define width of \mathcal{H} as:

$$
\text { width }(\mathcal{H})=\max _{\mathcal{S} \subset \mathcal{S}(\mathcal{H})} \#\left\{S \in \mathcal{S}: S \perp S^{\prime} \quad \forall S, S^{\prime} \in \mathcal{S}\right\}
$$

The width of a HAP-set \mathcal{H} is the order of the largest set of pair-wise orthogonal schedules compatible with \mathcal{H}.

Higher width \Longrightarrow more flexibility.

Central questions:

- Given HAP-set \mathcal{H}, what is width (\mathcal{H}) ?

Central questions:

- Given HAP-set \mathcal{H}, what is width (\mathcal{H}) ?
- Given number of teams $N=2 n$, what is $w_{2 n}$, given by:

$$
w_{n}=\max _{\mathcal{H}} \operatorname{width}(\mathcal{H}) \mathcal{H} \text { is HAP-set on } 2 n \text { teams }
$$

Central questions:

- Given HAP-set \mathcal{H}, what is width (\mathcal{H}) ?
- Given number of teams $N=2 n$, what is $w_{2 n}$, given by:

$$
w_{n}=\max _{\mathcal{H}} \operatorname{width}(\mathcal{H}) \mathcal{H} \text { is HAP-set on } 2 n \text { teams }
$$

We already saw that when $2 n=4$, we could create a HAP-set with width 2.

Central questions:

- Given HAP-set \mathcal{H}, what is width (\mathcal{H}) ?
- Given number of teams $N=2 n$, what is $w_{2 n}$, given by:

$$
w_{n}=\max _{\mathcal{H}} \operatorname{width}(\mathcal{H}) \mathcal{H} \text { is HAP-set on } 2 n \text { teams }
$$

We already saw that when $2 n=4$, we could create a HAP-set with width 2. Do we have $w_{n} \geq 2$?

Yes.

Central questions:

- Given HAP-set \mathcal{H}, what is width (\mathcal{H}) ?
- Given number of teams $N=2 n$, what is $w_{2 n}$, given by:

$$
w_{n}=\max _{\mathcal{H}} \operatorname{width}(\mathcal{H}) \mathcal{H} \text { is HAP-set on } 2 n \text { teams }
$$

We already saw that when $2 n=4$, we could create a HAP-set with width 2. Do we have $w_{n} \geq 2$?

Yes.

Round 1	Round 2	Round 3	Round 4	Round 5
2	2	2	2	2
（6）	－	｜紼｜	（197）	\％
迵	｜噚］	（6）	－	（20）
\％	（6）	5	（6）	
	3	（滑）	\％	囫
				｜閜｜

Round 1	Round 2	Round 3	Round 4	Round 5
2	2	2	2	2
（6）	）	｜塖		3
\％	［举｜	（0）	相	（0）
（2）	（e）	（2）	（6iv）	（1）
（17）	\％		6	䝆
	（170）	明	｜救）	

Round 1	Round 2	Round 3	Round 4	Round 5
2，	2，			2，
逐，	\｜褙，	（20），	犮	（6ayy
	（\％）（190）	（fiplay		

Round 1	Round 2	Round 3	Round 4	Round 5
2 ，mem	2，	2，感		2，
成碞，		（6m）	晨，	（6ayy
	（\％）（10）	（fupl		

Round	1	2	3	4	5
2	H	H	H	H	H
（6）	A	A	H	A	H
R	H	A	A	H	A
［噪｜	A	H	A	A	H
（170	H	A	H	A	A
5	A	H	A	H	A

Table 1：HAP－set with width 2

For every even $n \geq 4$, the above method creates HAP-set \mathcal{H} with width $(\mathcal{H})=2$ - two compatible orthogonal schedules can be found by rotating the rounds.

For every even $n \geq 4$, the above method creates HAP-set \mathcal{H} with width $(\mathcal{H})=2$ - two compatible orthogonal schedules can be found by rotating the rounds.

For $2 n=6$, impossible to do better. Why?

For every even $n \geq 4$, the above method creates HAP-set \mathcal{H} with width $(\mathcal{H})=2-$ two compatible orthogonal schedules can be found by rotating the rounds.

For $2 n=6$, impossible to do better. Why?
In any HAP-set, there must be 2 teams for which the HAP-set differs only in two columns.

Definition

Two vectors $v, v^{\prime} \in\{0,1\}^{2 n-1}$ have $\operatorname{opp}\left(v, v^{\prime}\right)=\#\left\{i: v_{i} \neq v_{i}^{\prime}\right\}=k$. A HAP-set \mathcal{H} has $\operatorname{opp}(\mathcal{H})$ defined as:

$$
\operatorname{opp}(\mathcal{H})=\min _{\left\{v, v^{\prime}\right\} \subset \mathcal{H}} \operatorname{opp}\left(v, v^{\prime}\right) \quad o_{n}=\max _{\mathcal{H}} \operatorname{opp}(\mathcal{H})
$$

Clearly, width $(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H})$ and $w_{n} \leq o_{n} \leq n$.

Definition

Two vectors $v, v^{\prime} \in\{0,1\}^{2 n-1}$ have $\operatorname{opp}\left(v, v^{\prime}\right)=\#\left\{i: v_{i} \neq v_{i}^{\prime}\right\}=k$. A HAP-set \mathcal{H} has $\operatorname{opp}(\mathcal{H})$ defined as:

$$
\operatorname{opp}(\mathcal{H})=\min _{\left\{v, v^{\prime}\right\} \subset \mathcal{H}} \operatorname{opp}\left(v, v^{\prime}\right) \quad o_{n}=\max _{\mathcal{H}} \operatorname{opp}(\mathcal{H})
$$

Clearly, width $(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H})$ and $w_{n} \leq o_{n} \leq n$.
Definition
Two schedules S, S^{\prime} are rotational orthogonal when they are orthogonal and their rounds are a permutations of one another.

Definition

Two vectors $v, v^{\prime} \in\{0,1\}^{2 n-1}$ have $\operatorname{opp}\left(v, v^{\prime}\right)=\#\left\{i: v_{i} \neq v_{i}^{\prime}\right\}=k$. A HAP-set \mathcal{H} has opp (\mathcal{H}) defined as:

$$
\operatorname{opp}(\mathcal{H})=\min _{\left\{v, v^{\prime}\right\} \subset \mathcal{H}} \operatorname{opp}\left(v, v^{\prime}\right) \quad o_{n}=\max _{\mathcal{H}} \operatorname{opp}(\mathcal{H})
$$

Clearly, width $(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H})$ and $w_{n} \leq o_{n} \leq n$.

Definition

Two schedules S, S^{\prime} are rotational orthogonal when they are orthogonal and their rounds are a permutations of one another.

The rotational width of \mathcal{H} is the size of the largest set of rotational orthogonal schedules.

$$
x_{n}=\max _{\mathcal{H}} \operatorname{rotw}(\mathcal{H})
$$

Not difficult to see that:

$$
\operatorname{rotw}(\mathcal{H}) \leq \operatorname{width}(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H}) \quad 2 \leq x_{n} \leq w_{n} \leq o_{n} \leq n
$$

Not difficult to see that:

$$
\operatorname{rotw}(\mathcal{H}) \leq \operatorname{width}(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H}) \quad 2 \leq x_{n} \leq w_{n} \leq o_{n} \leq n
$$

In fact, when n is odd, $o_{n} \leq n-1$!

Not difficult to see that:

$$
\operatorname{rotw}(\mathcal{H}) \leq \operatorname{width}(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H}) \quad 2 \leq x_{n} \leq w_{n} \leq o_{n} \leq n
$$

In fact, when n is odd, $o_{n} \leq n-1$!
When $2 n=6: x_{n}=w_{n}=o_{n}=2$. What happens with other values of n ?

Not difficult to see that:

$$
\operatorname{rotw}(\mathcal{H}) \leq \operatorname{width}(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H}) \quad 2 \leq x_{n} \leq w_{n} \leq o_{n} \leq n
$$

In fact, when n is odd, $o_{n} \leq n-1$!
When $2 n=6: x_{n}=w_{n}=o_{n}=2$. What happens with other values of n ?

Theorem

When $n=2^{k}, x_{n}=w_{n}=o_{n}=n$.
Proof has two steps.

- First: show $o_{n}=n$ by constructing \mathcal{H} with $\operatorname{opp}(\mathcal{H})=n$.

Not difficult to see that:

$$
\operatorname{rotw}(\mathcal{H}) \leq \operatorname{width}(\mathcal{H}) \leq \operatorname{opp}(\mathcal{H}) \quad 2 \leq x_{n} \leq w_{n} \leq o_{n} \leq n
$$

In fact, when n is odd, $o_{n} \leq n-1$!
When $2 n=6: x_{n}=w_{n}=o_{n}=2$. What happens with other values of n ?

Theorem

When $n=2^{k}, x_{n}=w_{n}=o_{n}=n$.
Proof has two steps.

- First: show $o_{n}=n$ by constructing \mathcal{H} with $\operatorname{opp}(\mathcal{H})=n$.
- Second: Construct n rotational orthogonal schedules compatible with n.

Constructing HAP-set \mathcal{H} with $\operatorname{opp}(\mathcal{H})=n$ when $n=2^{k}$.

Team 0	1	
1	0	

Above HAP-set has opp $(\mathcal{H})=n$.
NB: This procedure can be generalized to create HAP-sets with $\operatorname{opp}(\mathcal{H})=n$ even in cases when $n \neq 2^{k}$.

Constructing HAP-set \mathcal{H} with $\operatorname{opp}(\mathcal{H})=n$ when $n=2^{k}$.

	Round 1	2	3	
Team 0	1	1	1	
1	0	1	0	
2	1	0	0	
3	0	0	1	

Above HAP-set has $\operatorname{opp}(\mathcal{H})=n$.
NB: This procedure can be generalized to create HAP-sets with $\operatorname{opp}(\mathcal{H})=n$ even in cases when $n \neq 2^{k}$.

Constructing HAP-set \mathcal{H} with $\operatorname{opp}(\mathcal{H})=n$ when $n=2^{k}$.

	Round 1	2	3	4	5	6	7
Team 0	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0
2	1	0	0	1	1	0	0
3	0	0	1	1	0	0	1
4	1	1	1	0	0	0	0
5	0	1	0	0	1	0	1
6	1	0	0	0	0	1	1
7	0	0	1	0	1	1	0

Above HAP-set has $\operatorname{opp}(\mathcal{H})=n$.
NB: This procedure can be generalized to create HAP-sets with $\operatorname{opp}(\mathcal{H})=n$ even in cases when $n \neq 2^{k}$.

Constructing the HAP-set:

- Set teams $T=\mathbb{Z}_{2}^{n}$ and rounds $R=\mathbb{Z}_{2}^{n} \backslash\{0\}$ - i.e., each team t and round r is an n-bit $b(t), b(r)$.
- In HAP-set \mathcal{H}, team t gets assigned Home in round r when:

$$
r \cdot t=\sum_{i} b_{i}(r) b_{i}(t)=0 \quad \bmod 2
$$

Constructing the HAP-set:

- Set teams $T=\mathbb{Z}_{2}^{n}$ and rounds $R=\mathbb{Z}_{2}^{n} \backslash\{0\}$ - i.e., each team t and round r is an n-bit $b(t), b(r)$.
- In HAP-set \mathcal{H}, team t gets assigned Home in round r when:

$$
r \cdot t=\sum_{i} b_{i}(r) b_{i}(t)=0 \quad \bmod 2
$$

Only need n orthogonal schedules. Construct schedule $S=\left(S_{q}\right)_{q \in R}$ as follows:

$$
S_{q}=\{\{i, j\}: i+j=q\}
$$

Constructing the HAP-set:

- Set teams $T=\mathbb{Z}_{2}^{n}$ and rounds $R=\mathbb{Z}_{2}^{n} \backslash\{0\}$ - i.e., each team t and round r is an n-bit $b(t), b(r)$.
- In HAP-set \mathcal{H}, team t gets assigned Home in round r when:

$$
r \cdot t=\sum_{i} b_{i}(r) b_{i}(t)=0 \quad \bmod 2
$$

Only need n orthogonal schedules. Construct schedule $S=\left(S_{q}\right)_{q \in R}$ as follows:

$$
S_{q}=\{\{i, j\}: i+j=q\}
$$

Insight: S_{q} can be scheduled in round r when $r \cdot q=1$.

Bipartite graph $G=(R \times R, E)$ with $(r, q) \in E$ when $r \cdot q=1$, is regular with degree n.

Bipartite graph $G=(R \times R, E)$ with $(r, q) \in E$ when $r \cdot q=1$, is regular with degree n.

Only possible when $n=2^{k}$! Otherwise, $x_{n}<n$.

Bipartite graph $G=(R \times R, E)$ with $(r, q) \in E$ when $r \cdot q=1$, is regular with degree n.

Only possible when $n=2^{k}$! Otherwise, $x_{n}<n$.

Bipartite graph $G=(R \times R, E)$ with $(r, q) \in E$ when $r \cdot q=1$, is regular with degree n.

Bipartite graph $G=(R \times R, E)$ with $(r, q) \in E$ when $r \cdot q=1$, is regular with degree n.

Only possible when $n=2^{k}$! Otherwise, $x_{n}<n$.

Conclusion

What we know:

n	2	3	4	5	6	7	8	\ldots
o_{n}	2	2	4	4	6	≤ 6	8	\ldots
w_{n}	2	2	4	3	$?$	$?$	8	\ldots
x_{n}	2	2	4	3	$4 ? 5 ?$	$?$	8	\ldots

Table 2: Known values

More questions remain:

- Can we find n for which $x_{n} \neq w_{n}$?
- Is it true that $o_{n}=2\left\lfloor\frac{n}{2}\right\rfloor$?

