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Quantum Advantages

Known	quantum	speedups	are	limited	for	practical	applications

Polynomial
speedup

Exponential
speedup

Against	best-possible
classical	algorithm

Against	best-known
classical	algorithm

e.g.	Shor’s	algorithm	for	
integer	factorization	

e.g.	Grover’s	algorithm	for	
unstructured	search	

?

e.g.	checking	if	an	
integer	is	prime

See	https://quantumalgorithmzoo.org for	state	of	quantum	speedups

Prime?864 No

https://quantumalgorithmzoo.org/


State of Quantum “Speedups”

§Unproven exponential	speedup:	
Shor’s	quantum	factorization	algorithm
[Shor,	Polynomial-Time	Algorithms	for	Prime	Factorization…, 1995]

§Provable	modest	speedup:	
Grover’s	quantum	search	algorithm
[Grover,	A	fast	quantum	mechanical	algorithm	for	database	search, 1996]

§Provable	exponential	advantage	in	specialized settings:	
Query	and	communication	complexity
[Childs	et	al.,	Exponential	Algorithmic	Speedup	by	a	Quantum	Walk, 2003]
[Bar-Yossef et	al.,	Exponential	Separation	of	Quantum	and	Classical…,	2008]
…

§Optimization	offers	potential	for	new	kinds	of	quantum	advantages:
Better	quality	solutions	but	not	necessarily	faster	solution	times
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Sequence	of	
quantum	gates 000 001 010 011 100 101 110 111

Quantum Algorithms Output Distributions

Seek	to	maximize	probability	
of	good	solutions

Probability	distribution	over
𝟐𝑵 binary	classical	states

Sequence	of	physical	manipulations	
of	the	𝑁 qubits



Quantum Optimization



What is Quantum Optimization?

Classical	approaches	for	quantum	Hamiltonians
(e.g.	DMRG,	mean-field	methods)

Quantum	approaches	for	quantum	Hamiltonians
(e.g.	AQC,	QAOA	for	quantum	Hamiltonians)

Quantum	approaches	for	classical	Hamiltonians
(e.g.	AQC,	QAOA	for	quantum	Hamiltonians)

Quantum	approaches	for	continuous	optimization

Classical	optimization
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It’s Natural to Optimize

𝑴𝒊𝒏𝚿 𝝍 %
𝑺
𝑯𝑺 𝝍

Hamiltonian	eigenstate	problems	naturally	link	quantum	mechanics	and	optimization

Discrete	optimization	problem	becomes	an	eigenproblem	on	a	large	matrix

Optimal	discrete	
optimization	solution

Min-energy	
eigenvector

Nature	tends	towards	stable	states…
So	let	nature	solve	your	problems	for	you?

Image	from	https://en.wikipedia.org/wiki/Metastability

Hamiltonian, ∑𝑺𝑯𝑺, represents	energy	levels	
of	a	physical	system	composed	of	“local”	parts,	𝑺

Local	minimum

Global	minimum



Hacking Nature to Solve Your Problems

1. Map	solution	values	to	energy	levels	of	a	physical	system

2. Realize	said	physical	system

3. Let	Nature	relax	to	a	stable	low-energy	state

Minimum	eigenstate	is	of	form:	 𝝍 = 𝜶 𝟎𝟏𝟎 + 𝜷|𝟏𝟎𝟏⟩,	with	energy	-2
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Hamiltonian	for	Max	Cut	on	a	path	with	3	vertices													Some	cuts	on	a	path	with	3	vertices

Left	or	Right
side	of	cut

This	Photo by	Unknown	Author	
is	licensed	under	CC	BY-SA-NC

Max	Cut

http://flickr.com/photos/reinvented/218420473
https://creativecommons.org/licenses/by-nc-sa/3.0/


Local Hamiltonians

𝐻 =
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Hamiltonian	is	exponentially	large,	𝟐𝑵×𝟐𝑵,	for	an	𝑵-node	graph,	but	
it	is	a	sum	of	𝑶(𝑵𝟐) local	4×𝟒 Hamiltonians,	one	for	each	edge
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Local	Hamiltonians	are	efficient	and	require	manipulating	only	a	constant	number	of	qubits
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The Power of Quantum Computing?

L = 5 =   27L L=   28
b) c)a)

Figure 2: Commonly reported soap film configurations for 6-pin regular hexagon.

11

Using	soap	film	to	find	Steiner	Trees
[Datta,	Khastgir,	&	Roy;	arXiv 0806.1340]

*Quantum	supremacy:	[Preskill;	arXiv 1801.00862],	[Harrow	&	Montanaro;	arXiv 1809.07442],	[Aaronson	&	Chen;	arXiv 1612.05903]

Extended	Church-Turing	Thesis
Any	“reasonable”	model	of	computing	can	be	efficiently simulated	by	a	Turing	machine

It	would	be	very	surprising	if	quantum	computers	could	solve	NP-complete	
problems	in	quantum	polynomial	time	(BQP).

Yet,	there	are	problems	In	BQP	that	are	very	unlikely	to	be	in	classical	
polynomial	time	(P)	or	even	NP!*

Image	from	https://en.wikipedia.org/wiki/BQP

Using	nature	to	solve	optimization	problems	is	an	old	idea.

In	the	quantum	setting,	it	is	a	surprisingly	powerful	idea	
that	captures	universal	quantum	computing.



Quantum Approximation 
Algorithms



𝑽𝒂𝒍𝒖𝒆 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆𝑰
𝑽𝒂𝒍𝒖𝒆(𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑰)

≥ 𝜶

A		𝜶-approximation	algorithm	runs	in	polynomial	time,	and	for	any	instance	I,	
delivers	an	approximate	solution	such	that:

𝜶 =	largest	“gap”	between	
optimal	and	approximate	
solutions	over	all	instances	

solution
quality

Instance	1 Instance	2 Instance	3	…

Optimal	value

Approximate
solution	value

(Quantum) Approximation Algorithms

Approximation
Algorithm

(description of)
state	𝝆

𝑯 = ∑𝑯𝒊𝒋



𝑽𝒂𝒍𝒖𝒆 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆𝑰
𝑽𝒂𝒍𝒖𝒆(𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑰)

≥ 𝜶

A		𝜶-approximation	algorithm	runs	in	polynomial	time,	and	for	any	instance	I,	
delivers	an	approximate	solution	such	that:

(Quantum) Approximation Algorithms

Heuristics
§ Guided	by	intuitive	ideas
§ Perform	well	on	practical	instances
§ May	perform	very	poorly	in	worst	case
§ Difficult	to	prove	anything	about	performance

Approximation	Algorithms
§ Guided	by	worst-case	performance
§ May	perform	poorly	compared	to	heuristics
§ Rigorous	bound	on	worst-case	performance
§ Designed	with	performance	proof	in	mind

Approximation
Algorithm

(description of)
state	𝝆

𝑯 = ∑𝑯𝒊𝒋



Polynomials and Quantum Solutions

𝑍 = 1 0
0 −1 , 𝑋 = 0 1

1 0 , 𝑌 = 0 −𝑖
𝑖 0

e.g. 𝑍! = 𝐼⨂𝑍⨂𝐼 …
𝑍"𝑍# = 𝑍⨂𝐼⨂𝑍⨂𝐼…		(constraint	only	on	variables/qubits	1	and	3)

Classical Quantum

Polynomial P(𝐼, 𝑍%, … , 𝑍&):
(Multilinear	since	𝑍'( = 𝐼)
Represents	a diagonal𝑀 ∈ ℝ(%×(%

Classical	solution:	𝑀 is	PSD &	trace=1
Convex	combination	of	solutions	

Polynomial	Q(𝐼, 𝑋%, 𝑌%, 𝑍%, … , 𝑋&, 𝑌&, 𝑍&):
(Multilinear	since	𝑋'( = 𝑌'( = 𝑍'( = 𝐼)
Represents	a Hermitian𝑀 ∈ ℂ(%×(%

Quantum	solution:	𝑀 is	PSD &	trace=1
Convex	combination	of	pure	states	

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

𝑄 =
1
4 (𝐼 − 𝑋%𝑋( − 𝑌%𝑌( − 𝑍%𝑍()

1/4 0 0 0
0 1/4 0 0
0 0 0 0
0 0 0 1/2

𝑥", 𝑥! = 0,0
𝑥", 𝑥! = 0,1
𝑥", 𝑥! = 1,0
𝑥", 𝑥! = 1,1

𝑃 =
1
4 (𝐼 −

1
2 𝑍(+

1
2𝑍%𝑍()



Max Cut

Model NP-hard	discrete	optimization	problem	and	2-CSP

Has	driven	developments	in	approximation	algorithms

0.878…-approximation
[Goemans and	Williamson,	1995]

0.878…+𝜺 is	unique	games	hard	
[Khot,	Kindler,	Mossel,	O'Donnell,	2007]

Cut	and	related	polytopes	have	advanced	discrete	optimization
e.g.,	[Fiorini,	Massar,	Pokutta,	Tiwary,	de	Wolf,	2012]

Partition	vertices	of	a	graph	two	parts	
to	maximize	(weight	of)	crossing	edges

𝒙𝟏⊕𝒙𝟐 , 𝒙𝟏⊕𝒙𝟒 , 𝒙𝟏⊕𝒙𝟔 , 𝒙𝟐⊕𝒙𝟑 , …

Constraint	Satisfaction	Problem	(CSP)	version:
Boolean	assignment	satisfying	max	#	XOR	clauses



Anti-ferromagnetic	Heisenberg	model: roughly	
neighboring	quantum	particles	aim	to	align	in	
opposite	directions.		This	kind	of	Hamiltonian	
appears,	for	example,	as	an	effective	Hamiltonian	
for	so-called	Mott	insulators.
[Image:	Sachdev,	arXiv:1203.4565]

May 23, 2012 0:24 WSPC - Proceedings Trim Size: 9.75in x 6.5in sachdev˙solvay5
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Fig. 2. Ground state of the Heisenberg antiferromagnet on the triangular lattice with long-range
antiferromagnetic order. This state is not an example of gapped quantum matter.

Fig. 3. A snapshot of the RVB state on the triangular lattice. Each ellipse represents a singlet
valence bond, (| "#i� | #"i)/

p
2. The RVB state is a superposition of all di↵erent singlet pairings,

of which only one is shown above.

spin-charge separation: there are spinon excitations which carry spin S = 1/2 but
do not transfer any charge, as shown in Fig. 4.

Our understanding of the physics of RVB states advanced rapidly after the dis-
covery of cuprate high temperature superconductivity in 1986. Baskaran and An-
derson8 pointed out that a natural language for the description of RVB-like states

Physical	motivation
Heisenberg	model	is	fundamental	for	describing	quantum	magnetism,	
superconductivity,	and	charge	density	waves.	Beyond	1	dimension,

Properties	of	the	anti-ferromagnetic	Heisenberg	model	are	notoriously	difficult	to	
analyze.

Problem
Find	max-energy	value/state	of	Quantum	Max	Cut:	∑ 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /𝟒

(≡ Find	min-energy	state	of	quantum	Heisenberg	model:	
∑ 𝑿𝒊𝑿𝒋 + 𝒀𝒊𝒀𝒋 + 𝒁𝒊𝒁𝒋 /𝟒,

but	different	from	approximation	point	of	view)

Max	Cut	Hamiltonian:	
∑(𝑰 − 𝒁𝒊𝒁𝒋)/𝟐

Quantum	Max	Cut	generalization:
∑ 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /4

Quantum Max Cut: Motivation



Quantum Max Cut
Model 2-Local	Hamiltonian?

Has	driven	advances	in	quantum	approximation	algorithms,
based	on	generalizations	of	classical	approaches

QMA-hard	and	each	term	is	maximally	entangled
[Cubitt,	Montanaro 2013]

Recent	approximation	algorithms
[Gharibian,	P.		2019],	[Anshu,	Gosset,	Morenz-Korol 2020],	
[P.,	Thompson		2021,	2022]

Evidence	of	unique	games	hardness
[Hwang,	Neeman,	P.,	Thompson,	Wright		2021]

Likely	that	approximation/hardness	results	transfer	to	2-LH	with	
positive	terms
[P.,	Thompson		2020,	2022]

Instance	of	2-Local	Hamiltonian

Find	max	eigenvalue	of	𝑯 = ∑𝑯𝒊𝒋,

𝑯𝒊𝒋 = 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /4

maximize	overlap	with	
singlet		on	each	edge

Each	term	is	singlet	projector:
𝑯𝒊𝒋 = |𝚿/⟩⟨𝚿/|
𝚿/ = (|𝟎𝟏⟩ − |𝟏𝟎⟩)/ 𝟐

|𝚿/⟩⟨𝚿/|



Max Cut and Quantum Max Cut

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

𝑥' , 𝑥0 = 0,0
𝑥' , 𝑥0 = 0,1
𝑥' , 𝑥0 = 1,0
𝑥' , 𝑥0 = 1,1

0,0 0,1 1,0 1,1

Diagonalmatrix
diagonal	encodes	Boolean	function:

𝑓 𝑧' , 𝑧0 = 1/2(1 − 𝑧'𝑧0)
𝑧' ∈ {−1,1}

Maximum	eigenvectors:
𝟎, 𝟏, 𝟎, 𝟎 = 𝟎𝟏 ,
𝟎, 𝟎, 𝟏, 𝟎 = 𝟏𝟎

with	(eigen)value	1

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

General non-diagonal	matrix
(𝐼 − 𝑋'𝑋0 − 𝑌'𝑌0 − 𝑍'𝑍0)/4

Maximum	eigenvector:

𝟎,
𝟏
𝟐
, −

𝟏
𝟐
, 𝟎 =

𝟏
𝟐
𝟎𝟏 −

𝟏
𝟐
|𝟏𝟎⟩,

with	(eigen)value	1

quantum
generalization

Maximum	product	state:	e.g.,	 01
with	energy	1/2

Classical	Max	Cut
2-variable	constraint:	𝑥' ⊕𝑥0

Quantum	Max	Cut	
quantum	2-variable	constraint

“anti-aligned”	
superposition	of	

optimal	Max	Cut	bases



0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

𝑥' , 𝑥0 = 0,0
𝑥' , 𝑥0 = 0,1
𝑥' , 𝑥0 = 1,0
𝑥' , 𝑥0 = 1,1

0,0 0,1 1,0 1,1

Classical	2-CSP	clause:	(¬𝑥' ⋀ 𝑥0)

Diagonal rank-1	projector

Quantum	2-CSP	clause

General rank-1	projector

quantum
generalization	

Quantum Generalization of Constraint Satisfaction (CSP)

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

Random	assignment	“earns”	1/4	of	diagonal	=	k/4	for	rank-k	projectors



QMA-hard	2-LH	problem	
class

NP-hard
specialization

P	approximation	for
NP-hard	specialization

Product-state	approximation	for	QMA-hard	
2-LH	problem

Max	traceless	2-LH:
∑01𝐻01,

𝐻01 traceless

Max	Ising:
Max	-∑01 𝑧0𝑧1 ,
𝑧0 ∈ {−1,1}

Ω(1/log 𝑛)
[Charikar,	Wirth	‘04]

Ω(1/log 𝑛)
[Bravyi,	Gosset,	Koenig,	Temme ‘18]
0.184	(bipartite,	no	1-local	terms)

[P,	Thompson	‘20]

Max	positive	2-LH:
∑01𝐻01,
𝐻01 ≽ 0

Max	2-CSP 0.874
[Lewin,	Livnat,	Zwick	’02]	

0.25	[Random	assignment]
0.282	[Hallgren,	Lee	‘19]
0.328	[Hallgren,	Lee,	P	‘20]

0.387	/	0.498	(numerical) [P,	Thompson	‘20]
0.5	(best	possible	via	product	states)	

[P,	Thompson	‘22]

QuantumMax	Cut:
∑01 𝐼 − 𝑋0𝑋1 − 𝑌0𝑌1 − 𝑍0𝑍1
(special	case	of	above)

Max	Cut:
Max	∑01 𝐼 − 𝑧0𝑧1 ,
𝑧0 ∈ {−1,1}

0.878
[Goemans,	Williamson	‘95]

0.498	[Gharibian,	P	‘19]
0.5	[P,	Thompson	‘22]

0.53	[Anshu,	Gosset,	Morenz ‘20]
0.533	[P,	Thompson	‘21]

Max	2-Quantum	SAT:
∑01𝐻01,

𝐻01 ≽ 0,	rank 3

Max	2-SAT 0.940
[Lewin,	Livnat,	Zwick	’02]	

0.75	[Random	Assignment]
0.764	/	0.821	(numerical)	[P,	Thompson	‘20]
0.833…	best	possible	via	product	states

(Product-State) Approximations for Max 2-Local Hamiltonian



Quantum Relaxations



Max Cut Semidefinite Programming Relaxation

1 𝑚%( 𝑚%1 ⋯
𝑚%( 1 𝑚(1
𝑚%1 𝑚(1 1
⋮ ⋱

≽ 0

Max ∑'0∈3(1 − 𝑚'0)/2 Max∑'0∈3(1 − 𝑣' ⋅ 𝑣0)/2

‖𝑣'‖ = 1,	for	all	𝑖 ∈ 𝑉
(𝑣' ∈ ℝ&)

Equivalent	perspective:	unit	vectors	𝑣',	with	𝑚'0 = 𝑣' ⋅ 𝑣0

≡

-1 +1Exact	solution	when	𝑣' ∈ ℝ%:	

Max	Cut



Quantum Moment Matrices are Positive

⋯
𝑀%% 𝑀%( 𝑀%1

𝑀%(
4 𝑀(( 𝑀(1

𝑀%1
4 𝑀(1

4 𝑀11

⋮ ⋱

= 𝑉𝑉4 ≽ 0 ⟹ 𝑅𝑒 𝑉𝑉4 ≽ 0

𝑋%
𝑌%
𝑍%
𝑋(
𝑌(
𝑍(
𝑋1
𝑌1
𝑍1

𝑋% 𝑌% 𝑍% 𝑋( 𝑌( 𝑍( 𝑋1 𝑌1 𝑍1

𝑉 =

⟨𝑥%| = ⟨𝜓|𝑋%
⟨𝑦%| = ⟨𝜓|𝑌%
⟨𝑧%| = ⟨𝜓|𝑍%

⋮
⟨𝑥&| = ⟨𝜓|𝑋&
⟨𝑦&| = ⟨𝜓|𝑌&
⟨𝑧&| = ⟨𝜓|𝑍&

, 𝑀'0 =
⟨𝜓|𝑋'𝑋0|𝜓⟩ ⟨𝑥'|𝑦0⟩ ⟨𝑥'|𝑧0⟩
⟨𝑦'|𝑥0⟩ ⟨𝑦'|𝑦0⟩ ⟨𝑦'|𝑧0⟩
⟨𝑧'|𝑥0⟩ ⟨𝑧'|𝑦0⟩ ⟨𝑧'|𝑧0⟩

⟨𝜓| ∈ ℂ(%
State	on	𝒏 qubits

Entries	of	this	3𝑛×3𝑛
moment	matrix	are	
expectation	values	of	
all	2-local	Pauli	terms



Quantum Max Cut SDP Relaxation

1 0 0 ⋯
0 1 0 𝑀%( 𝑀%1
0 0 1

1 0 0
𝑀%(
5 0 1 0 𝑀(1

0 0 1
1 0 0

𝑀%1
5 𝑀(1

5 0 1 0
0 0 1

⋮ ⋱

≽ 0

𝑋%
𝑌%
𝑍%
𝑋(
𝑌(
𝑍(
𝑋1
𝑌1
𝑍1

𝑋% 𝑌% 𝑍% 𝑋( 𝑌( 𝑍( 𝑋1 𝑌1 𝑍1

𝑀'0 =
𝑥' ⋅ 𝑥0 𝑥' ⋅ 𝑦0 𝑥' ⋅ 𝑧0
𝑦' ⋅ 𝑥0 𝑦' ⋅ 𝑦0 𝑦' ⋅ 𝑧0
𝑧' ⋅ 𝑥0 𝑧' ⋅ 𝑦0 𝑧' ⋅ 𝑧0

Quantum	Max	Cut	vector	relaxation
Max ∑'0∈3(1 − 𝑥' ⋅ 𝑥0 − 𝑦' ⋅ 𝑦0 − 𝑧' ⋅ 𝑧0)/4

𝑥' , 𝑦' , ‖𝑧'‖ = 1,	for	all	𝑖 ∈ 𝑉
𝑥' ⋅ 𝑦' = 𝑥' ⋅ 𝑧' = 𝑦' ⋅ 𝑧' = 0,	for	all	𝑖 ∈ 𝑉

(𝑣' ∈ ℝ1&)

Max	Cut	vector	relaxation
Max ∑'0∈3(1 − 𝑣' ⋅ 𝑣0)

‖𝑣'‖ = 1,	for	all	𝑖 ∈ 𝑉
(𝑣' ∈ ℝ&)

Real	part	of	moment	matrix

Max %
'0∈3

(1 − 3𝑣' ⋅ 𝑣0)/4

‖𝑣'‖ = 1,	for	all	𝑖 ∈ 𝑉
(𝑣' ∈ ℝ&)

𝑣! = (𝑥!⊕𝑦! ⊕𝑧!)/ 3

𝑥! = 𝑣! ⊕0⊕ 0
𝑦! = 0⊕ 𝑣! ⊕0
𝑧! = 0⊕ 0⊕ 𝑣!



Quantum Lasserre Hierachy

1
1

1
1

1
⋱

1
1

⋱
1

1
⋱

1

𝐼
𝑋%
𝑌%
𝑍%
𝑋(
⋮
𝑍&
𝑋%𝑋(
⋮

𝑍&/%𝑍&
𝑋%𝑋(𝑋1

⋮
𝑍%𝑍(…𝑍&

𝐼 𝑋% 𝑌% 𝑍% 𝑋( … 𝑍& 𝑋%𝑋( … 𝑍&/% 𝑍& 𝑋%𝑋(𝑋1 … 𝑍%…𝑍&

𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒% 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒(

Classical
[Lasserre 2001]
[Parillo 2003]

Non-commutative/Quantum
[Navascués,	Pironio,	Acìn 2009	(2010	SIAM	J	Opt)]

𝑴𝒂𝒙 𝑻𝒓 𝑯F𝝆
𝑻𝒓 F𝝆 = 𝟏
𝑻𝒓 F𝝆 𝑺&𝑺 ≥ 𝟎, ∀ deg-𝒌 𝑺

∀ deg-1	𝑺 ∀ deg-2	𝑺 ∀ deg-𝐧 𝑺

F𝝆 is	called	degree-k	pseudo	density



Rounding Infeasible Solutions

𝑴𝒂𝒙 𝑻𝒓 𝑯F𝝆
𝑻𝒓 F𝝆 = 𝟏
𝑻𝒓 F𝝆 𝑺&𝑺 ≥ 𝟎, ∀ deg-𝒌 𝑺

∀ deg-1	𝑺 ∀ deg-2	𝑺 ∀ deg-𝐧 𝑺

F𝝆 is	called	degree-k	pseudo	density

𝜶-Approximation	Algorithm

Round	optimal	non-positive	pseudo-density	F𝝆 to	sub-
optimal	positive	density	𝝆 so	that:

𝑻𝒓 𝑯𝝆 ≥ 𝜶 𝑻𝒓 𝑯F𝝆 ≥ 𝜶 𝝀𝒎𝒂𝒙(𝑯)



Approximating Quantum Max 
Cut



0.498-approximation for Quantum Max Cut

Use	hyperplane	rounding	generalization	inspired	by	[Briët,	de	Oliveira	Filho,	Vallentin 2010]	
to	round	the	vectors	𝒙𝒊, 𝒚𝒊, 𝒛𝒊 to	scalars	𝜶𝒊, 𝜷𝒊, 𝜸𝒊 to	obtain:

𝜌 =
1
2&�

'

(𝐼 + 𝛼'𝑋' + 𝛽'𝑌' + 𝛾'𝑍') , 𝛼'(+𝛽'( + 𝛾'( = 1

Classical	rounding	(ℝ& ⟶ℝ%)

𝑣' ∈ ℝ& ⟶ 𝛼' =
𝑟5𝑣'
𝑟5𝑣'

𝑟~𝑁 0,1 &

Product-state	rounding	(ℝ1& ⟶ℝ1)

𝑣' ∈ ℝ1& ⟶ (𝛼' , 𝛽' , 𝛾') =
𝑟65𝑣'

∥ 𝑟65𝑣' ∥
,
𝑟75𝑣'

∥ 𝑟75𝑣' ∥
,
𝑟85𝑣'

∥ 𝑟85𝑣' ∥
𝑟6 , 𝑟7 , 𝑟8~𝑁 0,1 1&

𝑣' 𝑣0

[Garibian,	P.		2019]
ℝ% ℝ1ℝ9



Relaxation	 (upper	bound)
𝐌𝐚𝐱 %

𝒊𝒋∈𝑬

(𝟏 − 𝒗𝒊 ⋅ 𝒗𝒋)/𝟐

‖𝒗𝒊‖ = 𝟏,	for	all	𝒊 ∈ 𝑽
(𝒗𝒊 ∈ ℝ𝒏)

Rounding

Approximability
(Product	state

Max Cut vs Quantum Max Cut

𝐌𝐚𝐱 %
𝒊𝒋∈𝑬

(𝟏 − 𝟑𝒗𝒊 ⋅ 𝒗𝒋)/𝟒

‖𝒗𝒊‖ = 𝟏,	for	all	𝒊 ∈ 𝑽
(𝒗𝒊 ∈ ℝ𝒏)

𝒗𝒊 ∈ ℝ𝒏 ⟶ 𝜶𝒊 =
𝒓𝑻𝒗𝒊
𝒓𝑻𝒗𝒊

𝒗𝒊 ∈ ℝ𝟑𝒏 ⟶ (𝜶𝒊, 𝜷𝒊, 𝜸𝒊) =
𝒓𝒙𝑻𝒗𝒊

∥ 𝒓𝒙𝑻𝒗𝒊 ∥
,
𝒓𝒚𝑻𝒗𝒊

∥ 𝒓𝒚𝑻𝒗𝒊 ∥
,
𝒓𝒛𝑻𝒗𝒊

∥ 𝒓𝒛𝑻𝒗𝒊 ∥

0.878	Lasserre 1
(optimal	under	unique	games	conjecture)

0.498	Lasserre 1
0.500 Lasserre 2	(optimal	using	product	states)
(0.533	using	1- &	2-qubit	ansatz)



Approximating General 2-Local Hamiltonian

Objective: ∑𝒊𝒋 𝒄𝒊𝒋 𝑻𝒓(
𝟏 𝒃𝒊𝒋,𝒋𝑻

𝒃𝒊𝒋,𝒊 𝑨𝒊𝒋

𝟏 𝒗𝟎 ⋅ 𝒙𝒋 𝒗𝟎 ⋅ 𝒚𝒋 𝒗𝟎 ⋅ 𝒛𝒋
𝒗𝟎 ⋅ 𝒙𝒊 𝒙𝒊 ⋅ 𝒙𝒋 𝒙𝒊 ⋅ 𝒚𝒋 𝒙𝒊 ⋅ 𝒛𝒋
𝒗𝟎 ⋅ 𝒚𝒊 𝒚𝒊 ⋅ 𝒙𝒋 𝒚𝒊 ⋅ 𝒚𝒋 𝒚𝒊 ⋅ 𝒛𝒋
𝒗𝟎 ⋅ 𝒛𝒊 𝒛𝒊 ⋅ 𝒙𝒋 𝒛𝒊 ⋅ 𝒚𝒋 𝒛𝒊 ⋅ 𝒛𝒋

),

where	𝒗𝟎 and	𝒙𝒊, 𝒚𝒊, 𝒛𝒊 are	unit	vectors	from	relaxation
(involves	15	+	15	parameters!)

Rounding	goal:	
𝒗𝟎 ⟶ 𝟏
𝒙𝒊 ⟶ 𝜶𝒊 ∈ ℝ
𝒚𝒊 ⟶ 𝜷𝒊 ∈ ℝ
𝒛𝒊 ⟶ 𝜸𝒊 ∈ ℝ
with	𝜶𝒊𝟐 + 𝜷𝒊𝟐 + 𝜸𝒊𝟐 = 𝟏

A



Star Bound

%
0@%

A

𝑇𝑟(𝜌ℎB0) ≤
𝑞 + 1
2

Ø 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒% gets 𝑞
Ø 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒( gets (𝑞 + 1)/2

[Lieb, Mattis, ’62]
[Anshu, Gosset, Morenz, ‘20]

Monogamy of 
Entanglement

Triangle Bound Lasserre( satisfies:

Ø We think these constraints are fully capturing the allowed values on a triangle!

Monogamy of Entanglement

We	generalize	monogamy	of	entanglement	bounds	to	edge	energies	𝝁𝒊𝒋 coming	from	Lasserre hierarchy

New	nonlinear	triangle	bound:



Rounding Ansatze

Product State Ansatz

𝜌 = ∏' 𝜌' i

Singlets+Product States

𝜌$ =
𝐼 + 𝛼$𝑋$ + 𝛽$𝑌$ + 𝛾$𝑍$

2

𝜌%& =
𝐼 − 𝑋%𝑋& − 𝑌%𝑌& −𝑍% 𝑍&

4

i

j

k

𝜌 = ∏' 𝜌' ⋅ ∏0C 𝜌0C



Why Product States?

All	present	approximations	for	Quantum	Max	Cut	involved	
product	states	in	an	essential	way.		Why?

As	degree	or	density	of	graph	grows,	product	states	are	optimal
[Brandão,	Harrow	2013]

We	show	on	3-regular	unweighted	graphs,	product-state	
approximation	is	>	0.547	>	0.533,	best-known	entangled	approx



Ø PS rounding algorithm and singlet+PS rounding algorithm follow similar meta-
algorithm, with different “building blocks”

Meta-Algorithm
1. Solve 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒( to get submatrix of 𝑀
2. Initialize 𝐿 = { }
3. For all ij calculate 𝜇'0.  If 𝜇'0 > 𝛾 add ij to L.
4. Find Maximum matching M on L.
5. Consider two states 

1. Take optimal state on M,    something standard on the rest
2. PS rounding from [GP ‘19]

6. Take whichever has better objective.

0 ≤ 𝜇'0 ≤ 1, if 𝜇'0 ≈ 1 then 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒( “thinks” that 
edge should be a singlet.

Overall idea- Find the edges 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒( “thinks” should be a singlet, take 
care to get good objective value on these edges 

i

j

Threshold
Block 1

Handling large 
edges

Block 2

Handling qubits 
outside M

Block 3

Better Rounding Algorithm



35Rounding Algorithm (cont.)

Block 1
Ø Star/Triangle bounds say that large edges must be adjacent to small edges ⇒

set L forms a subgraph of small degree
Ø Threshold controls degree of subgraph

Ø Why set them differently? Technical reasons 
Ø Tradeoff in d: 

Ø d is too small ⇒ product state rounding bad
Ø d is too large ⇒ matching is bad

d=1 for PS rounding
d=2 for Entangled

Block 2/Block 3



To learn more about…

[P.,	Thompson		2022:	arXiv 2206.08342]	

[Anshu,	Gosset,	Morenz-Korol 2020:	arXiv 2003.14394]
[P.,	Thompson		2021:	arXiv 2105.05698]

[P.,	Thompson		2021,	2022	above]	

[Hwang,	Neeman,	P.,	Thompson,	Wright		2021:
arXiv 2111.01254]

[P.,	Thompson		2022	above,	2020:	arXiv 2012.12347]
[Anshu,	Gosset,	Morenz-Korol,	Soleimanifar:
arXiv 2105.01193]

[Kallaugher,	P.		2022:	arXiv 2206.00213]

Optimal	product-state	approximations:

Best-known	Quantum	Max	Cut	(QMC)	approximations:

Lasserre hierarchy	in	2-LH	approximations:

Prospects	for	unique-games	hardness:

Connections	in	approximating	QMC	and	2-LH:

Optimal	space-bounded	QMC	approximations:
(no	quantum	advantage	possible!)



Thanks for showing up, staying 
awake, not throwing stuff, etc.!



Goal: New	quantum	algorithms	and	rigorous	advantages	from	the	interplay	of	
quantum	simulation,	optimization,	and	machine	learning	

Optimization

Machine 
Learning

Quantum 
Simulation

Convex	and	gradient-based	optimization

Convex/semidefinite	relaxations

Quantum	query	complexity

Quantum	sampling	complexity
ML	approaches	for	understanding	and	mitigating	noise

Quantum	approaches	for	linear	algebra

(Approximate)	extremal	energy	states
of	physically-inspired	Hamiltonians

Quantum	approaches	for	differential	equations

Quantum	circuit	optimization

Fundamental	Algorithmic	Research	for	Quantum	Computing


