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Quantum Advantages

Known quantum speedups are limited for practical applications

Against best-known Against best-possible
classical algorithm classical algorithm

i 8. ingi e.g. Grover’s algorithm for
Polynomial e.g. checking if an g ' gori 364 -

i ?
speedup integer is prime unstructured search Prime:

Exponential e.g. Shor’s algorithm for
speedup integer factorization

See https://quantumalgorithmzoo.org for state of quantum speedups



https://quantumalgorithmzoo.org/

State of Quantum “Speedups”

=Unproven exponential speedup:

Shor’s quantum factorization algorithm
[Shor, Polynomial-Time Algorithms for Prime Factorization..., 1995]

*Provable modest speedup:

Grover’s quantum search algorithm
[Grover, A fast quantum mechanical algorithm for database search, 1996]
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"Provable exponential advantage in specialized settings:

Query and communication complexity

[Childs et al., Exponential Algorithmic Speedup by a Quantum Walk, 2003]
[Bar-Yossef et al., Exponential Separation of Quantum and Classical..., 2008]
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=Optimization offers potential for new kinds of quantum advantages:
Better quality solutions but not necessarily faster solution times




Quantum Algorithms Output Distributions

Physically

Conceptually

N input qubits

O @ O O 0 0 O 0
000 001 010 011 100 101 110 111

Probability distribution over
2N binary classical states

Sequence of physical manipulations

of the N qubits

Sequence of
guantum gates

000 001 010 011 100 101 110 111

Seek to maximize probability
of good solutions







Algorithm

What is Quantum Optimization!?

Classical
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Classical optimization

Quantum approaches for classical Hamiltonians
(e.g. AQC, QAOA for quantum Hamiltonians)

Quantum approaches for continuous optimization

Classical

Classical approaches for quantum Hamiltonians
(e.g. DMRG, mean-field methods)

Quantum approaches for quantum Hamiltonians
(e.g. AQC, QAOA for quantum Hamiltonians)

Quantum




It’s Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

Ming <¢ ‘z Hs“/)> Hamlltc?nlan, Y.sHs, represents”energ’}l levels
s of a physical system composed of “local” parts, S

Discrete optimization problem becomes an eigenproblem on a large matrix

Optimal discrete Min-energy
optimization solution eigenvector

Nature tends towards stable states...
Local minimum So let nature solve your problems for you?

Global minimum
<>

Image from https://en.wikipedia.org/wiki/Metastability




Hacking Nature to Solve Your Problems

1. Map solution values to energy levels of a physical system
2. Realize said physical system

3. Let Nature relax to a stable low-energy state
This Photo by Unknown Author
is licensed under CC BY-SA-NC
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side of cut

Hamiltonian for Max Cut on a path with 3 vertices Some cuts on a path with 3 vertices

Minimum eigenstate is of form: |) = a|010) + £|101), with energy -2


http://flickr.com/photos/reinvented/218420473
https://creativecommons.org/licenses/by-nc-sa/3.0/

Local Hamiltonians

000

Hamiltonian is exponentially large, 2V x2", for an N-node graph, but
it is a sum of O(Nz) local 4%X4 Hamiltonians, one for each edge
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Local Hamiltonians are efficient and require manipulating only a constant number of qubits



The Power of Quantum Computing!?

aluavtl’"‘""'
Extended Church-Turing Thesis
Any “reasonable” model of computing can be efficiently simulated by a Turlng machine

( PSPACE problems \
It would be very surprising if guantum computers could solve NP-complete

NP problems problems in quantum polynomial time (BQP).

NP complete

Yet, there are problems In BQP that are very unlikely to be in classical
polynomial time (P) or even NP!"

Image from https://en.wikipedia.org/wiki/BQP : : % %
L = 5 L = 27 L: \/X

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea
that captures universal quantum computing.

Using soap film to find Steiner Trees
[Datta, Khastgir, & Roy; arXiv 0806.1340]

*Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]



Quantum Approximation
Algorithms




(Quantum) Approximation Algorithms

Approximation (description of)
Algorithm state p

A «a-approximation algorithm runs in polynomial time, and for any instance /,
delivers an approximate solution such that:

Value(Approximatey)

> a
Value(Optimaly)

Optimal value E——— I

—— a = largest “gap” between
optimal and approximate
solutions over all instances

Approximate e solution

solution value quality

Instance 1 Instance 2 Instance 3 ...




(Quantum) Approximation Algorithms

Approximation (description of)
Algorithm state p

A «a-approximation algorithm runs in polynomial time, and for any instance /,
delivers an approximate solution such that:

Value(Approximatey)
Value(Optimaly)

D 1 4

Heuristics

Approximation Algorithms
= Guided by intuitive ideas

= Guided by worst-case performance
= Perform well on practical instances = May perform poorly compared to heuristics

= May perform very poorly in worst case = Rigorous bound on worst-case performance
= Difficult to prove anything about performance = Designed with performance proof in mind




Polynomials and Quantum Solutions

1 O 0 1 0 —i
X = Y =
[O —1] ’ 1 0] ’ [i 0
eg Z, = IQRZQI ..
L1253 = ZQIQRZQI... (constraint only on variables/qubits 1 and 3)

Classical Quantum

Polynomial P(1, Z4, ..., Zy): Polynomial Q(1, X1, Y1, Z1, ... Xn, Y, Z0):
(Multilinear since Z7 = I (Multilinear since X7 = Y* = ZZ = I)
Represents a diagonal M € R2 *2" Represents a Hermitian M € C2 2"

Classical solution: M is PSD & trace=1 Quantum solution: M is PSD & trace=1
Convex combination of solutions Convex combination of pure states

x1,%2 = 0,011/4 T 0 0 0 0]
x1,%, =011 0 o 1/2 -1/2 0
x1,%X, =101 0 0 -—-1/2 1/2 0
x1, X, =111 J 10 0 0 0.

1 1 1 1
P = Z(I —5 Zr+ 52122) Q= Z(I — X1 Xy — 1Yo — Z1Z5)




Model NP-hard discrete optimization problem and 2-CSP
Has driven developments in approximation algorithms

0.878...-approximation
[Goemans and Williamson, 1995]

0.878...+€ is unique games hard
[Khot, Kindler, Mossel, O'Donnell, 2007]

Partition vertices of a graph two parts Cut and related polytopes have advanced discrete optimization
to maximize (weight of) crossing edges e.g., [Fiorini, Massar, Pokutta, Tiwary, de Wolf, 2012]

Boolean assignment satisfying max # XOR clauses

(xl @ xZ)l (xl @ x4_), (xl @ x6)r (xZ @ xg),




Quantum Max Cut: Motivation

Max Cut Hamiltonian: Quantum Max Cut generalization:

S —Z;Z;)/2 = S(I-XX;—Y.Y;—Z,Z;)]4

Physical motivation

Heisenberg model is fundamental for describing quantum magnetism,
superconductivity, and charge density waves. Beyond 1 dimension,

Properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to
analyze.

Problem
Find max-energy value/state of Quantum Max Cut: Z(I - X X; -Y;Y; - ZiZ]-)/4

(= Find min-energy state of quantum Heisenberg model:
Y(X:X; +Y.Y; +Z,Z;)/4,
but different from approximation point of view)

Anti-ferromagnetic Heisenberg model: roughly
neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian
for so-called Mott insulators.

[Image: Sachdev, arXiv:1203.4565]




Quantum Max Cut

Model 2-Local Hamiltonian?
maximize overlap with

singlet on each edge . . . . .
Has driven advances in quantum approximation algorithms,

PN (P | based on generalizations of classical approaches

QMA-hard and each term is maximally entangled
[Cubitt, Montanaro 2013]

Find max eigenvalue of H =} H;j, Recent approximation algorithms
[Gharibian, P. 2019], [Anshu, Gosset, Morenz-Korol 2020],
[P., Thompson 2021, 2022]

Hij — (I — XlX] — YlY] — ZlZ])/4
Evidence of unique games hardness

. . . [Hwang, Neeman, P., Thompson, Wright 2021]
Each term is singlet projector:

H;jj = [P~ (P |
|¥~) = (]01) — |10))/V2

Likely that approximation/hardness results transfer to 2-LH with

positive terms
[P., Thompson 2020, 2022]




Max Cut and Quantum Max Cut

Classical Max Cut Quantum Max Cut
2-variable constraint: x; @ x; guantum 2-variable constraint

0,001 1,0 1,1 ]
Xi, x] — O;0 -O O 0 O- quantum 0 0
Xi, Xj = 0,1 generalization 1/2 —1/2

xi,xj = 1,11 . - 0 0

Diagonal matrix General non-diagonal matrix
diagonal encodes Boolean function: I —XX; =YY, —Z;Z;) /4 “anti-aligned”

f(Zi, Zj) =1/2(1 — z;z;) superposition of
z; € {—-1,1} Maximum eigenvector: optimal Max Cut bases
1 1 1 1

00—, ——,0) = 01) — —[10),
Maximum eigenvectors: ( 2 2 ) \/fl ) ﬁl )

(0,1,0,0) = |01), with (eigen)value 1

(0,0,1,0) = |10)

with (eigen)value 1 Maximum product state: e.g., |01)
with energy 1/2




Quantum Generalization of Constraint Satisfaction (CSP)

Classical 2-CSP clause: (—x; A xj) Quantum 2-CSP clause

0,0 0,1 1,0 1,1 ]
Xi, Xj = 0,0 | quantum 0 0
xi,xj = 0,1 generalization 1/2 —-1/2

xi,xj = 1,1 | _ - O O

Diagonal rank-1 projector General rank-1 projector

Random assignment “earns” 1/4 of diagonal = k/4 for rank-k projectors




(Product-State) Approximations for Max 2-Local Hamiltonian

QMA-hard 2-LH problem
class

Max traceless 2-LH:
2ij Hij)
H;; traceless

Max positive 2-LH:
2ij Hij,
H;: >0

ij 7

Quantum Max Cut:
Lijl — XiX; — VY — Z,Z;
(special case of above)

Max 2-Quantum SAT:
2ij Hij.
H;;j > 0, rank 3

NP-hard
specialization

Max Ising:
Max -Zij ZiZj c

Zi € {—1,1}

Max 2-CSP

Max Cut:
Max X;; I — zzj,
z; € {—1,1}

Max 2-SAT

P approximation for
NP-hard specialization

Q(1/logn)
[Charikar, Wirth ‘04]

0.874
[Lewin, Livnat, Zwick '02]

0.878
[Goemans, Williamson ‘95]

0.940
[Lewin, Livnat, Zwick '02]

Product-state approximation for QMA-hard
2-LH problem

Q(1/logn)
[Bravyi, Gosset, Koenig, Temme ‘18]
0.184 (bipartite, no 1-local terms)
[P, Thompson ‘20]

0.25 [Random assignment]
0.282 [Hallgren, Lee ‘19]
0.328 [Hallgren, Lee, P ‘20]
0.387 / 0.498 (numerical) [P, Thompson ‘20]
0.5 (best possible via product states)
[P, Thompson ‘22]

0.498 [Gharibian, P “19]
0.5 [P, Thompson ‘22]
0.53 [Anshu, Gosset, Morenz ‘20]
0.533 [P, Thompson ‘21]

0.75 [Random Assignment]
0.764 / 0.821 (numerical) [P, Thompson ‘20]
0.833... best possible via product states







Max Cut Semidefinite Programming Relaxation

Max 2;jeg(1 — v; - v;)/2

lv;|| =1, foralli €V
(v; € R")

Rn

Equivalent perspective: unit vectors v;, withm;; = v; - v;

L

Exact solution when v; € R!: -1«—@ > +1




Quantum Moment Matrices are Positive

(X1 ] = (P1X1]
= Y.
State on n qubits gll|| _ (<$||Zi WIXi XYYy (xily;)  (xilz)
w| € ¢ ‘ V= : My = ilx) vy ilzg)
(xn| = (Y| Xn (zi|x;) (zily;) (zilz;)
(Il = WYy,
(Zn| = (Y12,

X1 W Zy X, Y, Z Xz Y3 Zj Entries of this 3nX3n
T moment matrix are

M3 expectation values of
all 2-local Pauli terms

=VVt 0= Re(VV?) =0




Quantum Max Cut SDP Relaxation

Xl Yl Zl XZ
X 1 0 0
v, [0 1 0
Z; 10 0 1
X, 1
Y, MT, 0
Z, 0
X3
Y3 MIS
ZB

YZ Zz X3
M12
0 0
1 0
0 1
1
M1, 0
0

Y3 Z3
M13
Xi
M23 > 0 MU = yi
Zj
0 0
1 0
0 1

Real part of moment matrix

Quantum Max Cut vector relaxation

Max Xijep(1 =X X =¥ ¥j = 2 Z) /4 v = @y, ® 2)/V3 Max Z (1 —=3v;-v;)/4

;1 Nyl llzill = 1, foralli e V
XV =x%x;-z;=y;-2z; =0, foralli eV
(v; € R™M)

xi=vi®0®0
yi=0Dv; &0
Zi=0@0@vi

x] xly] le]
"X YitYp Vit
x] Zi'yj Zi'Zj

ijEE

|v;|]| =1, foralli eV
(v; €R™)

Max Cut vector relaxation

Max Y;iep(1 —v; - v))

|lv;|] =1, foralli eV
(v; € RM)




Quantum Lasserre Hierachy

Vdeg-2S Vdegn$
Lasserre;, Lasserre,

Z,
X1 X,
Ln_1Z —
X:Xl X’; M ax Tr|Hp]
: Trip] =1

2,7y 7o : Tr|p STS| > 0,v deg-k S

p is called degree-k pseudo density

Classical Non-commutative/Quantum
[Lasserre 2001] [Navascués, Pironio, Acin 2009 (2010 SIAM J Opt)]
[Parillo 2003]




Rounding Infeasible Solutions

V deg-1$ Vdeg-2S Vdegns$

a-Approximation Algorithm

Round optimal non-positive pseudo-density p to sub- o
optimal positive density p so that: —

Tr[Hp| > aTr[Hp| > a A,,,,(H)
Max Tr|Hp]
Trip] =1
Tr|pS'S| = 0,v deg-k S

p is called degree-k pseudo density







0.498-approximation for Quantum Max Cut

Use hyperplane rounding generalization inspired by [Briét, de Oliveira Filho, Vallentin 2010]
to round the vectors x;, y;, z; to scalars a;, B;, ¥; to obtain:

(I +aX; + BY +viZy), af +B7 +vi =1

Product-state rounding (R3" — R3)

fv,  nwv oy
T 1’0 T 1
v Iy v o |l
Ty Ty, T,~N(0,1)3"

v; ER — (o, B i) = (

[Garibian, P.




MEVEOIAYs Quantum Max Cut

EEYE] (upper bound)

Max z(l—vi~vj)/2 Max Z(l—Svi-vj)/él
ijEE ijEE
|lv;|l =1, foralli eV |lv;ll =1, foralli eV
(v; € R) (v; € RY)

Rounding
rTv, v v v
ER” , — L V'ERgn_) a; pi, :( ) )
TS N ‘ (@ Bo¥) =\ 1 o 1w |
Approximability
0.878 Lasserre 1 0.498 Lasserre 1
(optimal under unique games conjecture) 0.5 Lasserre 2 (optimal using product states)

(0.533 using 1- & 2-qubit ansatz)




Approximating General 2-Local Hamiltonian

. ! Vo Xj Vo Yj Vo
1 b] *Xi  Xi-* Xj XiVj Xi-

ijJj
bij,i Al] Yi-Xj Yi'Yi JYi-

‘ ’_ . . Zi. . Zi. . Zi-

A
where vy and x;, y;, Z; are unit vectors from relaxation

(involves 15 + 15 parameters!)

Objective: },;; ¢;; Tr(

Rounding goal:

vo — 1

x; — a; € R

yi— B ER

z; 2 V; ER
withaf + g7 +y2 =1




Monogamy of Entanglement

[Lieb, Mattis, ’62] Monogamy of

Star BOUHd [Anshu’ Gosset’ Morenz’ ‘20] / Entanglement

“ q+1
z Tr(phy;) < — » Lasserre; gets q
=1 » Lasserre, gets (g +1)/2

We generalize monogamy of entanglement bounds to edge energies ;; coming from Lasserre hierarchy

New nonlinear triangle bound:

Triangle Bound Lasserre, satisfies:
X po1 = Tr(pho1)
po2 = Tr(pho2)
pi2 = Tr(phis)

0 < o1 + poz2 + piz2 < 3/2

(g + poo + 1172) — 8(po1 o2 + o1 pa2
+po2p12) <0

por = 1= o2 = 1/4

> We think these constraints are fully capturing the allowed values on a triangle!




Rounding Ansatze

Product State Ansatz Singlets+Product States

I — XXy — ViV —Zj Zy,
Pjk = 4

I +aiXi+ BiYi +viZi
2

pi =




Why Product States?

All present approximations for Quantum Max Cut involved
product states in an essential way. Why?

As degree or density of graph grows, product states are optimal
[Brandao, Harrow 2013]

We show on 3-regular unweighted graphs, product-state
approximation is > 0.547 > 0.533, best-known entangled approx




Better Rounding Algorithm

> PS rounding algorithm and singlet+PS rounding algorithm follow similar meta-
algorithm, with different “building blocks”

pij = Tr(phi;)

0 < pu;j <1, if ujj = 1then Lasserre, “thinks” that
edge should be a singlet.

Overall idea- Find the edges Lasserre, “thinks” should be a singlet, take
care to get good objective value on these edges

Meta-Algorithm Block 1
. Solve Lasserre, to get submatrix of M Threshold

. Initialize L = {}
. For all ij calculate p;;. If 1; >[y[add ij to L. Block 2

. Find Maximum matching M on L. Handling large
. Consider two states edges
1. Take optimal state on M, |something standard on the rest Block 3

2. PS rounding from [GP ‘19] \ Handling qubits
. Take whichever has better objective. outside M




Rounding Algorithm (cont.)

Block 1
» Star/Triangle bounds say that large edges must be adjacent to small edges =
set L forms a subgraph of small degree
» Threshold controls degree of subgraph

d=1 for PS rounding
d=2 for Entangled

d=2

» Why set them differently? Technical reasons

» Tradeoff in d:
> d is too small = product state rounding bad
» dis too large = matching is bad

Block 2/Block 3

M

A
PSrounding
fro m[GP "19]




To learn more about...

Optimal product-state approximations:

Best-known Quantum Max Cut (QMC) approximations:

Lasserre hierarchy in 2-LH approximations:

Prospects for unique-games hardness:

Connections in approximating QMC and 2-LH:

Optimal space-bounded QMC approximations:

(no quantum advantage possible!)

[P., Thompson 2022: arXiv 2206.08342]

[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394]
[P., Thompson 2021: arXiv 2105.05698]

[P., Thompson 2021, 2022 above]

[Hwang, Neeman, P., Thompson, Wright 2021:
arXiv 2111.01254]

[P., Thompson 2022 above, 2020: arXiv 2012.12347]
[Anshu, Gosset, Morenz-Korol, Soleimanifar:

arXiv 2105.01193]

[Kallaugher, P. 2022: arXiv 2206.00213]




Thanks for showing up, staying
awake, not throwing stuff, etc.!




SRV

Fundamental Algorithmic Research for Quantum Computing

Goal: New quantum algorithms and rigorous advantages from the interplay of
guantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states
of physica"y-inspired Hamiltonians Convex and gradient'based Optimization

Quantum approaches for differential equations , \ Convex/semidefinite relaxations
Quantum circuit optimization Quantum query complexity

Quantum Machine
Simulation Learning

Quantum sampling complexity
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