Robustness of the Maximal Covering Location Problem

R.B.O. Kerkkamp

Joint work with:
K.I. Aardal P.L. van den Berg
S. Bhulai C.J. Jagtenberg
R.D. van der Mei
Contents
Contents

Placement of ambulance bases:
Contents

Placement of ambulance bases:
 ▶ Optimisation model
Contents

Placement of ambulance bases:
- Optimisation model
- Maximal Covering Location problem (MCLP)
Contents

Placement of ambulance bases:
 ▶ Optimisation model
 ▶ Maximal Covering Location problem (MCLP)

Robustness:
Contents

Placement of ambulance bases:
 ▶ Optimisation model
 ▶ Maximal Covering Location problem (MCLP)

Robustness:
 ▶ Two types of data uncertainty
Contents

Placement of ambulance bases:
- Optimisation model
- Maximal Covering Location problem (MCLP)

Robustness:
- Two types of data uncertainty
- Worst-case Robust Optimisation technique
Emergency Medical Service
Emergency Medical Service

The organisation and coordination of out-of-hospital:

- Acute medical care
- Transportation of patients
Emergency Medical Service

The organisation and coordination of out-of-hospital:
 ▶ Acute medical care
 ▶ Transportation of patients

Service providers are responsible for:
 ▶ Handling 112 emergency medical calls
 ▶ Dispatching of ambulances
Emergency Medical Service

The organisation and coordination of out-of-hospital:

- Acute medical care
- Transportation of patients

Service providers are responsible for:

- Handling 112 emergency medical calls
- Dispatching of ambulances
Emergency Medical Service

Situation in The Netherlands:
Emergency Medical Service

Situation in The Netherlands:

- 24 regional services
Emergency Medical Service

Situation in The Netherlands:

- 24 regional services
- 200 ambulance bases

Robustness of the Maximal Covering Location Problem 25 June 2014
Emergency Medical Service

Situation in The Netherlands:

- 24 regional services
- 200 ambulance bases
- 700 ambulances
Emergency Medical Service

Situation in The Netherlands:

- 24 regional services
- 200 ambulance bases
- 700 ambulances
- 1.1 million trips per year
Emergency Medical Service

Situation in The Netherlands:

- 24 regional services
- 200 ambulance bases
- 700 ambulances
- 1.1 million trips per year

Services are tasked to optimise their performance
Placement of Ambulance Bases
Placement of Ambulance Bases

Use optimisation models to determine optimal base locations
Placement of Ambulance Bases

Use optimisation models to determine optimal base locations

- Facility location model
Placement of Ambulance Bases

Use optimisation models to determine optimal base locations

- Facility location model
- Maximal Covering Location problem (MCLP)
Placement of Ambulance Bases

Objective

$$\max \sum_{j \in J} d_j z_j$$

Constraints

$$\sum_{i \in I} x_i = p$$

$$\sum_{i \in I} a_{ij} x_i \geq z_j \quad \forall j \in J$$

$$x_i \in \mathbb{B} \quad \forall i \in I$$

$$z_j \in \mathbb{B} \quad \forall j \in J$$

Sets:
- Possible base locations I
- Demand points J

Parameters:
- Demand weights $d_j \in \mathbb{R} \geq 0$
- Number of bases $p \in \mathbb{N}$
- Adjacency $a_{ij} \in \mathbb{B}$

Variables:
- Opened bases x_i
- Covered points z_j
Placement of Ambulance Bases

Objective

\[\max \sum_{j \in J} d_j z_j \]

Constraints

\[\sum_{i \in I} x_i = p \]
\[\sum_{i \in I} a_{ij} x_i \geq z_j \quad \forall j \in J \]
\[x_i \in \mathbb{B} \quad \forall i \in I \]
\[z_j \in \mathbb{B} \quad \forall j \in J \]

Sets:

- Possible base locations \mathcal{I}
- Demand points \mathcal{J}
Placement of Ambulance Bases

Objective

\[\max \sum_{j \in J} d_j z_j \]

Constraints

\[\sum_{i \in I} x_i = p \]

\[\sum_{i \in I} a_{ij} x_i \geq z_j \quad \forall j \in J \]

\[x_i \in \mathbb{B} \quad \forall i \in I \]

\[z_j \in \mathbb{B} \quad \forall j \in J \]

Sets:
- Possible base locations \(I \)
- Demand points \(J \)

Parameters:
- Demand weights \(d_j \in \mathbb{R}_{\geq 0} \)
- Number of bases \(p \in \mathbb{N} \)
- Adjacency \(a_{ij} \in \mathbb{B} \)
Placement of Ambulance Bases

Objective

\[
\max \sum_{j \in \mathcal{J}} d_j z_j
\]

Constraints

\[
\sum_{i \in \mathcal{I}} x_i = p
\]

\[
\sum_{i \in \mathcal{I}} a_{ij} x_i \geq z_j \quad \forall j \in \mathcal{J}
\]

Sets:
- Possible base locations \(\mathcal{I} \)
- Demand points \(\mathcal{J} \)

Parameters:
- Demand weights \(d_j \in \mathbb{R}_{\geq 0} \)
- Number of bases \(p \in \mathbb{N} \)
- Adjacency \(a_{ij} \in \mathbb{B} \)

Variables:
- Opened bases \(x_i \)
- Covered points \(z_j \)
Model Robustness
Model Robustness

Type of robustness:
Model Robustness

Type of robustness:

▶ Model parameters
Model Robustness

Type of robustness:

▶ Model parameters
▶ Related to data uncertainty
Model Robustness

Type of robustness:
- Model parameters
- Related to data uncertainty

Robustness:
Model Robustness

Type of robustness:
- Model parameters
- Related to data uncertainty

Robustness:
- Solutions are insensitive to (small) parameter changes
Model Robustness

Type of robustness:
- Model parameters
- Related to data uncertainty

Robustness:
- Solutions are insensitive to (small) parameter changes
- Results are more reliable
Model Robustness

Type of robustness:
- Model parameters
- Related to data uncertainty

Robustness:
- Solutions are insensitive to (small) parameter changes
- Results are more reliable

Focus on demand weights d_j
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed
Model Robustness

Suppose:
- Up to 5% deviation in demand d_j is possible
- Total demand is fixed
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:

- Best coverage in case of worst-case realisation of demand
Model Robustness

Suppose:
- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:
- Best coverage in case of worst-case realisation of demand
Model Robustness

Suppose:

▶ Up to 5% deviation in demand d_j is possible
▶ Total demand is fixed

Where to place ambulance bases?

Safe approach:

▶ Best coverage in case of worst-case realisation of demand
▶ Worst-case realisation depends on base locations!
Model Robustness

Suppose:
- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:
- Best coverage in case of worst-case realisation of demand
- Worst-case realisation depends on base locations!
Model Robustness

Suppose:
- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:
- Best coverage in case of worst-case realisation of demand
- Worst-case realisation depends on base locations!
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:

- Best coverage in case of worst-case realisation of demand
- Worst-case realisation depends on base locations!
Model Robustness

Suppose:

- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:

- Best coverage in case of worst-case realisation of demand
- Worst-case realisation depends on base locations!

Use Robust Optimisation techniques
Model Robustness

Suppose:
- Up to 5% deviation in demand d_j is possible
- Total demand is fixed

Where to place ambulance bases?

Safe approach:
- Best coverage in case of worst-case realisation of demand
- Worst-case realisation depends on base locations!

Use Robust Optimisation techniques
- Uses duality theory
Model Robustness

Suppose:

- Up to 5% deviation in demand is possible: \(d_j \in [d_j, \bar{d}_j] \)
- Total demand is fixed to \(\Delta \)
Model Robustness

Suppose:

- Up to 5% deviation in demand is possible: \(d_j \in [d_j, \bar{d}_j] \)
- Total demand is fixed to \(\Delta \)

New variables: \(u, v_j^+, v_j^- \ \in [0, 1] \)
Model Robustness

Suppose:

- Up to 5% deviation in demand is possible: \(d_j \in [d_j, \bar{d}_j] \)
- Total demand is fixed to \(\Delta \)

New variables: \(u, v_j^+, v_j^- \in [0, 1] \)

Robust objective:

\[
\Delta u \overset{\text{estimated total coverage}}{=} - \sum_{j \in \mathcal{J}} \bar{d}_j v_j^+ + \sum_{j \in \mathcal{J}} d_j v_j^-
\]

\(\text{correction overestimates} \quad \text{correction underestimates} \)
Model Robustness

Suppose:
- Up to 5% deviation in demand is possible: \(d_j \in [\underline{d}_j, \overline{d}_j]\)
- Total demand is fixed to \(\Delta\)

New variables: \(u, v_j^+, v_j^- \in [0, 1]\)

Robust objective:

\[
\begin{align*}
\Delta u & \geq \text{estimated total coverage} \ - \sum_{j \in \mathcal{J}} \overline{d}_j v_j^+ \ + \sum_{j \in \mathcal{J}} \underline{d}_j v_j^- \\
& \text{correction overestimates} \quad \text{correction underestimates}
\end{align*}
\]

Also some additional constraints
Model Robustness

Suppose:

- Up to 5% deviation in demand is possible
- Total demand is fixed
Model Robustness

Suppose:
- Up to 5% deviation in demand is possible
- Total demand is fixed

We have two models:
- Normal coverage model
- Robust coverage model
Model Robustness

Suppose:
- Up to 5% deviation in demand is possible
- Total demand is fixed

We have two models:
- Normal coverage model
- Robust coverage model
- Both are equivalent under these assumptions!
Model Robustness

Suppose:

- Up to 5% deviation in demand is possible
- Total demand is fixed

We have two models:

- Normal coverage model
- Robust coverage model
- Both are equivalent under these assumptions!

The model is robust with respect to demand uncertainty
Model Robustness

Alternative parameter uncertainty:
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
- Estimated demand \hat{d}_j is the rate of Poisson process
Model Robustness

Alternative parameter uncertainty:
▶ Total demand is fixed
▶ Estimated demand \hat{d}_j is the rate of Poisson process
▶ Uncertainty up to a standard deviation in demand
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
- Estimated demand \hat{d}_j is the rate of Poisson process
- Uncertainty up to a standard deviation in demand

Same robust coverage model, but with:

$$d_j \in [\underline{d}_j, \overline{d}_j] = \left[\hat{d}_j - \sqrt{\hat{d}_j}, \hat{d}_j + \sqrt{\hat{d}_j}\right]$$
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
- Estimated demand \(\hat{d}_j \) is the rate of Poisson process
- Uncertainty up to a standard deviation in demand

Two models:

- Normal and robust coverage models
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
- Estimated demand \hat{d}_j is the rate of Poisson process
- Uncertainty up to a standard deviation in demand

Two models:

- Normal and robust coverage models
- Not equivalent under these assumptions!
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
- Estimated demand \hat{d}_j is the rate of Poisson process
- Uncertainty up to a standard deviation in demand

Two models:

- Normal and robust coverage models
- Not equivalent under these assumptions!

Numerical results:

Solution differs in 32 of 609 cases (5%)
Coverage difference is very small (<1%)
Model Robustness

Alternative parameter uncertainty:

- Total demand is fixed
- Estimated demand \hat{d}_j is the rate of Poisson process
- Uncertainty up to a standard deviation in demand

Two models:

- Normal and robust coverage models
- Not equivalent under these assumptions!

Numerical results:

- Solution differs in 32 of 609 cases (5%)
Model Robustness

Alternative parameter uncertainty:
- Total demand is fixed
- Estimated demand \hat{d}_j is the rate of Poisson process
- Uncertainty up to a standard deviation in demand

Two models:
- Normal and robust coverage models
- Not equivalent under these assumptions!

Numerical results:
- Solution differs in 32 of 609 cases (5%)
- Coverage difference is very small (< 1%)
Conclusion
Conclusion

Maximal Covering Location problem (MCLP):
Conclusion

Maximal Covering Location problem (MCLP):
▶ Coverage optimisation model
Conclusion

Maximal Covering Location problem (MCLP):

▶ Coverage optimisation model
▶ Robust for two common types of demand uncertainty

Robust Optimisation:

▶ General optimisation technique
▶ Useful for worst-case robust solutions

See also:

Conclusion

Maximal Covering Location problem (MCLP):

▶ Coverage optimisation model
▶ Robust for two common types of demand uncertainty

Robust Optimisation:
Conclusion

Maximal Covering Location problem (MCLP):
 ▶ Coverage optimisation model
 ▶ Robust for two common types of demand uncertainty

Robust Optimisation:
 ▶ General optimisation technique
Conclusion

Maximal Covering Location problem (MCLP):
▶ Coverage optimisation model
▶ Robust for two common types of demand uncertainty

Robust Optimisation:
▶ General optimisation technique
▶ Useful for worst-case robust solutions
Conclusion

Maximal Covering Location problem (MCLP):
- Coverage optimisation model
- Robust for two common types of demand uncertainty

Robust Optimisation:
- General optimisation technique
- Useful for worst-case robust solutions
- See also:

Questions?