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Adjacency matrix and closed walks

Adjacency matrix A = (aij)

Power adjacency matrix Ak = (akij)

akij = # walks of length k from i to j

algebraic combinatorics
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Eigenvalues

Spectrum: λ1 ≥ · · · ≥ λn

3, 1, 1, 1, 1, 1,−2,−2,−2,−2
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Eigenvalues

Spectrum: {θm0
0 , . . . , θmd

d }

31, 15,−24
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Walk-regularity and k-partially walk-regularity

I A graph G is walk-regular if the number of closed walks of
any length from a vertex to itself does not depend on the
choice of the vertex (Godsil and McKay 1980).

I A graph G is k-partially walk-regular for some integer
k ≥ 0, if the number of closed walks of a given length l ≤ k ,
rooted at a vertex v , only depends on l .

If G is k-partially walk-regular, for any polynomial p ∈ Rk [x ],
the diagonal of p(A) is constant with entries

(p(A))uu =
1

n
tr p(A) =

1

n

n∑
i=1

p(λi ) for all u ∈ V .

Every graph is k-partially walk-regular for k = 0, 1, and every
regular graph is 2-partially walk-regular.

I G is k-partially walk-regular for any k iff G is walk-regular.
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Distance-regularity and k-partially distance-regularity

I A graph G is distance-regular if there are constants ci , ai , bi
such that for all i = 0, 1, . . . ,D, and all vertices x and y at
distance i = d(x , y), among the neighbors of y , there are ci at
distance i − 1 from x , ai at distance i , and bi at distance i + 1.

I G is k-partially distance-regular if it is distance-regular up
to distance k.
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Graph powers

The k th power of a graph G = (V ,E ), denoted by G k , is
formed by connecting two vertices if they are at distance at
most k .
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Graph powers
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k-independence number

k-independence number αk(G ): maximum size of a set of
vertices at pairwise distance greater than k .
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k-independence number

k-independence number αk(G ): maximum size of a set of
vertices at pairwise distance greater than k .

α2

Note: αk(G ) = α(G k)
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k-chromatic number

k-chromatic number χk(G ): χk(G ) = χ(G k)
(Kramer and Kramer 1969)

χ2
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k-chromatic number

k-chromatic number χk(G ): χk(G ) = χ(G k)
(Kramer and Kramer 1969)

Upper bounds on αk give lower bounds on χk and vice versa:

χ(G ) ≥ |V (G )|
α(G )
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Applications αk

I Coding theory: codes relate to k-independent sets in Hamming
graphs, bounds on αk used to show the non-existence of perfect
codes (Fiol 2020), . . .
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codes (Fiol 2020), . . .

I Quantum information theory: not known whether the quantum
parameter αkq(G ) is generally computable (Roberson and
Mancinska 2016) ↓

(A., Elphick and Wocjan 2022)

αk(G ) ≤ αkq(G ) ≤ new inertial-type bound.
↓

We use MILPs to compute when the new inertial-type bound is
tight.
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(A., Elphick and Wocjan 2022)

αk(G ) ≤ αkq(G ) ≤ new inertial-type bound.
↓

We use MILPs to compute when the new inertial-type bound is
tight.

I Related to other graph parameters: αk has been used to obtain
tight lower bounds for the average distance (Firby and Haviland
1997), . . .
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Note that ...

αk(G ) = α(G k) and χk(G ) = χ(G k)

BUT

even the simplest spectral or combinatorial parameters of G k

cannot be always deduced from the parameters of G .

Examples:

• average degree (Devos, McDonald and Scheide 2013)

• rainbow number (Basavaraju, Chandran, Rajendraprasad
and Ramaswamy 2014)

• eigenvalues

• ...
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Motivation αk

(Kong and Zhao 1993) Computing αk and χk is NP-complete.

(Kong and Zhao 2000) Even for regular bipartite graphs, the
problem remains NP-complete if k ≥ 2.

Eigenvalues can be computed in polynomial time.

Could we apply the known eigenvalue bounds on α to G k?

No, in general the spectrum of G k cannot be derived from G ,
and vice versa.

⇓

We will find bounds that only depend on the spectrum of G .
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Overall goal

Extend two classic eigenvalue bounds for α to αk in
terms of the eigenvalues of the original graph.
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Main tool: interlacing

Let m < n.
Sequences λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µm interlace if

λi ≥ µi ≥ λn−m+i (1 ≤ i ≤ m)
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Let m < n.
Sequences λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µm interlace if

λi ≥ µi ≥ λn−m+i (1 ≤ i ≤ m)

λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4

m = n − 1

17 / 81



Eigenvalue interlacing

λ1, λ2, . . . , λn eigenvalues of a matrix A

µ1, µ2, . . . , µm eigenvalues of a matrix B
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First case of eigenvalue interlacing

1. B is a principal submatrix of A.

(Cauchy interlacing)
If B is a principal submatrix of A, then the eigenvalues of B
interlace those of A.
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Second case of eigenvalue interlacing

2. If P = {V1, . . . ,Vm} is a partition of V we can take for B the
so-called quotient matrix of A with respect to P.

(Haemers interlacing 1995)
If B is the quotient matrix of a partition of A, then the eigenvalues
of B interlace the eigenvalues of A.

A

B
average row sum
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Eigenvalue bounds: an overview
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Classic eigenvalue bounds

Inertia bound (Cvetković 1972)

If G is a graph with eigenvalues λ1 ≥ · · · ≥ λn, then

α(G ) ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.
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Classic eigenvalue bounds

Ratio bound (Hoffman 1970)

If G is regular with eigenvalues λ1 ≥ · · · ≥ λn, then

α(G ) ≤ n
−λn

λ1 − λn
and if an independent set C meets this bound then every
vertex not in C is adjacent to precisely −λn vertices of C .

" Delsarte proved the ratio bound for SRGs, later Hoffman extended it

to regular graphs and Haemers to irregular graphs.

(Lovász 1979)

The Lovász theta number ϑ(G ) is a lower bound for the
Hoffman bound.

23 / 81



More on the ratio bound
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Inertia vs ratio bound for some strongly regular graphs

Graph (n, k, λ, µ) α Inertia bound (Floor of) ratio bound

Cycle C5 (5, 2, 0, 1) 2 2 2
Petersen (19, 3, 0, 1) 4 4 4
Clebsh (16, 5, 0, 2) 5 5 6

Hoffman-Singleton (50, 7, 0, 1) 15 21 15
Gewirtz (56, 10, 0, 2) 16 20 16

Mesner M22 (77, 16, 0, 7) 21 21 21
Higman-Sims (100, 22, 0, 6) 22 22 26
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Some known upper bounds on αk

I (Firby and Haviland 1997) For connected graphs using
average distance.

I (Fiol 1997) For regular graphs using eigenvalues and
alternating polynomials.

I (Beis, Duckworth and Zito 2005) For random r -regular graphs.

I (O, Shi and Taoqiu 2019) For r -regular graphs for every k ≥ 2
and r ≥ 3.

I (Jou, Lin and Lin 2020) For trees and k = 2.

I (Atkinson and Frieze 2003) For random graphs Gn,p, p = d/n
(d a large constant).
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Optimization and eigenvalue bounds

Independence number:

I (Delsarte 1973) LP bound on α for distance-regular graphs.

I (Lovász 1979) SDP bound ϑ.

I . . .

k-independence number:

Ratio bound Inertia boundy
y

(Fiol 2019)
?

LP with minor polynomials
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Line of work

(1) (A., Cioabă and Tait 2016) New bounds on αk in terms of
λki .

What about general degree-k polynomials?

(2) (A., Coutinho and Fiol 2019) Extend previous bounds to
p(λi) for some polynomial p of degree k .

Which polynomial gives the best bound for a specific
graph?

(1) and (2) do not consider the case when the spectra of G
and G k are related.
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Line of work

(1) (A., Cioabă and Tait 2016) Two new bounds on αk in
terms of λki .

What about general degree-k polynomials?

(2) (A., Coutinho and Fiol 2019) Extend these bounds to
p(λi) for some polynomial p of degree k .

Which polynomial gives the best bound for a specific
graph?

(3) (A., Coutinho, Fiol, Nogueira and Zeijlemaker 2022)
Optimize the bounds over p ∈ Rk [x ].
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Optimization of the new eigenvalue
bounds for the independence and
chromatic number of graph powers

Joint work with G. Coutinho, M.A. Fiol, B. Nogueira and S.
Zeijlemaker
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The spectrum of G k and G are
related

if there is a polynomial p s.t. p(A(G )) = A(G k), i.e.,
A(G k) belongs to the algebra generated by A(G ).
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Graphs with large chromatic number

Question (Alon and Mohar 2000)

What is the largest possible value of the chromatic number
χ(G k) of G k , among all graphs G with maximum degree at
most d and girth at least g?

I k = 1: long-standing problem by Vizing, settled
asymptotically by (Johansson 1996) using the probabilistic
method.

I k = 2: settled asymptotically by (Alon and Mohar 2002).

I k ≥ 3: bounds by (Alon and Mohar 2002), (Kang and
Pirot 2016), (Kang and Pirot 2018), . . .
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A lower bound on χk

Let G = (V ,E ) be a graph with spectrum θm0
0 , . . . , θmd

d and
consider the inner product

〈f , g〉G =
1

n
tr(f (A)g(A)) =

1

n

d∑
i=0

mi f (θi)g(θi).

The predistance polynomials p0, . . . , pd are orthogonal
polynomials with respect to the above product, with
dgr pi = i , and normalized such that ‖pi‖2

G = pi(θ0) (Fiol and
Garriga 1997).
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A lower bound on χk

Let G = (V ,E ) be a graph with spectrum λ1 ≥ λ2 ≥ · · · ≥ λn
and predistance polynomials p0, . . . , pd .
For a given integer k ≤ d , consider the polynomial
qk = p0 + · · ·+ pk .

(Fiol 2012)

Let sk(u) be the number of vertices at distance at most k
from u. Then qk(λ1) is bounded above by

qk(λ1) ≤ Hk =
n∑

i∈V
1

sk (u)

.

Equality occurs if and only if qk(A) = I + A(G k).
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For a given integer k ≤ d , consider the polynomial
qk = p0 + · · ·+ pk .

(A., Coutinho, Fiol, Nogueira and Zeijlemaker 2022)

Let q′k = qk − 1. If G is regular with eigenvalues satisfying
qk(λ1) = Hk , then

χk ≥
n

min{|{i : q′k(λi) ≥ 0}|, |{i : q′k(λi) ≤ 0}|}
and

χk ≥
n

1− q′k (λ1)

min{q′k (λi )}

.
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A lower bound on χk

First spectral bounds for Alon and Mohar question for regular
graphs.
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The spectra of G and G k are related

First spectral bounds for Alon and Mohar question for regular
graphs. But how do we find the polynomial
qk = p0 + · · ·+ pk?

(A., van Dam and Fiol 2016)

qk(A) = A(G k) + I when G is a δ-regular graph with girth g
and k = bg−1

2
c. In this case G is k-partially distance-regular,

and

q0 = 1, q1 = 1 + x , qi+1 = xqi − (δ − 1)qi−1.
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Tight examples

Our bound is tight for several named Sage graphs.

Name Girth g k = bg−1
2
c αk

Moebius-Kantor graph 6 2 4
Nauru graph 6 2 6
Blanusa First Snark graph 5 2 4
Blanusa Second Snark graph 5 2 4
Brinkmann graph 5 2 3
Heawood graph 6 2 2
Sylvester graph 5 2 6
Coxeter graph 7 3 4
Dyck graph 6 2 8
F26A graph 6 2 6
Flower Snark graph 5 2 5
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Tight examples

(Kang and Pirot 2016) used balanced bipartite products ./
for their lower bound construction.

This product also gives several graphs which attain equality for
our bound, for example the products of even cycles
C8 ./ C8, C8 ./ C12, . . .
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The spectrum of G k and G are not related.

Optimization of inertial type bounds
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Why optimization using MILPs?

(i) The quantum k-independence number is upper bounded by
the inertial-type bound (A., Elphick and Wocjan 2022):

αk ≤ αkq ≤ min{|i : p(λi ) ≥ w(p)|, |i : p(λi ) ≤W (p)|}.

For k > 1 we can use the MILPs to compute values of the
quantum parameter when the bound is tight. For k = 1:

α ≤ αq ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.

(ii) Closed formulas for small k .

(iii) Use the polynomials involved in the MILPs:

inertial-type bound (A., Coutinho, Fiol 2019)
ratio-type bound (Fiol 2020)

to relate both bounds.
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First inertial-type bound

Let G be a graph with adjacency matrix A and p ∈ Rk [x ].

w(p) := mini p(A)ii

W (p) := maxi p(A)ii

(A., Coutinho, Fiol 2019)

Let p ∈ Rk [x ], then

αk(G ) ≤ min{|i : p(λi) ≥ w(p)|, |i : p(λi) ≤ W (p)|}.
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Proof sketch

Let U be a k-independent set of G with size αk .

p(A)

U

U
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Proof sketch

Let U be a k-independent set of G with size αk .

p(A)

U

U

B

0

0

p(A)uu

Let µ be the smallest eigenvalue of B.

I Cauchy interlacing (λi ≥ µi for i = 1, . . . ,m = |U|):
≥ |U| eigenvalues of p(A) are larger than µ

I µ ≥ w(p) by definition of w(p) = minu∈V {(p(A))uu.

Therefore, |U| ≤ |{i : p(λi ) ≥ w(p)}|.
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First inertial-type bound: corollary

For k = 1,

Inertia bound (Cvetković 1972)

If G is a graph, then

α(G ) ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.
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First inertial-type bound: optimization

αk(G ) ≤ min{|i : pk(λi) ≥ w(pk)|, |i : pk(λi) ≤ W (pk)|}

Linear?

Invariant under scaling and translation

I may assume min{|i : pk(λi) ≥ w(pk)|}, otherwise take
−pk

I translate: min{|i : pk(λi) ≥ 0|}.
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First MILP αk ≤ min{|i : pk(λi) ≥ 0|}

Let G be a graph with spectrum {θm0
0 , . . . , θmd

d } and
pk(x) = akx

k + · · ·+ a0 the polynomial to optimize.

For each u ∈ V , assume w(pk) = pk(A)uu and solve

minimize mTb
subject to

∑k
i=0 ai (A

i )vv ≥ 0, v ∈ V (G )\{u}∑k
i=0 ai (A

i )uu = 0∑k
i=0 aiθ

i
j −Mbj + ε ≤ 0, j = 0, ..., d

b ∈ {0, 1}d+1

with M large, ε > 0 small.

variables: a1, . . . , ak , (b0, . . . , bd)
parameters: k , {θm0

0 , . . . , θmd
d }
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i
j −Mbj + ε ≤ 0, j = 0, ..., d

b ∈ {0, 1}d+1

with M large, ε > 0 small.

Vector b encodes whether pk(θi ) ≥ w(pk): bi = 1 iff pk(θi ) ≥ 0.
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First MILP αk ≤ min{|i : pk(λi) ≥ 0|}

Let G be a graph with spectrum {θm0
0 , . . . , θmd

d } and
pk(x) = akx

k + · · ·+ a0 the polynomial to optimize.

For each u ∈ V , assume w(pk) = pk(A)uu and solve

minimize mTb
subject to

∑k
i=0 ai (A

i )vv ≥ 0, v ∈ V (G )\{u}∑k
i=0 ai (A

i )uu = 0∑k
i=0 aiθ

i
j −Mbj + ε ≤ 0, j = 0, ..., d

b ∈ {0, 1}d+1

with M large, ε > 0 small.

Vector b encodes whether pk(θi ) ≥ w(pk): bi = 1 iff pk(θi ) ≥ 0 (if
pk(θi ) = 0 then we need ε to force bi = 1)
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First MILP αk ≤ min{|i : pk(λi) ≥ 0|}

Let G be a graph with spectrum {θm0
0 , . . . , θmd

d } and
pk(x) = akx

k + · · ·+ a0 the polynomial to optimize.

For each u ∈ V , assume w(pk) = pk(A)uu and solve

minimize mTb
subject to

∑k
i=0 ai (A

i )vv ≥ 0, v ∈ V (G )\{u}∑k
i=0 ai (A

i )uu = 0∑k
i=0 aiθ

i
j −Mbj + ε ≤ 0, j = 0, ..., d

b ∈ {0, 1}d+1

with M large, ε > 0 small.

"Linear combination of the eigenvalues mutiplicities (minimizing the

quantity of indices j)
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First MILP: results

For large graphs, solving n MILPs takes a lot of time.
However, the first inertial-type bound does not require
walk-regularity like in the optimization of the ratio-type bound
(Fiol 2020).

Proportion of small irregular graphs for which the optimal
solution of the MILP equals α2:

Number of vertices 4 5 6 7 8 9
Proportion 0.86 0.84 0.76 0.62 0.46 0.27
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First MILP: results

Name Best 2019 ϑ2 First MILP α2

Balaban 10-cage 17 17 19 17
Frucht graph 3 3 3 3
Meredith Graph 14 10 10 10
Moebius-Kantor Graph 4 4 6 4
Bidiakis cube 3 2 4 2
Gosset Graph 2 2 8 2
Gray graph 14 11 19 11
Nauru Graph 6 5 8 6
Blanusa First Snark Graph 4 4 4 4
Pappus Graph 4 3 7 3
Blanusa Second Snark Graph 4 4 4 4
Poussin Graph - 2 4 2
Brinkmann graph 4 3 6 3
Harborth Graph 12 9 13 10
Perkel Graph 10 5 18 5
Harries Graph 17 17 18 17
Bucky Ball 16 12 16 12
Harries-Wong graph 17 17 18 17
Robertson Graph 3 3 5 3
Heawood graph 3 2 2 2
Herschel graph - 2 3 2
Hoffman Graph 3 2 5 2
. . .
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First inertial-type bound: walk-regular graphs

Let G be a k-partially walk-regular. Then pk(A) has constant
diagonal, so we can simplify:

minimize mTb
subject to

∑k
i=0 ai(A

i)vv ≥ 0, v ∈ V (G )\{u}∑k
i=0 ai(A

i)uu = 0∑d
i=0 mipk(θi) = 0∑k
i=0 aiθ

i
j −Mbj + ε ≤ 0, j = 0, ..., d

b ∈ {0, 1}d+1
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First inertial-type bound: equality k = 2

Prism graphs Γn

1

23

1

23

Γ3

1

2

3

4

1

2

3

4

Γ4

1

2

34

5

1

2

34

5

Γ5

α2(Γ4i+j) =

{
2i + 1 if j = 3
2i otherwise

These graphs are walk-regular. For n 6= 2 mod 4, the MILP is
tight.
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First inertial-type bound: equality

Odd graphs O`: vertices corresponding to the (`− 1)-subsets of a
(2`− 1)-set, and the adjacencies are defined by void intersection.

13

24

3514

25

45

15

1223

34

O3

(A., Coutinho, Fiol, Nogueira and Zeijlemaker 2022)

For i = 0, . . . , `− 1, let µi and mi be the eigenvalues and multiplicities of
the Odd graph O` = Od+1. Then,

αd−1(Od+1) ≤
{

m1 for even d
m1 + 1 for odd d

}
=

{
2d for even d ,
2d + 1 for odd d .
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First inertial-type bound: equality

Odd graph O` = Od+1 αd−1 First inertial-type bound

O2 (K3) α0 = 3 m0 + m1 = 3

O3 (Petersen) α1 = 4 m1 = 4

O4 α2 = 7 m0 + m1 = 7

O5 α3 = 7 m1 = 8

O6 α4 = 11 m0 + m1 = 11

O7 α5 = 12 m1 = 12

O8 α6 = 15 m0 + m1 = 15

O9 α7 = 15 m1 = 16

O10 α8 = 19 m0 + m1 = 19

O11 α9 = 19 m1 = 20

O12 α10 = 23 m0 + m1 = 23

O14 α12 = 27 m0 + m1 = 27

O16 α14 = 31 m0 + m1 = 31

Table: The known exact values of αd−1 and the upper bounds for the
Odd graphs Od+1.
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Second inertial-type bound

Sometimes the first inertial bound can be strenghtened:

(A., Coutinho, Fiol, Nogueira and Zeijlemaker 2022)

Let G be a k-partially walk-regular graph with adjacency
matrix eigenvalues λ1 ≥ · · · ≥ λn, pk ∈ Rk [x ] such that∑n

i=1 pk(λi) = 0. Then,

χk ≥ 1 + max

(
|j : pk(λj) < 0|
|j : pk(λj) > 0|

)
.
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Second MILP χk ≥ 1 + max
(
|j :pk(λj)<0|
|j :pk(λj)>0|

)
variables: a1, . . . , ak , (b1, . . . , bn), (c1, . . . , cn)
parameters: k , λ1, . . . , λn

maximize 1 + n−1Tb
`

subject to
∑n

j=1

∑k
i=0 aiλ

i
j = 0∑k

i=0 aiλ
i
j −Mbj + ε ≤ 0, j = 1, ..., n∑k

i=0 aiλ
i
j −Mcj ≤ 0, j = 1, ..., n∑n

i=1 ci = `
b ∈ {0, 1}n, c ∈ {0, 1}n

"Now we look at all eigenvalues, including the repeated ones
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Second MILP χk ≥ 1 + max
(
|j :pk(λj)<0|
|j :pk(λj)>0|

)
I Trace condition tr pk(A) = 0

I If pk(λj) ≥ 0, then bj = 1. If pk(λj) > 0, then cj = 1

I Fix
∑

ci = `, solve for ` = 1, . . . , n − 1

I Maximize |j : pk(λj) < 0| = n − 1Tb

maximize 1 + n−1Tb
`

subject to
∑n

j=1

∑k
i=0 aiλ

i
j = 0∑k

i=0 aiλ
i
j −Mbj + ε ≤ 0, j = 1, ..., n∑k

i=0 aiλ
i
j −Mcj ≤ 0, j = 1, ..., n∑n

i=1 ci = `
b ∈ {0, 1}n, c ∈ {0, 1}n
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Second MILP: results

Name Best 2019 ϑ2 First MILP Second MILP α2

Balaban 10-cage 17 17 19 19 17
Frucht graph 3 3 3 3 3
Meredith Graph 14 10 10 10 10
Moebius-Kantor Graph 4 4 6 4 4
Bidiakis cube 3 2 4 3 2
Gosset Graph 2 2 8 2 2
Gray graph 14 11 19 19 11
Nauru Graph 6 5 8 8 6
Blanusa First Snark Graph 4 4 4 4 4
Pappus Graph 4 3 7 6 3
Blanusa Second Snark Graph 4 4 4 4 4
Brinkmann graph 4 3 6 6 3
Harborth Graph 12 9 13 13 10
. . .
Klein 7-regular Graph 3 3 9 3 3
. . .

Tight families:
I Prism graphs Γn with n 6= 2 mod 4
I Incidence graphs of projective planes PG (2; q) (q prime

power)
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Ratio-type bound

W (p) := maxu∈V {(p(A))uu}
w(p) := minu∈V {(p(A))uu}
λ(p) := maxi∈[2,n]{p(λi )}

(A., Coutinho, Fiol 2019)

Let G be a regular graph with n vertices and eigenvalues
λ1 ≥ · · · ≥ λn. Let p ∈ Rk [x ] with corresponding parameters
W (p) and λ(p), and assume p(λ1) > λ(p). Then,

αk ≤ n
W (p)− λ(p)

p(λ1)− λ(p)
.
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Ratio-type bound: corollary

For k = 1,

Ratio bound (Hoffman 1970)

If G is regular then

α(G ) ≤ n
−λn

λ1 − λn
.
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Ratio-type bound: optimization

(Fiol 2020)

For k-partially walk-regular graphs

(p(A))uu =
1

n
tr p(A) =

1

n

n∑
i=1

p(λi ) for all u ∈ V .
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Why optimization using MILPs?

(i) The quantum k-independence number is upper bounded by
the inertial-type bound (A., Elphick and Wocjan 2022):

αk ≤ αkq ≤ min{|i : p(λi ) ≥ w(p)|, |i : p(λi ) ≤W (p)|}.

For k > 1 we can use the MILPs to compute values of the
quantum parameter when the bound is tight. For k = 1:

α ≤ αq ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.

(ii) Closed formulas for small k .

(iii) Use the polynomials involved in the MILPs:

inertial-type bound (A., Coutinho, Fiol 2019)
ratio-type bound (Fiol 2020)

to relate both bounds.
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Ratio-type bound: best polynomial for k=2

(A., Coutinho, Fiol 2019)

Let G be a δ-regular graph with n vertices and distinct eigenvalues
θ0(= δ) > θ1 > · · · > θd with d ≥ 2. Let θi be the largest
eigenvalue such that θi ≤ −1. Then,

α2 ≤ n
θ0 + θiθi−1

(θ0 − θi )(θ0 − θi−1)
.

Moreover, this is the best possible bound that can be obtained by
choosing a polynomial and applying the ratio-type bound.
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Ratio-type bound: best polynomial for k=3

(Neuwman, Sajna and Kavi 2022+)
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Why optimization using MILPs?

(i) The quantum k-independence number is upper bounded by
the inertial-type bound (A., Elphick and Wocjan 2022):

αk ≤ αkq ≤ min{|i : p(λi ) ≥ w(p)|, |i : p(λi ) ≤W (p)|}.

For k > 1 we can use the MILPs to compute values of the
quantum parameter when the bound is tight. For k = 1:

α ≤ αq ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.

(ii) Closed formulas for small k .

(iii) Use the polynomials involved in the MILPs:

inertial-type bound (A., Coutinho, Fiol 2019)
ratio-type bound (Fiol 2020)

to relate both bounds.
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Relating the inertia and the
ratio-type bounds

Joint work with C. Dalfó, M.A. Fiol and S. Zeijlemaker
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Joint work with C. Dalfó, M.A. Fiol and S. Zeijlemaker
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Motivation: relating inertia and ratio bounds

Both inertia and ratio bounds have been used to prove a
significant number of results in Extremal Combinatorics (like
the EKR theorem).

However, there are also many cases that neither is sharp, and
their relationship is not understood!

Ultimate goal: find a way to unify the bounds (interlacing?
polynomials?).

Intermediate goal: understand their relationship.

Our strtegy: use the polynomials from the previous bounds
and MILPs.
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Inertia and ratio-type bounds: overview

(A., Coutinho, Fiol 2019)
Let G have eigenvalues λ1 ≥ · · · ≥ λn. Let p ∈ Rk [x ],
λ(p) = mini∈[2,n]{p(λi )}, W (p) = maxu∈V {(p(A))uu}, and
w(p) = minu∈V {(p(A))uu}.

(i) An inertial-type bound.

αk ≤ min{|i : p(λi ) ≥ w(p)|, |i : p(λi ) ≤W (p)|}.

(ii) A ratio-type bound. Assume that G is regular. Let p ∈ Rk [x ] such
that p(λ1) > λ(p).

αk ≤ n
W (p)− λ(p)

p(λ1)− λ(p)
.
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Inertia and ratio-type bounds: linear transformations

(A., Coutinho, Fiol 2019)

(i) An inertial-type bound. A constant can be added to p making
w(p) = minu∈V {(p(A))uu} = 0. Moreover, multiplying the resulting
polynomial by a (positive or negative) appropriate constant, it is
enough to find a polynomial p ∈ Rk [x ] with fixed value of λ(p), say
−1, and that minimizes the number of eigenvalues λi such that
p(λi ) ≥ w(p).

αk ≤ min
i∈[1,n]

|{i : p(λi ) ≥ 0}|.

(ii) A ratio-type bound. We can use a polynomial p satisfying
p(λ1) = 1 and λ(p) = 0.

αk ≤ nW (p) = nmax
i

p(A)ii .
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Sign and minor polynomials: k-partially walk-regular case

(i) An inertial-type bound. (A., Coutinho, Fiol, Nogueira and
Zeijlemaker 2022)
If s ∈ Rk [x ] is a polynomial satisfying tr s(A) = 0, the best result is
obtained by the sign polynomial sk , whose coefficients are the
solution of a MILP.

minimize
∑d

i=0 mi bi
subject to

∑d
i=0 mi sk (θi ) = 0∑k
i=0 aiθ

i
j − Mbj + ε ≤ 0, j = 0, ..., d (∗)

b ∈ {0, 1}d+1

(ii) A ratio-type bound. (Fiol 2020)
If f ∈ Rk [x ] is a polynomial satisfying λ(f ) = 0 and f (θ0) = 1, the
best result is obtained with the minor polynomial fk that
minimizes

∑d
i=0 mi fk(θi ). This polynomial fk is defined by

fk(θ0) = x0 = 1 and fk(θi ) = xi , for i = 1, . . . , d , where the vector
(x1, x2, . . . , xd) is a solution of a LP.

minimize
∑d

i=0 mi xi
subject to f [θ0, . . . , θm ] = 0, m = k + 1, . . . , d

xi ≥ 0, i = 1, . . . , d
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Sign and minor polynomials: partially walk-regular graphs

Let G be a k-partially walk-regular graph with spectrum
{θm0

0 , θm1
1 , . . . , θmd

d }. Let h(x) be the Heaviside function.

(i) An inertial-type bound. (A., Coutinho, Fiol, Nogueira and
Zeijlemaker 2022)
Let p = s ∈ Rk [x ] be a polynomial satisfying
λ(s) = mini∈[1,d ]{s(θi )} = −1 and tr s(A) = 0. Then,

αk ≤
d∑

i=0

mih(s(θi )).

(ii) A ratio-type bound. (Fiol 2020)
Let p = f ∈ R[k] be a polynomial satisfying
λ(f ) = mini∈[1,d ]{f (θi )} = 0 and f (θ0) = 1. Then,

αk ≤
d∑

i=0

mi f (θi ).
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Inertia and ratio type bounds: relationship?

Inertial-type bound - sign polynomials s
Ratio-type bound - minor polynomials f

The following relations between the polynomials s and f hold.

(i) If s ∈k [x ] satisfies mini∈[1,d ]{s(θi )} = −1 and tr s(A) = 0, then

f (x) = 1+s(x)
1+s(θ0) satisfies mini∈[1,d ]{f (θi )} = 0 and f (θ0) = 1. From

the ratio-type bound we get

αk ≤
n

1 + s(θ0)
.

(ii) If f ∈ R[k] satisfies mini∈[1,d ]{f (θi )} = 0 and f (θ0) = 1, then
s(x) = n

tr f (A) f (x)− 1 has tr s(A) = 0 and mini∈[1,d ]{s(θi )} = −1.

From the inertial-type bound we get

αk ≤
∑d

i=0 mih
(
f (θi )− 1

n tr f (A)
)
.
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Inertia and ratio type bounds: relationship?

It seems interesting to know when, for a given value of k , the
k-sign polynomial and the k-minor polynomial are linearly
related.
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Inertia and ratio type bounds: relationship?

It seems interesting to know when, for a given value of k , the
k-sign polynomial and the k-minor polynomial are linearly
related.

Moreover, if both polynomials give the same (inertia and
ratio) bounds on αk , we consider such polynomials to be
essentially the same.
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k-Cvetković-Hoffman graphs

I We define a k-Cvetković-Hoffman graph (or k-CH
graph) as the graph with the same inertia and ratio
bounds on αk .

I If both bounds are equal and tight, we call the graph a
tight k-CH graph.
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k-Cvetković-Hoffman graphs: the case k = 1

(A., Dalfó, Fiol and Zeijlemaker 2022+)
(i) For any graph, the 1-sign polynomial and the 1-minor polynomial

are linearly related.

(ii) Every bipartite regular graph with even number d + 1 of different
eigenvalues is a tight 1-CH graph.

(Haemers and Higman 1989)
Let G be a strongly regular graph with maximum independent set
U ⊂ V . Then both the inertia and ratio bounds are tight if and only if
the graph induced by U = V \ U is strongly regular.

Examples of tight 1-CH graphs:

• The Kneser graph K (n, k), with n > 2k , is a tight 1-CH graph
(EKR proofs).

• The Taylor 2-graphs for U3(q) with q ∈ {3, 5, 7, 9}.
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k-Cvetković-Hoffman graphs: the case k = d − 1

We deal with maximally independent sets of vertices.

(A., Dalfó, Fiol and Zeijlemaker 2022+)
If it exists, the triangle-free strongly regular graph G (n) with feasible
parameters

(n4 + 5n3 + 6n2 − n − 1, n2(n + 2), 0, n2) for n = 1, 2, . . .

is a tight (d − 1)-CH graph.

Examples of (d − 1)-CH graphs:

• G (1) = P, the Petersen graph with parameters (5, 2, 0, 1)

• G (2) = M22, the Mesner graph with parameters (77, 16, 0, 4).

• The Odd graph O` with even degree ` is a (d − 1)-CH graph.

• The Odd graph O` is a tight (d − 1)-CH graph for every even
` ∈ {2, 3, 4, 6, 8, 10, 12, 14, 16}.

• The antipodal distance-regular graphs with odd diameter are tight
(d − 1)-CH graphs.
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Concluding remarks
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Overview new results

Independence number:

I (Delsarte 1973) LP bound on α for distance-regular graphs.

I (Lovász 1979) SDP bound ϑ.

I . . .

k-independence number:

Hoffman ratio bound Inertia boundy
y

(Fiol 2020) this talk
LP with minor polynomials

MILP with sign polynomials

. . . and new relations between bounds.
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Overview new results

I Inertial and ratio-type bounds for αk that depend on the
parameters (eigenvalues) of G and not of G k .

I Optimization of the inertial-type bounds using MILPs:
linear combination of the eigenvalues mutiplicities.

I In some cases our approach yields closed formulas for the
optimal polynomial.

I Our inertial-type bounds for αk and χk also hold for the
corresponding quantum parameters, thus, when the
bounds are tight, the MILPs can be used to compute their
exact values.

I Use of the polynomials involved in the MILPs to find new
relationships between the two bounds.
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Open problems

I Complexity of the MILPs? Does increasing k make the
problem easier?

I Use the MILPs for other graphs and values of k , and find
more closed formulas for graph families.

I Other relationships between inertial-type and ratio-type
bounds via the obtained polynomials from the MILPs.

I SDP formulation for the inertial-type bound?

α ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}
αk ≤ min{|i : p(λi) ≥ w(p)|, |i : p(λi) ≤ W (p)|}
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Thank you for listening!

Further reading:

A. Abiad, G. Coutinho, M.A. Fiol, B.D. Nogueira and S. Zeijlemaker,
Optimization of eigenvalue bounds for the independence and chromatic number
of graph powers
Discrete Math. 345(3) (2022)

A. Abiad, C. Dalfó, M.A. Fiol and S. Zeijlemaker
On inertia and ratio type bounds for the k-independence number of a graph
and their relationship
arXiv:2201.04901
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Open problems: bounding the Shannon capacity of G k?

(Fiol 2020)

Let G be a k-partially walk-regular graph with adjacency matrix A and
spectrum {θm0

0 , . . . , θ
md
d }. Let fk ∈ Rk [x ] be a k-minor polynomial, that is,

fk(θ0) = 1 and fk(θi ) ≥ 0 ∀i 6= 0. Then,

αk(G) = α(G k) ≤ Θ(G k) ≤ tr fk(A)
d∑

i=0

mi fk(θi ) for every k = 0, . . . , d − 1.

(A., Fiol 2022+)

Let p ∈ Rk [x ] such that p(A) fits G k (a matrix B that fits G k if has all
diagonal non-zero entries and bij = 0 if dist(i , j) > k in G). Then,

αk(G) = α(G k) ≤ Θ(G k) ≤ min
p(A)∝Gk

rank(p(A))
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