

Approximating quantum constraint satisfaction problems

Presented by

Ojas Parekh, Sandia National Labs

CWI Semidefinite/Polynomial Optimization Workshop August, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Quantum Advantages

Known quantum speedups are limited for practical applications

See <u>https://quantumalgorithmzoo.org</u> for state of quantum speedups

State of Quantum "Speedups"

Unproven exponential speedup:

Shor's quantum factorization algorithm [Shor, Polynomial-Time Algorithms for Prime Factorization..., 1995]

Provable modest speedup:

Grover's quantum search algorithm [Grover, A fast quantum mechanical algorithm for database search, 1996]

 Provable exponential advantage in specialized settings: Query and communication complexity
 [Childs et al., Exponential Algorithmic Speedup by a Quantum Walk, 2003]
 [Bar-Yossef et al., Exponential Separation of Quantum and Classical..., 2008]

Optimization offers potential for new kinds of quantum advantages:
 Better quality solutions but not necessarily faster solution times

Quantum Algorithms Output Distributions

Quantum Optimization

What is Quantum Optimization?

Quantum

Classical optimization	Classical approaches for quantum Hamiltonians (e.g. DMRG, mean-field methods)
Quantum approaches for classical Hamiltonians (e.g. AQC, QAOA for quantum Hamiltonians) Quantum approaches for continuous optimization	Quantum approaches for quantum Hamiltonians (e.g. AQC, QAOA for quantum Hamiltonians)
Classical	Quantum

Problem

It's Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

 $Min_{\Psi} \left\langle \psi \left| \sum_{S} H_{S} \right| \psi \right\rangle \quad \begin{array}{l} \text{Hamiltonian, } \sum_{S} H_{S}, \text{ represents energy levels} \\ \text{of a physical system composed of "local" parts, S} \end{array}$

Discrete optimization problem becomes an eigenproblem on a large matrix

Image from https://en.wikipedia.org/wiki/Metastability

Hacking Nature to Solve Your Problems

- 1. Map solution values to energy levels of a physical system
- 2. Realize said physical system
- 3. Let Nature relax to a stable low-energy state

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Hamiltonian for Max Cut on a path with 3 vertices

Some cuts on a path with 3 vertices

Minimum eigenstate is of form: $|\psi\rangle = \alpha |010\rangle + \beta |101\rangle$, with energy -2

Local Hamiltonians

Hamiltonian is exponentially large, $2^N \times 2^N$, for an *N*-node graph, but it is a sum of $O(N^2)$ local 4×4 Hamiltonians, one for each edge

Local Hamiltonians are efficient and require manipulating only a constant number of qubits

The Power of Quantum Computing?

Extended Church-Turing Thesis

Any "reasonable" model of computing can be *efficiently* simulated by a Turing machine

problems in quantum polynomial time (BQP).

It would be very surprising if quantum computers could solve NP-complete

Yet, there are problems In BQP that are very unlikely to be in classical polynomial time (P) or even NP!^{*}

Image from https://en.wikipedia.org/wiki/BQP

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea that captures universal quantum computing.

quantum

Using soap film to find Steiner Trees [Datta, Khastgir, & Roy; arXiv 0806.1340]

*Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]

Quantum Approximation Algorithms

(Quantum) Approximation Algorithms

A α -approximation algorithm runs in polynomial time, and for any instance *I*, delivers an approximate solution such that:

(Quantum) Approximation Algorithms

A α -approximation algorithm runs in polynomial time, and for any instance *I*, delivers an approximate solution such that:

 $\frac{Value(Approximate_I)}{Value(Optimal_I)} \geq \alpha$

Heuristics

- Guided by intuitive ideas
- Perform well on practical instances
- May perform very poorly in worst case
- Difficult to prove anything about performance

Approximation Algorithms

- Guided by worst-case performance
- May perform poorly compared to heuristics
- Rigorous bound on worst-case performance
- Designed with performance proof in mind

Polynomials and Quantum Solutions

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

e.g. $Z_2 = I \otimes Z \otimes I$... $Z_1 Z_3 = Z \otimes I \otimes Z \otimes I$... (constraint only on variables/qubits 1 and 3)

Classical

Polynomial P($I, Z_1, ..., Z_n$): (Multilinear since $Z_i^2 = I$) Represents a **diagonal** $M \in \mathbb{R}^{2^n \times 2^n}$

Classical solution: *M* is **PSD** & trace=1 Convex combination of solutions

Quantum

Polynomial Q($I, X_1, Y_1, Z_1, ..., X_n, Y_n, Z_n$): (Multilinear since $X_i^2 = Y_i^2 = Z_i^2 = I$) Represents a **Hermitian** $M \in \mathbb{C}^{2^n \times 2^n}$

Quantum solution: *M* is **PSD** & trace=1 Convex combination of pure states

$$Q = \frac{1}{4} (I - X_1 X_2 - Y_1 Y_2 - Z_1 Z_2)$$

Max Cut

Partition vertices of a graph two parts to maximize (weight of) crossing edges

Constraint Satisfaction Problem (CSP) version: Boolean assignment satisfying max # XOR clauses

 $(x_1 \oplus x_2), (x_1 \oplus x_4), (x_1 \oplus x_6), (x_2 \oplus x_3), \dots$

Model NP-hard discrete optimization problem and 2-CSP

Has driven developments in approximation algorithms

0.878...-approximation [Goemans and Williamson, 1995]

0.878...+ ε is unique games hard [Khot, Kindler, Mossel, O'Donnell, 2007]

Cut and related polytopes have advanced discrete optimization e.g., [Fiorini, Massar, Pokutta, Tiwary, de Wolf, 2012]

Quantum Max Cut: Motivation

Max Cut Hamiltonian: $\sum (I - Z_i Z_j)/2$ Quantum Max Cut generalization: $\sum (I - X_i X_j - Y_i Y_j - Z_i Z_j)/4$

Physical motivation

Heisenberg model is fundamental for describing quantum magnetism, superconductivity, and charge density waves. Beyond 1 dimension,

Properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

Problem

Find max-energy value/state of Quantum Max Cut: $\sum (I - X_i X_j - Y_i Y_j - Z_i Z_j)/4$

(\equiv Find min-energy state of quantum Heisenberg model: $\sum (X_i X_i + Y_i Y_i + Z_i Z_i)/4,$

but different from approximation point of view)

Anti-ferromagnetic Heisenberg model: roughly beighboring quantum particles aim to align in

Quantum Max Cut

maximize overlap with singlet on each edge

Instance of 2-Local Hamiltonian

Find max eigenvalue of $H = \sum H_{ij}$,

 $H_{ij} = (I - X_i X_j - Y_i Y_j - Z_i Z_j)/4$

Each term is singlet projector: $H_{ij} = |\Psi^-\rangle\langle\Psi^-|$ $|\Psi^-\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$

Model 2-Local Hamiltonian?

Has driven advances in quantum approximation algorithms, based on generalizations of classical approaches

QMA-hard and each term is maximally entangled [Cubitt, Montanaro 2013]

Recent approximation algorithms [Gharibian, P. 2019], [Anshu, Gosset, Morenz-Korol 2020], [P., Thompson 2021, 2022]

Evidence of unique games hardness [Hwang, Neeman, P., Thompson, Wright 2021]

Likely that approximation/hardness results transfer to 2-LH with positive terms [P., Thompson 2020, 2022]

Max Cut and Quantum Max Cut

Classical 2-CSP clause: $(\neg x_i \land x_i)$

0,0 0,1 1,0 1,1

Quantum 2-CSP clause

0	0	0	[0
0	1/2	-1/2	0
0	-1/2	1/2	0
0	0	0	0

Diagonal rank-1 projector

General rank-1 projector

Random assignment "earns" 1/4 of diagonal = k/4 for rank-k projectors

(Product-State) Approximations for Max 2-Local Hamiltonian

QMA-hard 2-LH problem class	NP-hard specialization	P approximation for NP-hard specialization	Product-state approximation for QMA-hard 2-LH problem
Max traceless 2-LH: $\sum_{ij} H_{ij},$ H_{ij} traceless	Max Ising: Max $-\sum_{ij} z_i z_j$, $z_i \in \{-1,1\}$	$\Omega(1/\log n)$ [Charikar, Wirth '04]	Ω(1/log n) [Bravyi, Gosset, Koenig, Temme '18] 0.184 (bipartite, no 1-local terms) [P, Thompson '20]
Max positive 2-LH: $\sum_{ij} H_{ij},$ $H_{ij} \ge 0$	Max 2-CSP	0.874 [Lewin, Livnat, Zwick '02]	0.25 [Random assignment] 0.282 [Hallgren, Lee '19] 0.328 [Hallgren, Lee, P '20] 0.387 / 0.498 (numerical) [P, Thompson '20] 0.5 (best possible via product states) [P, Thompson '22]
Quantum Max Cut: $\sum_{ij} I - X_i X_j - Y_i Y_j - Z_i Z_j$ (special case of above)	$\begin{array}{l} \text{Max Cut:} \\ \text{Max} \sum_{ij} I - z_i z_j \text{ ,} \\ z_i \in \{-1,1\} \end{array}$	0.878 [Goemans, Williamson '95]	0.498 [Gharibian, P '19] 0.5 [P, Thompson '22] 0.53 [Anshu, Gosset, Morenz '20] 0.533 [P, Thompson '21]
Max 2-Quantum SAT: $\sum_{ij} H_{ij},$ $H_{ij} \ge 0$, rank 3	Max 2-SAT	0.940 [Lewin, Livnat, Zwick '02]	0.75 [Random Assignment] 0.764 / 0.821 (numerical) [P, Thompson '20] 0.833 best possible via product states

Quantum Relaxations

Max Cut Semidefinite Programming Relaxation

Quantum Moment Matrices are Positive

≽ 0

Quantum Max Cut SDP Relaxation

$$\begin{aligned} X_{1} \quad Y_{1} \quad Z_{1} \quad X_{2} \quad Y_{2} \quad Z_{2} \quad X_{3} \quad Y_{3} \quad Z_{3} \\ X_{1} \\ Y_{1} \\ Z_{1} \\ X_{2} \\ Y_{2} \\ Z_{2} \\ X_{3} \\ Y_{3} \\ Z_{3} \\ \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ M_{12} \\ & 1 & 0 & 0 \\ M_{12} \\ & 0 & 0 & 1 \\ M_{12} \\ & 0 & 0 & 1 \\ M_{12} \\ & 0 & 0 & 1 \\ M_{12} \\ & 0 & 0 & 1 \\ M_{12} \\ & 0 & 0 & 1 \\ M_{13} \\ & & & & & & & & \\ M_{13} \\ & & & & & & & & \\ M_{13} \\ & & & & & & & & \\ M_{13} \\ & & & & & & & & \\ M_{13} \\ & & & & & & & & \\ M_{13} \\ & & & & & & & \\ M_{13} \\ & & & & & & & \\ M_{13} \\ & & & & & & & \\ M_{13} \\ & & & & & & & \\ M_{13} \\ & & & & & & & \\ M_{13} \\ & & & & & & \\ M_{13} \\ & & & & & & \\ M_{13} \\ & & & & & & \\ M_{13} \\ & & & & & & \\ M_{13} \\ & & & & & & \\ M_{13} \\ & & & & & & \\ M_{13} \\ & & & \\ M_{$$

Quantum Lasserre Hierachy

p is called degree-k pseudo density

ClassicalNon-commutative/Quantum[Lasserre 2001][Navascués, Pironio, Acìn 2009 (2010 SIAM J Opt)][Parillo 2003]

Rounding Infeasible Solutions

∀ deg-1 S ∀ deg-2 S ∀ deg-n S

 $Max Tr[H\tilde{\rho}]$ $Tr[\tilde{\rho}] = 1$ $Tr[\tilde{\rho} S^{\dagger}S] \ge 0, \forall \deg k S$

is called degree-k pseudo density

α -Approximation Algorithm

Round optimal non-positive pseudo-density $\tilde{\rho}$ to suboptimal positive density ρ so that:

 $Tr[H\rho] \geq \alpha Tr[H\widetilde{\rho}] \geq \alpha \lambda_{max}(H)$

Approximating Quantum Max Cut

0.498-approximation for Quantum Max Cut

Use hyperplane rounding generalization inspired by [Briët, de Oliveira Filho, Vallentin 2010] to round the vectors x_i, y_i, z_i to scalars $\alpha_i, \beta_i, \gamma_i$ to obtain:

$$\rho = \frac{1}{2^n} \prod_{i} (I + \alpha_i X_i + \beta_i Y_i + \gamma_i Z_i), \ \alpha_i^2 + \beta_i^2 + \gamma_i^2 = 1$$

Classical rounding ($\mathbb{R}^n \to \mathbb{R}^1$)

$$v_i \in \mathbb{R}^n \longrightarrow \alpha_i = \frac{r^T v_i}{|r^T v_i|}$$
$$r \sim N(0, 1)^n$$

Product-state rounding $(\mathbb{R}^{3n} \to \mathbb{R}^3)$ $v_i \in \mathbb{R}^{3n} \to (\alpha_i, \beta_i, \gamma_i) = \left(\frac{r_x^T v_i}{\|r_x^T v_i\|}, \frac{r_y^T v_i}{\|r_y^T v_i\|}, \frac{r_z^T v_i}{\|r_z^T v_i\|}\right)$ $r_x, r_y, r_z \sim N(0, 1)^{3n}$

Max Cut vs Quantum Max Cut

Relaxation (upper bound) $\max \sum_{ij\in F} (1-3v_i \cdot v_j)/4$ $\max \sum_{i \in F} (1 - v_i \cdot v_j)/2$ $\|v_i\| = 1$, for all $i \in V$ $\|v_i\| = 1$, for all $i \in V$ $(v_i \in \mathbb{R}^n)$ $(\boldsymbol{v}_i \in \mathbb{R}^n)$

 $\boldsymbol{v}_{i} \in \mathbb{R}^{n} \longrightarrow \boldsymbol{\alpha}_{i} = \frac{r^{T} \boldsymbol{v}_{i}}{|\boldsymbol{r}^{T} \boldsymbol{v}_{i}|} \qquad \boldsymbol{v}_{i} \in \mathbb{R}^{3n} \longrightarrow (\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{i}, \boldsymbol{\gamma}_{i}) = \left(\frac{r_{\boldsymbol{x}}^{T} \boldsymbol{v}_{i}}{\|\boldsymbol{r}_{\boldsymbol{x}}^{T} \boldsymbol{v}_{i}\|}, \frac{r_{\boldsymbol{y}}^{T} \boldsymbol{v}_{i}}{\|\boldsymbol{r}_{\boldsymbol{x}}^{T} \boldsymbol{v}_{i}\|}, \frac{r_{\boldsymbol{x}}^{T} \boldsymbol{v}_{i}}{\|\boldsymbol{r}_{\boldsymbol{x}}^{T} \boldsymbol{v}_{i}\|}\right)$

Rounding

Approximability

0.878 Lasserre 1 (optimal under unique games conjecture) 0.498 Lasserre 1 0.5 Lasserre 2 (optimal using product states) (0.533 using 1- & 2-qubit ansatz)

Approximating General 2-Local Hamiltonian

Objective:
$$\sum_{ij} c_{ij} Tr(\begin{bmatrix} 1 & b_{ij,j}^T \\ b_{ij,i} & A_{ij} \end{bmatrix} \begin{bmatrix} 1 & v_0 \cdot x_j & v_0 \cdot y_j & v_0 \cdot z_j \\ v_0 \cdot x_i & x_i \cdot x_j & x_i \cdot y_j & x_i \cdot z_j \\ v_0 \cdot y_i & y_i \cdot x_j & y_i \cdot y_j & y_i \cdot z_j \\ v_0 \cdot z_i & z_i \cdot x_j & z_i \cdot y_j & z_i \cdot z_j \end{bmatrix}),$$
where v_0 and x_i , v_i , z_i are unit vectors from relaxation

(involves 15 + 15 parameters!)

Rounding goal:

 $egin{aligned} & v_0 & o 1 \ & x_i & o lpha_i \in \mathbb{R} \ & y_i & o eta_i \in \mathbb{R} \ & z_i & o \gamma_i \in \mathbb{R} \ & ext{with } lpha_i^2 + eta_i^2 + \gamma_i^2 = 1 \end{aligned}$

Monogamy of Entanglement

We generalize monogamy of entanglement bounds to edge energies μ_{ij} coming from Lasserre hierarchy

New nonlinear triangle bound:

> We think these constraints are fully capturing the allowed values on a triangle!

Rounding Ansatze

Why Product States?

All present approximations for Quantum Max Cut involved product states in an essential way. Why?

As degree or density of graph grows, product states are optimal [Brandão, Harrow 2013]

We show on 3-regular unweighted graphs, product-state approximation is > 0.547 > 0.533, best-known entangled approx

Better Rounding Algorithm

PS rounding algorithm and singlet+PS rounding algorithm follow similar metaalgorithm, with different "building blocks"

$$\mu_{ij} = \operatorname{Tr}(\tilde{\rho}h_{ij})$$

 $0 \le \mu_{ij} \le 1$, if $\mu_{ij} \approx 1$ then $Lasserre_2$ "thinks" that edge should be a singlet.

Overall idea- Find the edges $Lasserre_2$ "thinks" should be a singlet, take care to get good objective value on these edges

Rounding Algorithm (cont.)

Block 1

- ➤ Star/Triangle bounds say that large edges must be adjacent to small edges ⇒ set L forms a subgraph of small degree
 - Threshold controls degree of subgraph

- > Why set them differently? Technical reasons
- > Tradeoff in d:
 - \succ d is too small \Rightarrow product state rounding bad
 - \succ d is too large \Rightarrow matching is bad

Block 2/Block 3

To learn more about...

B

Optimal product-state approximations:	[P., Thompson 2022: arXiv 2206.08342]
est-known Quantum Max Cut (QMC) approximations:	[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394] [P., Thompson 2021: arXiv 2105.05698]
Lasserre hierarchy in 2-LH approximations:	[P., Thompson 2021, 2022 above]
Prospects for unique-games hardness:	[Hwang, Neeman, P., Thompson, Wright 2021: arXiv 2111.01254]
Connections in approximating QMC and 2-LH:	[P., Thompson 2022 above, 2020: arXiv 2012.12347] [Anshu, Gosset, Morenz-Korol, Soleimanifar: arXiv 2105.01193]
Optimal space-bounded QMC approximations: (no quantum advantage possible!)	[Kallaugher, P. 2022: arXiv 2206.00213]

Thanks for showing up, staying awake, not throwing stuff, etc.!

Goal: New quantum algorithms and rigorous advantages from the interplay of quantum simulation, optimization, and machine learning

Quantum sampling complexity ML approaches for understanding and mitigating noise Quantum approaches for linear algebra

