Orthogonal Schedules
Maximal orthogonal schedules

Roel Lambers
Joint work with Frits Spieksma, Mehmet Akif Yılmız, Viresh Patel, Jop Briët
31-08-2022

TU Eindhoven
Figure 1: Brabant
Figure 2: Clubs in Brabant

Problem: They never win.
Best of Brabant competition (BOB):

Figure 3: Participating teams
Best of Brabant competition (BOB):

Figure 3: Participating teams

<table>
<thead>
<tr>
<th>Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>A</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

(a) Home/Away patterns (HAP-set)
Best of Brabant competition (BOB):

![BOB (4 teams)](image)

Figure 3: Participating teams

<table>
<thead>
<tr>
<th>Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Home/Away patterns (HAP-set)</td>
<td>H</td>
<td>A</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) Match schedule</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What if we want NAC-Willem II in a different round, without changing the HAP-set?
Best of Brabant competition (BOB):

Figure 3: Participating teams

(a) Home/Away patterns (HAP-set)

What if we want NAC-Willem II in a different round, without changing the HAP-set?
Round 3 is 'fixed' with this HAP-set.
Round 3 is 'fixed' with this HAP-set. Could have done better:

(a) Match schedule

(b) Alt schedule 1

(b) Alt schedule 2

Figure 7: Alt HAP-Set
Definition

- HAP-set: set of $2n$ 0–1-vectors of length $2n - 1$.
- Schedule: set of $2n - 1$ perfect matchings on $2n$ teams.
Definition

- HAP-set: set of $2n$ 0 – 1-vectors of length $2n – 1$.
- Schedule: set of $2n – 1$ perfect matchings on $2n$ teams.

Two schedules S, S' are orthogonal - $S \perp S'$ if for every match $\{t, t'\}$, scheduled in rounds r, r' respectively, we have $r \neq r'$.

Given HAP-set H, let $S(H)$ be all schedules compatible with H. We define width of H as:

$$\text{width}(H) = \max_{S \subset S(H)} \# \{S \in S(H): S \perp S' \forall S, S' \in S \}$$

The width of a HAP-set H is the order of the largest set of pair-wise orthogonal schedules compatible with H. Higher width \Rightarrow more flexibility.
Definition

- HAP-set: set of $2n$ 0–1-vectors of length $2n - 1$.
- Schedule: set of $2n - 1$ perfect matchings on $2n$ teams.

Two schedules S, S' are orthogonal - $S \perp S'$ if for every match $\{t, t'\}$, scheduled in rounds r, r' respectively, we have $r \neq r'$.

Given HAP-set \mathcal{H}, let $S(\mathcal{H})$ be all schedules compatible with \mathcal{H}.
Definition

- HAP-set: set of $2n$ 0–1-vectors of length $2n - 1$.
- Schedule: set of $2n - 1$ perfect matchings on $2n$ teams.

Two schedules S, S' are *orthogonal* - $S \perp S'$ if for every match $\{t, t'\}$, scheduled in rounds r, r' respectively, we have $r \neq r'$.

Given HAP-set \mathcal{H}, let $S(\mathcal{H})$ be all schedules *compatible* with \mathcal{H}. We define *width* of \mathcal{H} as:

$$\text{width}(\mathcal{H}) = \max_{S \subseteq S(\mathcal{H})} \# \{S \in S : S \perp S' \quad \forall S, S' \in S\}$$
Definition

- **HAP-set**: set of $2n$ 0–1-vectors of length $2n−1$.
- **Schedule**: set of $2n−1$ perfect matchings on $2n$ teams.

Two schedules S, S' are *orthogonal* - $S \perp S'$ if for every match $\{t, t'\}$, scheduled in rounds r, r' respectively, we have $r \neq r'$.

Given HAP-set \mathcal{H}, let $S(\mathcal{H})$ be all schedules *compatible* with \mathcal{H}. We define *width* of \mathcal{H} as:

$$\text{width}(\mathcal{H}) = \max_{S \subset S(\mathcal{H})} \# \{S \in S : S \perp S' \ \forall S, S' \in S\}$$

The width of a HAP-set \mathcal{H} is the order of the largest set of pair-wise orthogonal schedules compatible with \mathcal{H}.

Higher width \Rightarrow more flexibility.
Definition

- HAP-set: set of $2^n 0 - 1$-vectors of length $2^n - 1$.
- Schedule: set of $2^n - 1$ perfect matchings on $2n$ teams.

Two schedules S, S' are orthogonal - $S \perp S'$ if for every match $\{t, t'\}$, scheduled in rounds r, r' respectively, we have $r \neq r'$.

Given HAP-set \mathcal{H}, let $S(\mathcal{H})$ be all schedules compatible with \mathcal{H}. We define width of \mathcal{H} as:

$$\text{width}(\mathcal{H}) = \max_{S \subseteq S(\mathcal{H})} \# \{S \in S : S \perp S' \ \forall S, S' \in S\}$$

The width of a HAP-set \mathcal{H} is the order of the largest set of pair-wise orthogonal schedules compatible with \mathcal{H}.

Higher width \Rightarrow more flexibility.
Central questions:

- Given HAP-set \mathcal{H}, what is $\text{width}(\mathcal{H})$?

We already saw that when $2^n = 4$, we could create a HAP-set with width 2. Do we have $w_n \geq 2$? Yes.
Central questions:

• Given HAP-set \mathcal{H}, what is $\text{width}(\mathcal{H})$?

• Given number of teams $N = 2n$, what is w_{2n}, given by:

\[
 w_n = \max_{\mathcal{H}} \text{width}(\mathcal{H}) \quad \mathcal{H} \text{ is HAP-set on } 2n \text{ teams}
\]
Central questions:

- Given HAP-set \mathcal{H}, what is $\text{width}(\mathcal{H})$?
- Given number of teams $N = 2n$, what is w_{2n}, given by:

$$w_n = \max_{\mathcal{H}} \text{width}(\mathcal{H}) \text{ \mathcal{H} is HAP-set on $2n$ teams}$$

We already saw that when $2n = 4$, we could create a HAP-set with width 2.
Central questions:

- Given HAP-set \mathcal{H}, what is $\text{width}(\mathcal{H})$?
- Given number of teams $N = 2^n$, what is w_{2^n}, given by:

$$ w_n = \max_{\mathcal{H}} \text{width}(\mathcal{H}) \text{ where } \mathcal{H} \text{ is HAP-set on } 2n \text{ teams} $$

We already saw that when $2n = 4$, we could create a HAP-set with width 2. Do we have $w_n \geq 2$?

Yes.
Central questions:

- Given HAP-set \mathcal{H}, what is $\text{width}(\mathcal{H})$?
- Given number of teams $N = 2n$, what is w_{2n}, given by:

$$w_n = \max_{\mathcal{H}} \text{width}(\mathcal{H}) \quad \mathcal{H} \text{ is HAP-set on } 2n \text{ teams}$$

We already saw that when $2n = 4$, we could create a HAP-set with width 2. Do we have $w_n \geq 2$?

Yes.
<table>
<thead>
<tr>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
<th>Round 4</th>
<th>Round 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Logo]</td>
<td>![Logo]</td>
<td>![Logo]</td>
<td>![Logo]</td>
<td>![Logo]</td>
</tr>
<tr>
<td>![PSV]</td>
<td>![KRC]</td>
<td>![PSV]</td>
<td>![TS]</td>
<td>![KRC]</td>
</tr>
<tr>
<td>![RKC]</td>
<td>![PSV]</td>
<td>![RKC]</td>
<td>![PSV]</td>
<td>![RKC]</td>
</tr>
<tr>
<td>![TS]</td>
<td>![PSV]</td>
<td>![TS]</td>
<td>![PSV]</td>
<td>![TS]</td>
</tr>
<tr>
<td>![KRC]</td>
<td>![PSV]</td>
<td>![KRC]</td>
<td>![PSV]</td>
<td>![KRC]</td>
</tr>
<tr>
<td>Round 1</td>
<td>Round 2</td>
<td>Round 3</td>
<td>Round 4</td>
<td>Round 5</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
</tr>
<tr>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
</tr>
<tr>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
<td>![Team Logo]</td>
</tr>
</tbody>
</table>

Table 1: HAP-set with width 2
<table>
<thead>
<tr>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
<th>Round 4</th>
<th>Round 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: HAP-set with width 2
For every even $n \geq 4$, the above method creates HAP-set \mathcal{H} with \(\text{width}(\mathcal{H}) = 2 \) - two compatible orthogonal schedules can be found by rotating the rounds.
For every even $n \geq 4$, the above method creates HAP-set \mathcal{H} with $\text{width}(\mathcal{H}) = 2$ - two compatible orthogonal schedules can be found by rotating the rounds.

For $2n = 6$, impossible to do better. Why?
For every even $n \geq 4$, the above method creates HAP-set \mathcal{H} with width$(\mathcal{H}) = 2$ - two compatible orthogonal schedules can be found by rotating the rounds.

For $2n = 6$, impossible to do better. Why?
In any HAP-set, there must be 2 teams for which the HAP-set differs only in two columns.
Definition
Two vectors $v, v' \in \{0, 1\}^{2n-1}$ have $\text{opp}(v, v') = \#\{i : v_i \neq v'_i\} = k$. A HAP-set \mathcal{H} has $\text{opp}(\mathcal{H})$ defined as:

$$\text{opp}(\mathcal{H}) = \min_{\{v, v'\} \subset \mathcal{H}} \text{opp}(v, v') \quad \quad o_n = \max_{\mathcal{H}} \text{opp}(\mathcal{H})$$

Clearly, $\text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H})$ and $w_n \leq o_n \leq n$.

Definition
Two schedules S, S' are rotational orthogonal when they are orthogonal and their rounds are a permutation of one another.

The rotational width of \mathcal{H} is the size of the largest set of rotational orthogonal schedules.
Definition
Two vectors \(v, v' \in \{0, 1\}^{2n-1} \) have \(\text{opp}(v, v') = \#\{i : v_i \neq v'_i\} = k \). A HAP-set \(\mathcal{H} \) has \(\text{opp}(\mathcal{H}) \) defined as:

\[
\text{opp}(\mathcal{H}) = \min_{\{v, v'\} \subseteq \mathcal{H}} \text{opp}(v, v') \quad o_n = \max_{\mathcal{H}} \text{opp}(\mathcal{H})
\]

Clearly, \(\text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H}) \) and \(w_n \leq o_n \leq n \).

Definition
Two schedules \(S, S' \) are rotational orthogonal when they are orthogonal and their rounds are a permutations of one another.
Definition

Two vectors $v, v' \in \{0, 1\}^{2n-1}$ have $\text{opp}(v, v') = \#\{i : v_i \neq v'_i\} = k$. A HAP-set \mathcal{H} has $\text{opp}(\mathcal{H})$ defined as:

$$\text{opp}(\mathcal{H}) = \min_{\{v, v'\} \subset \mathcal{H}} \text{opp}(v, v') \quad o_n = \max_{\mathcal{H}} \text{opp}(\mathcal{H})$$

Clearly, $\text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H})$ and $w_n \leq o_n \leq n$.

Definition

Two schedules S, S' are rotational orthogonal when they are orthogonal and their rounds are permutations of one another.

The rotational width of \mathcal{H} is the size of the largest set of rotational orthogonal schedules.

$$x_n = \max_{\mathcal{H}} \text{rotw}(\mathcal{H})$$
Not difficult to see that:

\[
\text{rotw}(\mathcal{H}) \leq \text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H}) \quad 2 \leq x_n \leq w_n \leq o_n \leq n
\]
Not difficult to see that:

$$\text{rotw}(\mathcal{H}) \leq \text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H}) \quad 2 \leq x_n \leq w_n \leq o_n \leq n$$

In fact, when n is odd, $o_n \leq n - 1!$
Not difficult to see that:

\[\text{rotw}(\mathcal{H}) \leq \text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H}) \quad 2 \leq x_n \leq w_n \leq o_n \leq n \]

In fact, when \(n \) is odd, \(o_n \leq n - 1 \)!

When \(2n = 6 \): \(x_n = w_n = o_n = 2 \). What happens with other values of \(n \)?
Not difficult to see that:

\[\text{rotw}(\mathcal{H}) \leq \text{width}(\mathcal{H}) \leq \text{opp}(\mathcal{H}) \quad 2 \leq x_n \leq w_n \leq o_n \leq n \]

In fact, when \(n \) is odd, \(o_n \leq n - 1 \)!

When \(2n = 6 \): \(x_n = w_n = o_n = 2 \). What happens with other values of \(n \)?

Theorem

When \(n = 2^k \), \(x_n = w_n = o_n = n \).

Proof has two steps.

- First: show \(o_n = n \) by constructing \(\mathcal{H} \) with \(\text{opp}(\mathcal{H}) = n \).
Not difficult to see that:

$$\text{rotw}(H) \leq \text{width}(H) \leq \text{opp}(H) \quad 2 \leq x_n \leq w_n \leq o_n \leq n$$

In fact, when n is odd, $o_n \leq n - 1$!

When $2n = 6$: $x_n = w_n = o_n = 2$. What happens with other values of n?

Theorem

When $n = 2^k$, $x_n = w_n = o_n = n$.

Proof has two steps.

- First: show $o_n = n$ by constructing H with $\text{opp}(H) = n$.
- Second: Construct n rotational orthogonal schedules compatible with n.
Constructing HAP-set \mathcal{H} with $\text{opp}(\mathcal{H}) = n$ when $n = 2^k$.

<table>
<thead>
<tr>
<th>Team 0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Above HAP-set has $\text{opp}(\mathcal{H}) = n$.

NB: This procedure can be generalized to create HAP-sets with $\text{opp}(\mathcal{H}) = n$ even in cases when $n \neq 2^k$.
Constructing HAP-set \mathcal{H} with $\text{opp}(\mathcal{H}) = n$ when $n = 2^k$.

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Above HAP-set has $\text{opp}(\mathcal{H}) = n$.

NB: This procedure can be generalized to create HAP-sets with $\text{opp}(\mathcal{H}) = n$ even in cases when $n \neq 2^k$.
Constructing HAP-set \mathcal{H} with $\text{opp}(\mathcal{H}) = n$ when $n = 2^k$.

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Above HAP-set has $\text{opp}(\mathcal{H}) = n$.

NB: This procedure can be generalized to create HAP-sets with $\text{opp}(\mathcal{H}) = n$ even in cases when $n \neq 2^k$.
Constructing the HAP-set:

- Set teams $T = \mathbb{Z}_2^n$ and rounds $R = \mathbb{Z}_2^n \setminus \{0\}$ - i.e., each team t and round r is an n-bit $b(t), b(r)$.
- In HAP-set \mathcal{H}, team t gets assigned Home in round r when:

$$r \cdot t = \sum_i b_i(r)b_i(t) = 0 \mod 2$$
Constructing the HAP-set:

- Set teams $T = \mathbb{Z}_2^n$ and rounds $R = \mathbb{Z}_2^n \setminus \{0\}$ - i.e., each team t and round r is an n-bit $b(t), b(r)$.
- In HAP-set \mathcal{H}, team t gets assigned Home in round r when:

$$ r \cdot t = \sum_i b_i(r)b_i(t) = 0 \mod 2 $$

Only need n orthogonal schedules. Construct schedule $S = (S_q)_{q \in R}$ as follows:

$$ S_q = \{\{i,j\} : i + j = q\} $$
Constructing the HAP-set:

- Set teams $T = \mathbb{Z}_2^n$ and rounds $R = \mathbb{Z}_2^n \setminus \{0\}$ - i.e., each team t and round r is an n-bit $b(t), b(r)$.
- In HAP-set \mathcal{H}, team t gets assigned Home in round r when:

$$r \cdot t = \sum_i b_i(r)b_i(t) = 0 \mod 2$$

Only need n orthogonal schedules. Construct schedule $S = (S_q)_{q \in R}$ as follows:

$$S_q = \{\{i, j\} : i + j = q\}$$

Insight: S_q can be scheduled in round r when $r \cdot q = 1$.
Bipartite graph $G = (R \times R, E)$ with $(r, q) \in E$ when $r \cdot q = 1$, is regular with degree n.
Bipartite graph $G = (R \times R, E)$ with $(r, q) \in E$ when $r \cdot q = 1$, is regular with degree n.

Only possible when $n = 2^k$! Otherwise, $x_n < n$.
Bipartite graph $G = (R \times R, E)$ with $(r, q) \in E$ when $r \cdot q = 1$, is regular with degree n.

Only possible when $n = 2^k!$ Otherwise, $x_n < n$.
Bipartite graph $G = (R \times R, E)$ with $(r, q) \in E$ when $r \cdot q = 1$, is regular with degree n. Only possible when $n = 2^k$. Otherwise, $x_n < n$.
Bipartite graph $G = (R \times R, E)$ with $(r, q) \in E$ when $r \cdot q = 1$, is regular with degree n.

Only possible when $n = 2^k!$ Otherwise, $x_n < n$.

16
Conclusion

What we know:

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_n</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>\leq 6</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>w_n</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>?</td>
<td>?</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>x_n</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4?5?</td>
<td>?</td>
<td>8</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 2: Known values

More questions remain:

- Can we find n for which $x_n \neq w_n$?
- Is it true that $o_n = 2\lfloor \frac{n}{2} \rfloor$?