
Type Checking Rascal in Rascal

Mark Hills

http://www.rascal-mpl.org

Friday, May 25, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org


The Rascal Type System

2

Friday, May 25, 2012



Why Have a Type Checker?

• Rascal is defined as a statically typed language

• Helps catch many simple errors that are easy to make and fix

• Provides useful feedback to users (error markers, doc links and 
hovers)

• Performance optimization opportunities

3

Friday, May 25, 2012



So, What Should It Do?

• Find name definitions and uses (linking the two)

• Assign types to all names and expressions

• Infer types for names with no explicit declaration

• Determine which constructor and function overloads are used 
(this could be a set!)

• Mark locations of errors and warnings

4

Friday, May 25, 2012



Why Isn’t This Done Yet?

• First attempt: bottom-up visit of tree

• Second attempt: constraint-based solution

• Current solution: abstract evaluation

5

Friday, May 25, 2012



Challenges

• Subtyping

• Local Inference

• Some features not fully statically type-able

• Field access/projection/update

• Reducers

• Imports, nested functions, desire for sanity in introducing 
variables leads to tricky scoping rules

6

Friday, May 25, 2012



Type Checking a Rascal File

• Extract signatures for imports

• Bring public signature items into top-level scope (for extends: 
bring all items in instead)

• Recursively, statically evaluate program: values are types

• Book-keeping: assign derived types into a map from locations to 
type; maintain a map from name declarations to name uses; both 
used by Eclipse to provide documentation in the IDE

7

Friday, May 25, 2012


