
Vadim Zaytsev, SWAT, CWI
2012

BX
&

 Grammarware
Software Engineering Meeting

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/

Background

★ BX 2012: First International Workshop on Bidirectional
Transformations (satellite event of ETAPS 2012)

★ “Language Evolution, Metasyntactically”

★ Submitted to BX 2012: 21 December 2011

★ Notification: 24 January 2012

★ Camera-ready copy: 5 February 2012

★ Conditionally accepted with 2!SA and 2!WR

Bidirectional transformations
community

★ A cross-discipline field:

★ Model-Driven Software Development: sync views
★ Graphical User Interfaces: model-view-controller
★ Visualization with Direct Manipulation: animation
★ Relational Databases: updatable views
★ Data Transformation, Integration and Exchange: map data and merge it
★ Data Synchronizers: bridge the gap between replicas in different formats
★ Macro Systems: give feedback in terms of original program elements
★ Domain-Specific Languages: runtime mapping in embedded interpreters
★ Structure Editors: interfaces for editing complicated data sources
★ Serializers: map external data to structured objects

Czarnecki, Foster, Hu, Lämmel, Schürr, Terwilliger, GRACE

Introduction

Introduction

★ Every language document employs its own notation

★We focus on metalanguage evolution

★ the language itself does not evolve
★ the notation in which it is written, does

★We limit ourselves to grammarware technical space

★Working prototypes are a part of SLPS

http://slps.sf.net/
http://slps.sf.net/

Motivating
example

LLL in itself [LDTA’02]

 grammar : rule+;
 rule : sort ":" alts ";";
 alts : alt alts-tail*;
 alts-tail : "|" alt;
 alt : term*;
 term : basis repetition?;
 basis : literal | sort;
 repetition : "*" | "+" | "?";

LLL in itself [GDK]

specification : rule+;
rule : ident ":" disjunction ";";
disjunction : conjunction “|” +;
conjunction : term*;
term : basis repetition?;
basis : ident | literal
 | alternation | group;
repetition :”+”|”*”|”?”;
alternation : “ “basis basis “ “ repetition;
group : “ “ disjunction “ “ ;

{ }

{ }
()

LLL1 in EDD [Z12a]

defining metasymbol : definition separator
metasymbol |

terminator metasymbol ; postfix optionality
metasymbol ?

postfix star metasymbol * postfix plus metasymbol +

start terminal metasymbol “ end terminal metasymbol “

" between LLL1 and LLL2

start group metasymbol (end group metasymbol)

start separator list star
metasymbol { end separator list star

metasymbol }*

start separator list plus
metasymbol { end separator list plus

metasymbol }+

Metasyntactic
evolution
megamodel

Grammar internal
representation

ECEASST

Judging by how terminal symbols are written in the LLL definitions themselves, we can con-
clude that terminal symbols are supposed to be double quoted in both versions:

start terminal metasymbol " end terminal metasymbol "

Features new to L3
2 with respect to L3

1 are grouping of symbols and separator lists:

start group metasymbol (end group metasymbol)
start separator list star metasymbol { end separator list star metasymbol }*
start separator list plus metasymbol { end separator list plus metasymbol }+

Since the introduction of these features is precisely the linguistic difference between the two
versions, it represents language evolution. In the remainder of the paper we aim at investigating
how the changes we observe in these notation specifications, are related to various coevolving
artefacts; how such changes can be propagated through the system; and how far we can push
automation of these activities.

3 Metasyntactic evolution megamodel

We start by laying out preliminary generalisations that we needed in order to achieve bidirection-
ality [CFH+09] and express coevolution. Curious readers are immediately referred to Figure 1.

3.1 Grammar internal representation

For this paper, we used a slightly enhanced dialect of BGF, BNF-like Grammar Format, inherited
from [LZ09, LZ11, Zay10, ...]. Its logic programming-based specification follows:

grammar(Rs,Ps) ⇐ mapoptlist(n,Rs), maplist(prod,Ps).
prod(p(L,N,X)) ⇐ mapopt(label,L), atom(N), expr(X).
label(l(X)) ⇐ atom(X).
expr(true).
expr(fail).
expr(a).
expr(t(T)) ⇐ atom(T).
expr(n(N)) ⇐ atom(N).
expr(’,’(Xs)) ⇐ maplist(expr,Xs).
expr(’;’(Xs)) ⇐ maplist(expr,Xs).
expr(’?’(X)) ⇐ expr(X).
expr(’∗’(X)) ⇐ expr(X).
expr(’+’(X)) ⇐ expr(X).
expr(slp(X,Y)) ⇐ expr(X), expr(Y).
expr(sls(X,Y)) ⇐ expr(X), expr(Y).
expr(s(S,X)) ⇐ atom(S), expr(X).

grammar = start symbols + productions
production = label + lhs + rhs
production labels
ε
empty language
universal type
terminal symbols
nonterminal symbols
sequential composition
choice
optionality
Kleene star
transitive closure
Y -separated list with 1 or more elements
Y -separated list with 0 or more elements
selectable expressions

As you can see, it is a pretty straightforward term notation, with a minimal set of features
powerful enough to demonstrate our concepts and transformations, but not powerful enough to
express all features of all grammarware frameworks in detail. Our prototypes use the XML

3 / 15 Volume X (2012)

Toward bidirectional
grammar transformation

★ XBGF ⇒ !BGF:

★ renameN, factor, etc: flip arguments
★ addV/removeV, narrow/widen: form pairs
★ extract/inline, unlabel/designate: asymmetry
★ distribute: removed from the language
★ unite, equate: tricky, superposition of others

★ BX is a stable way to represent grammar relationship

Toward transformable
notation specification

★ EDD [Z12a]

★ confix metaconstructs
★ infix, prefix, postfix metasymbols
★ predefined sets (e.g., built-in nonterminals)
★ conventions (e.g., naming, whitespace reliability)

★ XEDD:

★ rename-metasymbol(s, v1, v2)
★ introduce-metasymbol(s, v)
★ eliminate-metasymbol(s)

Toward in-notation
grammar transformation

★ Concrete syntax transformations

★ Avoiding discussion on propagation of CTS elements

★ bgfreformat tool:

★ extract the grammar from the given notation
★manipulate (transform) the internal representation
★ pretty-print the grammar in the desired notation

★ Alternatively, parse with grammar for grammars

Grammar transformation vs.
grammar mutation

★ A grammar transformation operator " can be formalised as a triplet:
" = ⟨c_pre, t, c_post⟩.

★ A grammar transformation then is "_a_i (G), resulting in G’.

★ if a_i are of incorrect types and quantity than expected by t
! " is incorrectly called;

★ if the constraint c_pre does not hold on G
! "_a_i is inapplicable to G;

★ if the constraint c_post holds on G
! "_a_i is vacuous on G;

★ if the constraint c_pre holds on G and c_post does not hold on G!
! t is incorrectly implemented;

★ if c_pre holds on G, c_post holds on G!
! " has been applied correctly with arguments a_i to G resulting in G!.

Grammar transformation vs.
grammar mutation

★ A grammar mutation does not have a single precondition

★ It has a set of preconditions that serve as triggers:
µ = ⟨{c_i}, {t_i}, c_post⟩.

★ The mutation terminates once no trigger c_i holds and the
postcondition c_post is met.

★ A bidirectional grammar mutation:
 µ_bx = ⟨c_pre, {c_i}, {t_i}, c_post⟩
will be an instantiation of a grammar mutation

★ The family of spawned BMs does not define the original:
i.e., "µ #G #G! ∄µ_bx, G! = µ(G)$G! = µ_bx(G)$G = µ (G!).–1

The megamodel

The megamodel

E
C

E
A

S
S

T

G
BG

F
(N

)isa
quite

precise
definition

ofN
form

any
purposes,butnotforincluding

itin
a

doc-
um

entation,since
allnonterm

inalsym
bols

used
in

it,have
nam

es
thatw

ere
autom

atically
gen-

erated
by

ourgram
m

arw
are

fram
ew

ork.A
“readable” 2

version
ofG

BG
F
(N

),w
hich

w
e

w
illcall

G
(D

)
BG

F
(N

)(w
here

D
standsfordocum

entation),islinked
to

G
BG

F
(N

)by
a

bidirectionalgram
m

ar
adaptation

relation
β

,so
thatβ

(G
BG

F
(N

))
=

G
(D

)
BG

F
(N

)
and

β
−

1(G
(D

)
BG

F
(N

))
=

G
BG

F
(N

).Such
a

readable
gram

m
ar

can
then

be
pretty-printed

in
the

desired
notation,to

resultin
G

N
(N

),a
def-

inition
“in

itself”,like
the

ones
w

e
have

presented
early

on
in

§2.
The

reverse
of

form
atting

a
gram

m
ar

according
to

a
notation

specification,is
gram

m
ar

recovery,w
hich

is
reliable

enough
to

deliver
the

gram
m

ar
in

precisely
the

sam
e

form
thatitw

as
stored

in
(thus,this

laststep
is

bidirectionaland
bijective).

Thus,the
w

hole
chain

setup
as

seen
on

Figure
1

and
as

described
above,looks

like
this:

S(N
)−→

G
Rascal (N

)←
→

G
BG

F
(N

)
β

←
→

G
(D

)
BG

F
(N

)←
→

G
N
(N

)

Suppose
these

chainsare
setup

fortw
o

related
notations.W

hatexactly
are

the
relationsbetw

een
their

differentstages,given
thatw

e
agreed

to
approach

this
scenario

w
ith

m
axim

alautom
ation

as
the

m
ain

objective?
The

notation
specifications

are
related

by
a

bidirectionalnotation
evolution

σ
,as

w
e

defined
in

§3.3.
The

parsers
are

im
possible

to
com

pare
directly,

but
if

related
gram

m
ars

are
present,

there
are

techniques
for

exhaustive
gram

m
ar-based

testdata
generation

and
“cheating”

on
the

undecidability
oflanguage

equivalence
by

draw
ing

conclusions
from

parserreactions
[FLZ11].

D
erived

gram
m

ars
for

notations
are

related
by

a
bidirectional

gram
m

ar
transform

ation
chain

δ.
This

δ
is

coupled
to

the
notation

evolution
σ

and
can

be
derived

autom
atically,if

X
ED

D
com

m
ands

are
know

n.
The

bidirectionalgram
m

aradaptation
chain

β
(readability

adjustm
entsare

often
called

“beau-
tification”,butdue

to
bidirectionality,w

e
should

talk
aboutbeautifying

and
“uglifying”

transfor-
m

ation
going

on)
usually

consists
of

tw
o

parts:
renam

ing
β

n
and

restructuring
β

r .
W

e
have

em
phasized

the
difference

betw
een

nom
inaland

structuralchanges
before

[LZ11],and
in

this
setup

itis
even

m
ore

apparent.
N

om
inaladaptations

β
n

can
alw

ays
be

propagated
through

the
gram

m
arevolution

coupled
to

notation
evolution.Structuraladaptationsare

considerably
harder

to
propagate,butthey

are
notthatcrucial,ifw

e
lim

itthe
form

ofthe
adaptation

chain
to

prevent
the

use
ofpatterns

thatrely
on

the
aprioriunknow

n
parts

ofthe
structure.Thus,if

G
(D

)
BG

F
(N

)
β
−

1

←
→

G
BG

F
(N

)
δ

←
→

G
BG

F
(N

�)
γ

←
→

G
(D

)
BG

F
(N

�)

and
δ
=

δ
n ◦δ

r ,β
=

β
n ◦β

r ,γ
=

γn ◦γr ,then
γn

=
δ
−

1
n

◦β
n

and
γr
=

β
r .

In
the

im
plem

entation
ofthis

coupling
w

e
directly

apply
δ

to
β

instead
ofconstruction

a
com

position
ofδ

−
1

n
w

ith
β

n ,
buthere

w
e

avoid
including

the
definition

ofapplying
a

bidirectionalgram
m

artransform
ation

to
anotherbidirectionalgram

m
artransform

ation
forthe

sake
ofsim

plicity.
The

only
tw

o
layers

leftfrom
the

m
egam

odelfor
us

to
consider

are
the

readable
gram

m
ars,

relation
betw

een
w

hich
becom

es
irrelevantsince

itis
equivalentto

a
bidirectionalsuperposition

2
The

quotes
are

putaround
the

w
ord

“readable”
here

fortw
o

reasons.
First,technically

speaking,G
BG

F
(N

)
is

also
readable.Second,definitions

ofreadability
differsignificantly

am
ong

differentpeople
and

organisations,and
w

e
try

to
avoid

the
discussion

in
this

paper.

9
/15

Volum
e

X
(2012)

ECEASST

GBGF(N) is a quite precise definition of N for many purposes, but not for including it in a doc-
umentation, since all nonterminal symbols used in it, have names that were automatically gen-
erated by our grammarware framework. A “readable”2 version of GBGF(N), which we will call
G(D)

BGF(N) (where D stands for documentation), is linked to GBGF(N) by a bidirectional grammar
adaptation relation β , so that β (GBGF(N)) = G(D)

BGF(N) and β−1(G(D)
BGF(N)) = GBGF(N). Such a

readable grammar can then be pretty-printed in the desired notation, to result in GN(N), a def-
inition “in itself”, like the ones we have presented early on in §2. The reverse of formatting a
grammar according to a notation specification, is grammar recovery, which is reliable enough
to deliver the grammar in precisely the same form that it was stored in (thus, this last step is
bidirectional and bijective).

Thus, the whole chain set up as seen on Figure 1 and as described above, looks like this:

S(N)−→ GRascal(N)←→ GBGF(N)
β←→ G(D)

BGF(N)←→ GN(N)

Suppose these chains are set up for two related notations. What exactly are the relations between
their different stages, given that we agreed to approach this scenario with maximal automation
as the main objective?

The notation specifications are related by a bidirectional notation evolution σ , as we defined
in §3.3. The parsers are impossible to compare directly, but if related grammars are present,
there are techniques for exhaustive grammar-based test data generation and “cheating” on the
undecidability of language equivalence by drawing conclusions from parser reactions [FLZ11].
Derived grammars for notations are related by a bidirectional grammar transformation chain
δ . This δ is coupled to the notation evolution σ and can be derived automatically, if XEDD
commands are known.

The bidirectional grammar adaptation chain β (readability adjustments are often called “beau-
tification”, but due to bidirectionality, we should talk about beautifying and “uglifying” transfor-
mation going on) usually consists of two parts: renaming βn and restructuring βr. We have
emphasized the difference between nominal and structural changes before [LZ11], and in this
setup it is even more apparent. Nominal adaptations βn can always be propagated through the
grammar evolution coupled to notation evolution. Structural adaptations are considerably harder
to propagate, but they are not that crucial, if we limit the form of the adaptation chain to prevent
the use of patterns that rely on the apriori unknown parts of the structure. Thus, if

G(D)
BGF(N)

β−1

←→ GBGF(N)
δ←→ GBGF(N�)

γ←→ G(D)
BGF(N

�)

and δ = δn ◦ δr, β = βn ◦βr, γ = γn ◦ γr, then γn = δ−1
n ◦βn and γr = βr. In the implementation

of this coupling we directly apply δ to β instead of construction a composition of δ−1
n with βn,

but here we avoid including the definition of applying a bidirectional grammar transformation to
another bidirectional grammar transformation for the sake of simplicity.

The only two layers left from the megamodel for us to consider are the readable grammars,
relation between which becomes irrelevant since it is equivalent to a bidirectional superposition

2 The quotes are put around the word “readable” here for two reasons. First, technically speaking, GBGF (N) is also
readable. Second, definitions of readability differ significantly among different people and organisations, and we try
to avoid the discussion in this paper.

9 / 15 Volume X (2012)

Notation evolution summary

Language Evolution, Metasyntactically

ada-kellogg 108 csharp-iso-23270-2003 0 java-1-jls-read 0
ada-kempe 89 csharp-iso-23270-2006 0 java-2-jls-impl 36
ada-laemmel-verhoef 79 csharp-msft-ls-1.0 0 java-2-jls-read 0
ada-lncs-2219 89 csharp-msft-ls-1.2 0 java-5-habelitz 65
ada-lncs-4348 109 csharp-msft-ls-3.0 0 java-5-jls-impl 60
c-iso-9899-1999 0 csharp-msft-ls-4.0 0 java-5-jls-read 1
c-iso-9899-tc2 0 csharp-zaytsev 23 java-5-parr 95
c-iso-9899-tc3 0 dart-google 58 java-5-stahl 92
cpp-iso-14882-1998 0 dart-spec-0.01 56 java-5-studman 91
cpp-iso-n2723 0 dart-spec-0.05 62 mediawiki-bnf 32
csharp-ecma-334-1 0 eiffel-bezault 45 mediawiki-ebnf 30
csharp-ecma-334-2 0 eiffel-iso-25436-2006 345 modula-sdf 50
csharp-ecma-334-3 0 fortran-derricks 101 modula-src-052 65
csharp-ecma-334-4 0 java-1-jls-impl 0 w3c-xpath1 3

Table 1: Applying coupled mutation to eliminate-metasymbol(group) to Grammar Zoo.

β−1 ◦ δ ◦ γ , and the notation definitions “in themselves”, which are not directly comparable, as
we have witnessed in §2.

Thus, so far we have avoided comparing and transforming the readable grammars directly by
focusing on notation specifications and on grammars derived from them (which can be viewed
as a form of normalisation). However, suppose that we already have a grammarbase: a collection
{GN(L)} of grammars of various languages, all written in the notation N. These grammars need
to coevolve with the intended changes of the notation specification, such that ∀L ,GN(L)

µ−→
GN�(L). The grammar mutation µ is neither naturally bidirectional, nor easily bidirectionalised.
However, since the notation specification transformation σ is bidirectional, one can infer the
coupled µ � from σ−1 — this µ � will not necessarily be equivalent to µ−1, if no assumptions are
made about the grammars in the grammarbase.

To conclude, a notation evolution step ∆ consists of the following components:

• σ , a bidirectional notation specification transformation that changes the notation itself

• δ , a bidirectional coupled grammar transformation that converges the notation grammars

• µ , an unidirectional coupled grammar mutation that migrates the grammarbase according
to notation changes.

• a mechanism to propagate naming changes to form γ = δ−1
n ◦β

4 LLL case study

On Figure 2 we can see the concrete variant of the abstract megamodel, it contains the names
of the files and tools that anyone can download and verify. The notation specifications S(L3

1)

Proc. BX 2012 10 / 15

LLL case study

The megamodel

The megamodel

" = ⟨σ,δ,μ⟩

ECEASST

and S(L3
2) are stored in corresponding EDD files and are among the few handcrafted entities in

the framework. Since both of them are known, the bidirectional evolution σ which is stored as
an XEDD sequence, is used for validating their convergence, not for propagating the changes.
A Rascal tool called edd2rsc takes the notation specifications as input and automatically pro-
duces the parser specifications GRascal(L3

1) and GRascal(L3
2). These grammars can be used for

IDE support of both notations, but here we view them just as sources for grammar extraction.
The extractor, rsc2bgf, written in Python, produces GBGF(L3

1) and GBGF(L3
2). They can be re-

exported to Rascal form with an XSLT tool bgf2rsc, but the lack of lexical information storing
facilities in BGF make this step not practically bidirectional (and we do not attempt to circum-
vent this within the scope of the current paper). GBGF(L3

1) and GBGF(L3
2) are related by a coupled

bidirectional grammar transformation δ , which is expressed in ΞBGF and generated automati-
cally by the XEDD processor. Again, since both source and target grammars are known, we use
this ΞBGF script for validating their convergence. This validation is performed by generating two
XBGF sequences for forward and reverse application with ξbgf2xbgf (implemented in XSLT)
and then reusing the previously existing SLPS framework for applying grammar transformations
(xbgf) and for grammar comparison (gdt), both written in Prolog. The bidirectional grammar
adaptation β is manually prepared beforehand as lll1.spec2doc (in ΞBGF) in order to fit
expectations of the LLL documentation. The corresponding bidirectional grammar adaptation
γ , available as lll2.spec2doc, (in ΞBGF) is generated automatically by propagating the
renamings from δ to β . Since G(D)

BGF(L
3
2), the camera ready version of the evolved notation, is

unknown, we use the ΞBGF script γ to derive it from G(D)
BGF(L

3
1). Finally, bgfpp, written in

XSLT, is used to pretty-print both notation’ grammars “in themselves”, yielding GL3
1
(L3

1) and
GL3

2
(L3

2). The reverse of bgfpp should be either a specially programmed tool called lll2bgf
or an application of a more generic grammar recovery tool called Grammar Hunter [Zay12b],
which can be parametrised with the notation specification.

The σ between L3
1 and L3

2, expressed in XEDD, looks like this (see lll1to2.xedd):
introduce-metasymbol(group, ’(’, ’)’);
introduce-metasymbol(seplist-star, ’{’, ’}*’);
introduce-metasymbol(seplist-plus, ’{’, ’}+’);
The coupled δ generated by the xedd processor produces the following ΞBGF:
rename-rename(LLL1Grammar, LLL2genGrammar);
rename-rename(LLL1Production, LLL2genProduction);
rename-rename(LLL1Definition, LLL2genDefinition);
rename-rename(LLL1Symbol, LLL2genSymbol);
rename-rename(LLL1Nonterminal, LLL2genNonterminal);
rename-rename(LLL1Terminal, LLL2genTerminal);
add-remove(p(l(group), LLL2genSymbol, ’,’(t(’(’),slp(LLL2genDefinition,’|’),t(’)’))));
add-remove(p(l(sepliststar), LLL2genSymbol, ’,’(t(’{’),n(LLL2genSymbol),n(LLL2genSymbol),t(’}∗’))));
add-remove(p(l(seplistplus), LLL2genSymbol, ’,’(t(’{’),n(LLL2genSymbol),n(LLL2genSymbol),t(’}+’))));

Since all transformations only add new notational features, minimal unidirectional grammar
mutations µ that correspond to them, do not change the grammars at all: the postcondition of be-
ing able to express the grammar in the given notation holds immediately. On Table 1 we present
results of applying an inverted coupled mutation µ �, EliminateGroup.rsc, that corresponds
to removing start and end group metasymbols from the notation specification (σ−1), to Grammar
Zoo [ZLS+11]. Zeros mean the absence of group metasymbols in the original notation that was

11 / 15 Volume X (2012)

Language Evolution, Metasyntactically

used as an extraction source — since no groups were found there, there are also no groups in
the extracted grammar. Low numbers (like 1 for java-5-jls-read) are observed when the language
engineers were planned to go without group metasymbols, but “forgot” about it. High numbers
(up to 345 for eiffel-iso-25436-2006) mean that the functionality we are retiring with this mu-
tation was heavily and intentionally used. The mutations corresponding to the other two steps
produce similar results, and can be found implemented in Rascal as EliminateSLS.rsc and
EliminateSLP.rsc.

Propagation of nominal refactorings from δ to β to form γ is performed by an XSLT script
ξbgf2. In general, propagating structural changes is hard and sometimes impossible (for some
transformations, there is no easy way to express their permutation in XBGF), and in this partic-
ular scenario is even undesirable. We save space in the paper by reserving it for future work.

5 Related and future work

Cicchetti et al [CCLP11] have illustrated that many difficulties arise when two levels of models
(models and metamodels in UML/OOP technical space for them; grammars and metasyntax
for us) evolve at the same time, and evolution steps not only need to be propagated from one
level to the other, but also be combined with transformations already happening there. Since we
practically transform the grammars in their internal representation, such conflicts will never arise,
because the extraction and exporting steps (recall §3.4) will naturally take care of any pending
metasyntactic evolution. In that respect our approach is closer to the one taken by Wachsmuth in
[Wac07], which is only to be expected since he borrows heavily from grammarware engineering.

Formal properties of bidirectional grammar transformations, such as correctness and hippo-
craticness [Ste07], need further investigation. There are a lot of open questions in bidirection-
alising existing grammar transformation, which we mostly solved but need considerably more
space for related explanations. Thus, the results of this investigation will be published separately.

Given two parsers of presumably different versions of the same language, one can hardly tell
the linguistic difference just from analysing them. In §3.6, we have stated that the only way
to compare parsers directly and automatically was grammar-based differential testing, which
is not completely true. In a very lucky yet not impossible scenario, metasyntactic formulae are
spotted directly in the source code [LV01]. This enables very reliable grammar extraction, which
produces GBGF(N) in a form very close to GRascal(N) (or any other Gparser(N)). Such extracted
grammars can be used for direct comparison or for making testing results more reliable.

In §2, we have seen two completely differently looking grammars of L3
1 and L3

2, taken from
their respective documentation. In the approach we propose to use in this paper, in order to
change the definition of a notation “in itself”, we would need to change (or develop, if it does
not exist yet) a grammar adaptation chain β . However, GN(N) can be edited in place, with the
readable notation grammar G(D)

BGF(N) extracted from it automatically: since the edits are purely
decorational, the notation itself will stay the same, hence enabling automated reliable recovery.
The only problem that stays in the way of implementing this evolution scenario is the (current)
inability of inferring bidirectional grammar transformation by looking at two supposedly related
grammars. Since this issue is definitely to be addressed in future grammar-related research, this
room for improvement can eventually be filled.

Proc. BX 2012 12 / 15

Applying coupled mutation
eliminate-metasymbol(group)

to Grammar ZooLanguage Evolution, Metasyntactically

ada-kellogg 108 csharp-iso-23270-2003 0 java-1-jls-read 0
ada-kempe 89 csharp-iso-23270-2006 0 java-2-jls-impl 36
ada-laemmel-verhoef 79 csharp-msft-ls-1.0 0 java-2-jls-read 0
ada-lncs-2219 89 csharp-msft-ls-1.2 0 java-5-habelitz 65
ada-lncs-4348 109 csharp-msft-ls-3.0 0 java-5-jls-impl 60
c-iso-9899-1999 0 csharp-msft-ls-4.0 0 java-5-jls-read 1
c-iso-9899-tc2 0 csharp-zaytsev 23 java-5-parr 95
c-iso-9899-tc3 0 dart-google 58 java-5-stahl 92
cpp-iso-14882-1998 0 dart-spec-0.01 56 java-5-studman 91
cpp-iso-n2723 0 dart-spec-0.05 62 mediawiki-bnf 32
csharp-ecma-334-1 0 eiffel-bezault 45 mediawiki-ebnf 30
csharp-ecma-334-2 0 eiffel-iso-25436-2006 345 modula-sdf 50
csharp-ecma-334-3 0 fortran-derricks 101 modula-src-052 65
csharp-ecma-334-4 0 java-1-jls-impl 0 w3c-xpath1 3

Table 1: Applying coupled mutation to eliminate-metasymbol(group) to Grammar Zoo.

β−1 ◦ δ ◦ γ , and the notation definitions “in themselves”, which are not directly comparable, as
we have witnessed in §2.

Thus, so far we have avoided comparing and transforming the readable grammars directly by
focusing on notation specifications and on grammars derived from them (which can be viewed
as a form of normalisation). However, suppose that we already have a grammarbase: a collection
{GN(L)} of grammars of various languages, all written in the notation N. These grammars need
to coevolve with the intended changes of the notation specification, such that ∀L ,GN(L)

µ−→
GN�(L). The grammar mutation µ is neither naturally bidirectional, nor easily bidirectionalised.
However, since the notation specification transformation σ is bidirectional, one can infer the
coupled µ � from σ−1 — this µ � will not necessarily be equivalent to µ−1, if no assumptions are
made about the grammars in the grammarbase.

To conclude, a notation evolution step ∆ consists of the following components:

• σ , a bidirectional notation specification transformation that changes the notation itself

• δ , a bidirectional coupled grammar transformation that converges the notation grammars

• µ , an unidirectional coupled grammar mutation that migrates the grammarbase according
to notation changes.

• a mechanism to propagate naming changes to form γ = δ−1
n ◦β

4 LLL case study

On Figure 2 we can see the concrete variant of the abstract megamodel, it contains the names
of the files and tools that anyone can download and verify. The notation specifications S(L3

1)

Proc. BX 2012 10 / 15

http://slps.sf.net/zoo
http://slps.sf.net/zoo

Related and
future work

Related work

★ Cicchetti et al: coevolution of models/metamodels
(syntax/metasyntax) with language evolution and
language coevolution happening simultaneously.

★Wachsmuth: MDA/MOF solution, close to us.

★ Stevens: formulated properties like correctness and
hippocraticness; need further investigation.

Future work

★ Extract reference grammars from compiler sources

★ rare enabling precondition
★ known to be successful at least once [C500LP]

★ Derive # from inline edits of the definition “in itself”

★ possible if edits are purely decorational
★makes sense in context of IDE (structural editors?)

★ Propagate all refactorings from $ to # to form %

Conclusion

Conclusion

★ We extended XBGF to bidirectionality, resulting in
!BGF.

★ We proposed EDD and XEDD for notation & its evolution.

★ We presented a case study of LLL evolution (GDK).

★ We generalised transformers and generators to
transformations and mutations; also formalised them.

★ We implemented an XEDD processor for evolution,
coevolution, change propagation and mutation.

Bibliography

Bibliography
[THIS]
 Zaytsev,
 Language Evolution, Metasyntactically
 BX and hopefully ECEASST
[GRACE]
 Czarnecki, Foster, Hu, Lämmel, Schürr, Terwilliger,
 Bidirectional Transformations: A Cross-Discipline Perspective
 GRACE 2008 meeting notes, state of the art, and outlook
[C500LP]
 Lämmel, Verhoef,
 Cracking the 500-Language Problem
 IEEE Software, November/December 2001
[Z12a]
 Zaytsev,
 BNF WAS HERE: What Have We Done About the Unnecessary Diversity of Notation for Syntactic Definitions
 SAC/PL 2012
[LDTA02]
 Kort, Lämmel, Verhoef,
 The Grammar Deployment Kit: System Demonstration
 LDTA 2002 and ENTCS 65
[GDK]
 Kort,
 Grammar Deployment Kit Reference Manual
 Universiteit van Amsterdam, May 2003

http://grammarware.net/text/2012/metasyntactically.pdf
http://grammarware.net/text/2012/metasyntactically.pdf
http://grammarware.net/text/2012/bnf-was-here.pdf
http://grammarware.net/text/2012/bnf-was-here.pdf
http://www.cs.vu.nl/grammarware/gdk/
http://www.cs.vu.nl/grammarware/gdk/
http://gdk.sourceforge.net/gdkref.pdf
http://gdk.sourceforge.net/gdkref.pdf

Discussion

